AUTHOR=Zhu Yihua , Liu Ren , Chang Dongxu , Guo Hengdao TITLE=Detection of false data injection attacks on power systems based on measurement-eigenvalue residual similarity test JOURNAL=Frontiers in Energy Research VOLUME=11 YEAR=2023 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2023.1285317 DOI=10.3389/fenrg.2023.1285317 ISSN=2296-598X ABSTRACT=

Existing False data injection attack (FDIA) detection methods based on measurement similarity testing have difficulty in distinguishing between actual power grid accidents and FDIAs. Therefore, this paper proposes a detection method called the measurement-eigenvalue residual similarity (MERS) test, which can accurately detect FDIAs in AC state estimationof power system and effectively distinguish them from actual power grid accidents. Simulation results on the IEEE 39-bus system demonstrate that the proposed method achieves higher detection rates and lower false alarm rates than traditional methods under various operation conditions.