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Existing False data injection attack (FDIA) detection methods based on
measurement similarity testing have difficulty in distinguishing between actual
power grid accidents and FDIAs. Therefore, this paper proposes a detection
method called the measurement-eigenvalue residual similarity (MERS) test,
which can accurately detect FDIAs in AC state estimationof power system and
effectively distinguish them from actual power grid accidents. Simulation results
on the IEEE 39-bus system demonstrate that the proposed method achieves
higher detection rates and lower false alarm rates than traditional methods under
various operation conditions.
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1 Introduction

State estimationis an important component of supervisory control and data acquisition
(SCADA) systems in power systems. It can accurately estimate the true operating conditions
of the system based on the real-time operating status information and network topology
information collected by remote terminal units (RTUs), providing a foundation for system
analysis such as optimal power flow and bad data detection (Ericsson, 2010; Feng et al.,
2023).

False data injection attack (FDIA) is a type of network attack on power system state
estimation, which was first proposed by Liu et al. (2011). The paper considers two different
attack scenarios: one assumes that the attacker has complete knowledge of the system
parameters, while the other assumes that the attacker is limited by the resources required to
damage certain specific instruments. Subsequently, many scholars have conducted extensive
research on FDIA.

In the early stage, to simplify the computational difficulty and improve the accuracy
of FDIA detection, scholars usually used FDIA based on the DC power flow model
for experiments. However, in practice, the power industry has adopted a nonlinear
state estimator with a complete AC power flow model (Abur and Exposito, 2004;
Xiahou et al., 2020; Chen et al., 2023), so it cannot be guaranteed that the FDIA
detection method based on the DC model has equivalent performance under the
nonlinear AC state estimation (Zhao et al., 2018; Tiande et al., 2023). Therefore, to solve
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the limitations of the DC model, a large number of scholars
have started researching on FDIA detection and prevention based
on the AC power flow model (Chaojun et al., 2015; He et al.,
2017; Zhang Y. et al., 2020). Currently, the research on FDIA
detection technology can be roughly divided into three categories:
detection methods based on state estimation (Coluccia et al.,
2013; Chen et al., 2020; Liu et al., 2022), trajectory prediction
(Yang et al., 2019), and artificial intelligence (Jena et al., 2021).
FDIA also poses a significant threat to the security of the
electricity market, and research has developed detection methods
based on the critical load level (CLL) concept to help operators
identify risk periods (Zhang Q. et al., 2020). There is also research
on the monitoring and response mechanisms in learning-based
collaborative FDIA, proposing a real-time FDIA detection method
and a re-evaluation mechanism with penalty schemes, which
can detect the initiation of learning-based collaborative FDIA
(Jiang et al., 2020). In response to the characteristics of power grid
systems with large data redundancy, some scholars have proposed
a multi-source self-attention data fusion model, which uses time
alignment technology to integrate the collectedmulti-source remote
sensing data into the same time dimension. Subsequently, a
symmetric hybrid deep network model was established to detect
FDIA by symmetrically combining long and short durations
(Wu et al., 2023).

However, these methods have limitations. For example, for
methods that rely on secure PMUs, the fundamental assumption that
a specific set of PMUs is completely invincible may not always hold
true (Zhao et al., 2018). In addition, for machine learning-based
detection methods, if false data does not significantly deviate from
historical trends, the detection performancemay not be satisfactory.
As for the measurement consistency verification, how to accurately
distinguish FDIA from actual power accidents is still an urgent
problem to be solved.

In order to deal with the aforementioned problems, this paper
proposes a detection method called the measurement-eigenvalue
residual similarity (MERS) test. The rest of this paper is structured
as follows: Section 2 introduces the construction principles of FDIA
and the basis and methods for constructing imperfect FDIA under
practical conditions Section 3 elaborates in detail on the FDIA
detection method proposed in this article Section 4 conducted
simulation verification on the content of Section 2 and Section 3.
Section 5 is the conclusion of the paper.

2 FDIA constrction strategies

2.1 Bad data detection module

During the entire process of collection, transmission, and
exchange of measurement data, it is impossible to ensure that
all data is accurate, but there may be data damage or deviation
caused by equipment or network reasons. Therefore, it is necessary
to detect and identify measurement data, using a large number
of normal redundant measurements and mathematical processing
methods to detect defective data. Based on the results of WLS SE,
conventional bad data detection methods such as chi-square test,
weighted residual (WR) test, and largest normalized residual (LNR)
test are commonly used.

The LNR test is a widely usedmethod for detecting bad data.The
core is to normalize the measurement residuals.

rNi =
ri
σNi
=
|zi − hi (x̂)|

√Ωii

Ñ (0,1) (1)

Ω = [I−H(HTR−1H)−1HTR−1]R (2)

where zi is the i-th measurement; h (⋅) is a nonlinear function related
to the i-th measurement value and the state vector; rNi is the i-th
normalized residual; Ωii is the i-th diagonal element of Ω; I ∈ Rm×m

is an identity matrix. If the maximum normalized residual is greater
than the threshold ɛ, the correspondingmeasurement results will be
suspected as bad data.

For the i-th normalized residual rNi ∼ N(0,Ωii) according to the
3σ rule, there is P{|rNi| < 3√Ωii} = 0.9975. If √Ωii ≈ 1, when the
maximum normalized residual of the test |rNi| is greater than the
threshold (which is 3 at this time), it is considered that there is
defective data in the measurement set, and the probability of false
detection is Pe = 0.0025.

Compared to the chi-square test, the WR test is not affected by
the system size compared to the LNR test. In terms of detection
sensitivity, when the redundancy of equivalent measurement is
high, both WR test and LNR test have excellent inspection results.
Generally, the effectiveness of the LNR test is not inferior to that of
the WR test. However, the LNR test requires complex calculations
and incurs more computational costs. However, the LNR test
method can identify which data is most likely to be bad, laying the
foundation for identifying bad data.

The chi-square test, WR test, and LNR test are usually effective
for detecting natural defect data, which can cause significant
measurement residual disturbances. However, for maliciously
designed false data, these methods are often ineffective and only
cause small residual disturbances.

2.2 FDIA construction principle

Thebiggest difference between AC state estimation andDC state
estimation is the nonlinearity of the problem.However, based on the
AC state estimationmodel, the conclusion fromDC state estimation
can still be applied when launching a false data injection attack
on a specific state variable-the measurement Jacobian matrix H (x)
reflects the electrical connection between themeasurement and state
variables. If a measurement zi depends on a state variable xk, then
the element value in the k-th column and i-th row of H (x)must be
non-zero.

Therefore, in order to launch a false data injection attack in AC
state estimation, the attacker must know the values of other state
variables that are related to the target state variable at the current
time, in addition to satisfying the two conditions for DC false data
injection attacks. This further increases the difficulty of launching
AC-based FDIA in practice.

Assuming that the attacker has access to real-time state
estimation, network topology, and parameter information, they can
launch a perfect FDIA, where the attack vector a is designed as
follows

z+ a− h (x̂+ c) = z− h (x̂) (3)
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a = h (x̂+ c) − h (x̂) (4)

where z is the measurement vector; x̂ represents the state estimation
vector that does not include the FDIA; c represents the bias vector
injected into the state estimation; a denotes the attack vector; h (⋅)
represents the nonlinear relationship between the state vector x̂ and
the measurement vector z.

Reference (Liu et al., 2011) has shown that in the case where
the state, parameter, and network information is completely leaked,
the attack vector a constructed according to Eq. 4 can produce
the same measurement residual vector as that without the attack.
Therefore, false data can evade conventional detection methods
such as chi-square, weighted residual, and likelihood ratio tests.
However, it is difficult to achieve a perfect attack vector, and the
specific reasons will be discussed in detail in the next section.
Nevertheless, if the attacker can create an attack vector that is close
enough to Eq. 4, such that the perturbation of the residual vector
remains below the threshold of bad data detection, there is still a
high chance that imperfect FDIA can bypass bad data detection
and cause misjudgment and incorrect actions by the control
center.

2.3 Imperfect FDIA construction strategy

Based on the analysis of the FDIA attack principle in the previous
section, it can be inferred that it is difficult for network attackers
to achieve perfect FDIA against AC state estimation. Therefore, this
study is based on the assumption that AC-based FDIA is difficult to
implement in reality, especially since attackers are unlikely to obtain
accurate real-time state estimation and accurate model parameters,
particularly real-time state estimation. The specific assumptions are
as follows:

(1) Firstly, network parameters and state estimation are stored in the
database of the control center, which is relatively well protected.
For attackers, it is more difficult to enter the control center than
the substation-level network due to communication or technical
limitations.

(2) Even if the attacker gains accurate network parameters by
invading the control center, it is still difficult to obtain accurate
state estimation. Due to the real-time fluctuations of the load, the
power flow is time-varying.Therefore, the latest state estimation
is necessary for a perfect AC-based FDIA. However, once the
FDIA is started, the state estimation of the control center will
be biased.

(3) Attackers also need to consider the cost factor when designing
the FDIA vector. Generally, the more perfect the FDIA requires
modification of data, the greater the difficulty and cost of
injecting the attack vector. Under cost constraints, attackers
usually consider the minimum number of measurements to be
tampered with to ensure that the attack is not detected, as well as
how to choose these measurements. This also makes AC-based
FDIA still imperfect.

(4) The attacker’s state estimation function should be executed
at the same time resolution (every 2–3 s) as the SCADA
measurement, to determine how to operate the measurement
perfectly. However, this is almost an impossible task for attackers

because it depends on the availability of real-timemeasurements
and powerful computing capabilities, which are not available
to attackers. Note that it does not require an accurate latest
estimation to start a perfect DC-based FDIA. However, almost
all existing state estimators in the control center are based on
AC, and it does require an accurate latest state estimation to start
AC-based FDIA.

As it is almost impossible to meet all the above conditions
simultaneously, it can be reasonably assumed that AC-based FDIA
is imperfect. Consider an imperfect AC-based FDIA as follows:

̃a = ̃h (x̂+ ξ+ c) − ̃h (x̂+ ξ) (5)

where ̃a is the imperfect attack vector; ̃h (⋅) is the nonlinear function
of inaccurate model parameters; ξ represents the error in the
attacker’s guessed state estimation vector z.

The derivation of the measurement residual vector based on
imperfect AC FDIA is given as follows

r ̃a = z+ ̃a

= z+ ̃h (x̂+ ξ+ c) − ̃h (x̂+ ξ) − ̃h(x̂ ̃a)

= r+ ̃h (x̂+ ξ+ c) − ̃h (x̂+ ξ) + h (x̂) − ̃h(x̂ ̃a) (6)

where x ̃a represent the state estimation vector; r and r ̃a denote the
measurement residual vector before and after FDIA.

The state estimation vector can be represented as

x ̃a = x̂+ η+ c (7)

where η is the state estimation error vector of the system operator.
Note that η and ξ are different because the model parameters
obtained by the attacker are inaccurate.

Using to represent the measurement residual deviation vector
caused by FDIA based on imperfect AC as:

rã = r+Δ (8)

Δ = ̃h (x̂+ ξ+ c) − ̃h (x̂+ ξ) + h (x̂) − ̃h(x̂ã) (9)

In this case, the probability density function of imperfect
FDIA measurement residuals is different from that of measurement
residuals without FDIA. Such subtle differences may not trigger
traditional LNR or chi-square tests, but it is possible to design more
specialized and refined tests to discover them.

3 Proposed FDIA detection method

3.1 Measurement value similarity

In this section, a cosine similarity ratio detection method
is proposed. Specifically, the proposed method utilizes the ratio
of the cosine similarity between the actual measured values
and the state estimation values of the power system at two
different time instants as the detection index. When the system
is operating normally without FDIA, the cosine similarity ratio
between the two will remain relatively stable. However, when the
system is under FDIA, the cosine similarity ratio will experience
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a sudden change, which can be used to detect the presence of
FDIA.

The FDIA detection method based on measurement values
proposed in the article is based on state estimation measurement
data. It is not fixed to individual or determinedmeasurement values,
but rather focuses on global measurement data, including active and
reactive power measurements of power branches, voltage amplitude
and phase angle measurements of generators or bus nodes, and
generator output force measurements.

Firstly, in the process of state estimation, the estimated
measurement value ̂zk|k+1 at time k are obtained based on the
historical state estimation value x̂k−1 at the previous time step,
and then the actual system measurement value zk at time k are
obtained from the measurement equations. The cosine similarity
between the actual and estimated measurement values at time
k is

cosk =
zk ⋅ ̂zk|k−1
‖zk‖ × ‖ ̂zk|k−1 ‖

(10)

Similarly, the cosine similarity between the actual and estimated
measurement values at the initial time instant can be computed as

cos1 =
z1 ⋅ ̂z1|0
‖z1‖ × ‖ ̂z1|0 ‖

(11)

where z1 represents themeasurement vector and ̂z1|0 is the estimated
vector at the initial time.

The measurement values at initial time 1 are chosen to be taken
when the system reaches a steady-state condition. Under steady-
state conditions, the variations in system variables such as voltage
and current reach their minimum values, thus providing a more
reliable baseline.

TABLE 1 Operation steps of cosine similarity ratio detectionmethod.

Algorithm: Cosine Similarity Ratio Detection method

Input:Measured data available at time k in the system.

Step 1: Initialize the system state variable x̂k−1 and covariance matrix Rk−1.

Step 2: Perform state estimation.

Step 3: Predict the current state estimation value x̂ k|k−1 based on the previous time
step’s state estimation value x̂k−1.

Step 4: Substitute the predicted state estimation value into the measurement
equation to compute the predicted measurement value ̂z k|k−1 at the current time
step.

Step 5: Calculate the cosine similarity between the actual and predicted
measurement values at the current time step and the initial time step.

Step 6: Compute the target detection function by taking the ratio of the cosine
similarity values μk.

Step 7: Determine whether μk ∉ [λ1,λ2] holds or not, where λ1 and λ2 are the set
detection thresholds.

Step 8: If an FDIA attack is detected, the algorithm ends. Otherwise, k = k + 1 and
return to Step 2.

Output: Detection of FDIA attack in the system.

If there are no FDIA in the system, the cosine similarity values
should approach 1 due to the stable operation of the system.
However, if FDIA occurs at time k in the power system, the
injected attack sequence will immediately cause a measurement
increment. The size of the actual measurement value zk will
experience a sudden change, which can be denoted by a variable
b. Therefore, the new cosine similarity value can be expressed
as

zbk = zk + b (12)

where zbk represents the measurement vector after false data injected
attack at time k.

The cosine similarity between the actual and estimated
measurement values after the FDIA can be calculated as

cosbk =
(zk + b) ⋅ ̂zk|k−1
‖(zk + b)‖ × ‖ ̂zk|k−1 ‖

(13)

where cosbk represents the cosine similarity between the actual (after
FDIA) and estimated measurement at time k.

The value of μbk caused by the FDIA can be calculated as follows

μbk =
cosbk
cos1

(14)

where μbk represents the ratio of measurement cosine similarity
between time k (after FDIA) and initial time.

Assuming that the system is safe and reliable before time k, when
an attack occurs and the attack vector is injected, it will cause a
sudden change in the actual measurement value, leading to a change
in the value of cosbk. Obviously, according to Eq. 14, the value of μbk
will deviate significantly from 1, which can be used to detect covert
false data injection attacks.

The threshold for detecting FDIA can be set based on a large
amount of historical data collected during normal operation of the
system. The calculation formula for the threshold can be expressed
as follows

{
{
{

λ1 =min{μ1,…,μk,⋯} − l

λ2 =max{μ1,…,μk,⋯} + l
(15)

where l>0, [λ1,λ2] represents the threshold margin of FDIA. If μk ∉
[λ1,λ2], it is considered that the power system has been subjected to
FDIA and a warning will be triggered.

The specific steps of the detection algorithm are shown in
Table 1.

3.2 Eigenvalue residual similarity test

Oneof the limitations often raised in the FDIAdetectionmethod
based on measurement data is that it cannot be distinguished from
actual power grid accidents because actual power grid accidents can
also causemeasurement deviations, whichmay lead to false positives
in the FDIAdetectionmethod based onmeasurement data, resulting
in incorrect judgments by the control center.

When a power grid actual accident occurs, the measurement
values will be perturbed and deviate from the normal level, changing
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from zk to zk′ . According to Eq. 10, the cosine similarity between the
current estimated measurement and the actual measurement is

cosk′ =
zk′ ⋅ ̂zk|k−1
‖zk′‖ × ‖ ̂zk|k−1 ‖

(16)

μk′ =
cosk′
cos1

(17)

where cosk′ represents the cosine similarity between the actual (after
actual power accident) and estimated measurement at time k; μk′
denotes the ratio of measurement cosine similarity between time k
(after actual power accident) and initial time.

Assuming that the system is safe and reliable before the power
grid failure at time k, i.e., the system state estimation value x̂k at time
k-1 is normal, and ̂zk|k−1 is also a normal prediction. However, when
an actual power grid failure occurs, it will cause a sudden change in
the actualmeasurement value, and cosk′ will also change accordingly.
According to Eq. 17, the value of μk′ will deviate sharply from 1.

Therefore, in Section 4, the cosine similarity ratio detection
algorithm for FDIA detection was extended by adding an eigenvalue
residual similarity test to distinguish between actual power accidents
and FDIA.

As mentioned in Section 3.1, the construction of a perfect AC
FDIA based on complete state information and network structure
data can achieve high consistency in residual similarity. However,
in the construction of imperfect AC FDIA, attackers cannot obtain
exact real-time state estimation andmodel parameter data, resulting
in defects in residual similarity of the constructed imperfect AC
FDIA vector. However, due to the cost constraints of imperfect
FDIA, it will choose to manipulate as little data as possible,
thereby maintaining high similarity in some residual characteristic
values.

At the same time, the measurement data anomalies caused by
actual power grid accidents have randomness and irregularity, and
the similarity between the measurement residual data calculated
from abnormal measurement data and the measurement residual
data without attack is very low, which is opposite to FDIATherefore,
in the FDIA detection scheme designed in the previous section,
a n eigenvalue residual similarity test was added to effectively
distinguish between FDIA and actual power grid accidents. The
detection process is shown in Figure 1.

The data used for the eigenvalue residual similarity test is the
largest normalized residual (LNR). The sensitivity of LNR to a

FIGURE 1
Flow chart of the MERS test.
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single residual perturbation provides a good foundation for the
identification of FDIA. The similarity algorithm used in the test is
still the cosine similarity algorithm used in the detection algorithm,
which is given as follows

cosrN =
rN ⋅ rN|A
‖rN‖ × ‖rN|A ‖

(18)

where rN represents the eigenvalue LNR before the attack, rN|a
represents the eigenvalue LNR after the attack, and cosrN represents
the similarity of the eigenvalue residual.

When an actual power grid failure occurs, due to the irregular
and abnormal fluctuations of themeasurement, the overall similarity
of the characteristic values of rN|a and rN is low, and cosrN will
deviate significantly from 1. However, when an FDIA occurs, some
of the characteristic values of rN|a and rN will have high similarity,
and cosrN will be very close to 1, which can serve as a metric for
comparison with actual power grid accident.

4 Simulation results

4.1 Effects of false data injection attacks

To verify the effectiveness of the proposed detection algorithm
proposed above, in this section, the matpower 7.0 simulation

package is used to perform power flow calculation on the load data
of the IEEE-39 bus standard test system. The single-line diagram of
the test system is shown in Figure 2.

The data is processed as follows: First, perform power flow
calculation on the existing system data to obtain the various
measurement data of the current system. Secondly, simulate PMU
measurement data, and add additive noise following a Gaussian
distribution with a mean of 0 and a variance of 0.01 during the
measurement process to simulate the influence of measurement
random errors on the detection process. Finally, at a specified time,
generate the attack vector for the specified measurement value
using the method described in Section 2, and add it to the sensor
measurement.

Firstly, the state estimation algorithm of the IEEE-39 bus
system under normal operation should be validated. Taking
the generator voltage amplitude and phase angle data as an
example, the comparison between the estimated values and
the actual values is shown in Figure 3. It can be seen that
the state estimation algorithm has high accuracy in estimation
performance.

Figure 4 shows the results of the bad data detection based on
the LNR residual detection method. When the significance level is
0.05 and the degree of freedom is K =m− n = 122− 77 = 45 (n is
the number of states, m is the number of observations), the test
p-value is 2.81. The blue line represents the residual distribution
under normal conditions, the yellow line represents the residual

FIGURE 2
IEEE-39 bus test system single line diagram.
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FIGURE 3
Accuracy test of (A) generator node voltage phase angle estimation
and (B) voltage amplitude estimation.

distribution under the FDIA, and the red line represents the
bad data detection threshold. It can be seen that although the
carefully designed FDIA causes changes in the residual within a
certain range, the fluctuation amplitude is not large and cannot
exceed the test p-value. Therefore, the FDIA can bypass the bad
data detection and identification process with a certain amount of
redundancy, which indicates the reasonableness and feasibility of the
FDIA setting in section III and provides assurance for subsequent
research.

4.2 Effectiveness of proposed methods

Before verifying the effectiveness of the detection algorithm, in
order to better approximate the actual operating state of the power
grid, load fluctuation simulation was added to the experiment. The
load fluctuatedwith a randomprobability of±1% in each simulation,
with the aim of improving the accuracy and robustness and making
the detection algorithm more universal.

FIGURE 4
Simulation of bad data detection for FDIA.

In this section, the performance of the cosine similarity ratio
detection algorithm based on measurement values is validated. As
mentioned earlier, the detection indicator is the ratio of cosine
similarity between the actual and estimated measurement values
at two time instances. This experiment takes state estimation, bad
data detection, and FDIA detection as a time cycle (approximately
2–3 s), eliminating subsequent steps such as local protection and
recovery control, focusing only on the FDIA detection process
and simplifying the overall process. Therefore, a 50 min simulation
experiment is conducted on the system, and three different types
of FDIA are launched in the 5th, 10th, and 15th minutes. Actual
power accident events are added as references in the 35th, 40th,
and 45th minutes. The specific event types are shown in Table 2
and Figure 5 shows the simulation results of cosine similarity ratio
detection.

In Figure 5, in the FDIA experiment launched within the first
30 min, it can be clearly seen that before the injection of false
data, the value of μk tends to remain close to 1. Among them,
min{μ1⋯,μk⋯} = 0.99 and max{μ1⋯,μk⋯} = 1.01. Therefore, it
can be concluded that when the system is not under FDIA, μk ∈
[0.99,1.01]. After the attack occurs, the value of μk quickly deviates
from the normal fluctuation range. After conducting multiple
experiments on attacks on different nodes and based on a large
amount of historical data, it was found that the detection effect was
optimal when the detection threshold margin ℓ = 0.01 was set. That
is, the range of the threshold for determining the presence of an
attack is μk ∈ [0.98,1.02].

However, in the FDIA experiment of the last 20 min,
the occurrence of the actual power accident will also
lead to a significant decline in the similarity ratio of
measurement, which is also one of the common problems of the
detection algorithm based on the power grid data mentioned
above.

In summary, after injecting FDIA, the similarity immediately
significantly decreases and falls below the detection threshold,
which can trigger an attack alert. However, data anomalies
caused by actual power accidents can also lead to this.
Therefore, the complete MERS algorithm will demonstrate in
the next section how to distinguish FDIA from actual power
accidents.
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TABLE 2 List of events at different times in simulation.

Time (min) Events description

5 FDIA for active power measurements

10 FDIA for generator power measurements

15 FDIA for frequency measurements

35 Disconnected of Branch between Node 5 and Node 6

40 Disconnected of Generator connected on Node 34

45 Node 21 splitting

FIGURE 5
The proposed FDIA detection method effectiveness test.

4.3 Distinguishing from actual power
accident

The proposed method for distinguishing between FDIA and
actual power accidents based on MERS test was validated for its
effectiveness in this section.

The selected eigenvalue residuals were obtained based on the
principle of constructing imperfect FDIA, and the attack vector
of imperfect FDIA could be obtained using Eq. 7. From this
principle, the unmodified measurement part could be deduced. In
this experiment, three different types of FDIAs were designed, and
the specific types are shown in Table 2. Taking the first type of
FDIA, which injects false data of branch active power, as an example,
Eq. 8 indicates that this attack mainly causes active power deviation
by modifying the reactive power and voltage phase angle of the
line, and the generator output power can be used for eigenvalue
measurement. The complete detection system contains a complete
program that includes eigenvalue checks for various types of
FDIA.

Figures 6, 7 are the results of MERS tests for the selected
eigenvalue. Three types of FDIA and three types of actual power
accidents correspond to the events in Table 2. It is apparent that the
attack warning caused by FDIA is much higher than that caused
by actual power accidents in terms of eigenvalue residual similarity.
From Figure 6, it can be seen that the similarity differences caused
by FDIA launched for different measurement data are significantly
different. The tampering attack against active measurement values

FIGURE 6
The proposed MERS test of FDIA.

FIGURE 7
The proposed MERS test of actual power accident.

needs to be modified to more necessary measurement values,
resulting in a much lower similarity compared to the other two
FDIAs.

According to the above construction principle of imperfect
FDIA, in order to bypass the bad data detection, the attack vector
will maintain the high consistency of most eigenvalues and only
modify the necessary residual values required by the attack, which
will maintain the similarity of residual eigenvalues before and after
the attack at a high threshold. On the contrary, the occurrence of
actual power grid accidents is random, resulting in low similarity in
residual eigenvalues.

After conducting a large number of experiments, the threshold
μrN ≈ 0.8 was determined, i.e., when the eigenvalue residual
similarity is greater than or equal to 0.8, the system can be
considered to have been invaded by FDIA, and when the eigenvalue
residual similarity is less than 0.8, the system is considered to have
experienced an actual power accident.

5 Conclusion

Compared with existing testing methods, the detection method
proposed in this paper combines measurement similarity testing
and eigenvalue residual similarity testing to achieve high-precision
detection of FDIA. Specifically, under normal operating conditions
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or physical power accidents, it does not generate a high false alarm
rate, while in the presence of FDIA, it achieves a high detection rate.

The proposed similarity testing method for residual
measurement of eigenvalues only requires system state
measurements from measurement equipment and measurement
residuals from state estimation as inputs, making it very suitable
for modern energy management systems. The localization and
elimination of false data will be the focus of future research
directions.
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