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Data centers are characterized by high energy consumption, with operating costs
being extremely sensitive to electricity prices. Therefore, modern data centers are
often equipped with microgrids for power supply, which adjust their operational
strategies based on the given electricity prices to minimize costs. However,
existing research has overlooked the flexible pricing potential of electricity
retailers, prompting this study to propose a non-cooperative game theory-
based optimization method for data center electricity procurement
negotiation. A two-layer optimization model is established for data center
electricity pricing. The upper layer focuses on electricity price optimization,
modeling price negotiation as a Stackelberg game and adopting a weighted
average cost approach to describe the electricity procurement prices. The lower
layer addresses data center operational optimization, formulated as a nonlinear
programming problem. To enable rapid solution convergence, a hybrid problem-
solving method combining a genetic algorithm and branch-and-cut algorithm is
proposed. Finally, a simulation is conducted using a data center located in
California, United States, to validate the proposed method. The results
demonstrate that the proposed method can reduce data center operational
costs by 3% and increase the revenue for electricity retailers by 17%, achieving a
win–win outcome.
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1 Introduction

With the rapid advancement of next-generation information technologies such as 5G
communication, industrial Internet of Things (IoT), and artificial intelligence (AI), the scale
of big data and cloud computing industries continues to expand. Data centers, serving as the
fundamental infrastructure for information processing, play an indispensable role in the
realms of big data and cloud computing, leading to a continuous increase in their industrial
scale and quantity (Yu and Song, 2019). However, during the flourishing development of
the data center industry, challenges pertaining to high energy consumption and elevated
costs have gradually surfaced. According to statistics, in 2019, the energy consumption of
data centers in China accounted for approximately 0.8%–1% of the total national electricity
usage (Guo et al., 2020). In 2020, data centers in the US consumed approximately 140 billion
kilowatt-h of electricity, resulting in a power cost of 13 billion US dollars (The Natural
Resources Defense Council, 2015). The issues of high energy consumption and operational
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costs have become critical problems throughout the development of
the global data center industry.

Existing methods for optimizing data center energy consumption
and electricity cost can be broadly categorized into three classes: load
scheduling methods that optimize computational workloads; hardware
optimization approaches that focus on air conditioning, power supply
units, and other equipment to reduce data center operational energy
consumption; and microgrid planning and operation optimization
methods that aim to reduce energy consumption and operational
costs. Specifically, optimizing data center computational workloads
and power supply plans can effectively reduce energy consumption.
Beloglazov and Abawajy (2012), Qin (2020), and Wu and Ishikawa
(2019) studied the allocation of tasks within data centers to reduce the
number of active servers and decrease the overall energy consumption.
Muhammad and Mekhilef (2017) and Ohn and Yu (2020) used novel
circuit topologies and advanced power semiconductor devices to
optimize the design of uninterruptible power supply (UPS) and
other power supply equipment, thereby improving the data center
power efficiency and reducing the energy consumption of power supply
devices. Khalaj Habibi and Halgamuage (2017) and Orkowski and
Krzysztof (2022) optimized the design of data center cooling equipment
to reduce electrical losses associated with cooling system operations.
Cao and Wang (2019) and Al-Hazemi et al. (2018) proposed load
scheduling methods considering data center supporting equipment to
make full use of the load scheduling flexibility and the nonlinear
characteristics of device energy consumption to reduce data center
energy consumption.

However, most of the aforementioned research mainly focuses
on optimizing the energy consumption of data center devices,
essentially addressing load optimization. The collaborative
operation between data centers and power distribution sides is
ignored, leaving room for further optimization.

Introducing renewable energy and storage devices to establish data
center microgrids can enable the adjustment of data center power
supply methods and electricity purchasing behavior, thereby reducing
data center operational costs. The Institute for Energy Economics and
Financial Analysis (IEEFA, 2020) reported that Google data centers
have adopted photovoltaic and battery storage-coordinated power

supply approaches to reduce their electricity bill. Several data centers
in China, such as the Guangzhou Foshan data center, have also
implemented energy storage and photovoltaic systems to reduce
electricity costs (Peter, 2017; Luo and Andresen, 2019; Guangdong
Provincial Development and Reform Commission, 2020). Qi and Li
(2019) employed linear programming to optimize the capacity of data
center microgrids. Ding et al. (2018) combined the flexibility of data
center workload scheduling to optimize the operation of data center
microgrids. However, the aforementioned optimization methods are
based on fixed electricity prices and ignore the feasibility of data centers
to further engage in electricity pricing to reduce operational costs in
electricity trading.

In electricity trading between data centers and electricity
retailers, the real-time electricity price plays a crucial role. In this
process, the retailers purchase electricity from the generation side
and sell it to data centers at specific prices, thereby earning revenue
from the transaction. Data centers, on the other hand, adjust their
behaviors such as load scheduling, energy storage device charging
and discharging, and generator start–stop operations based on the
given electricity prices to reduce electricity expenses. Thus, it is
evident that real-time electricity prices directly impact the interests
of both retailers and data centers, and therefore, optimizing the
electricity prices in transactions can benefit both sides. For example,
optimizing electricity prices can prevent phenomena like starting
backup generators and frequent charging and discharging of energy
storage devices due to excessively high electricity prices, thereby
reducing operational costs for data centers. It can also enable data
centers to coordinate with electricity retailers in scheduling
microgrids, avoiding high electricity consumption during periods
of power supply shortage or high electricity purchasing price of
retailers, thus reducing operational and electricity purchasing costs
for retailers and increasing their revenue.

To achieve further cooperation in electricity trading, the game
theory is widely used to coordinate the interests of various parties (Li
et al., 2019; Huang and Wu, 2022; Wang et al., 2022). Tran et al.
(2016) first proposed an electricity pricing method to improve the
function of the demand response of the data center, but this method
only optimized the electricity price for 1 h in each iteration and

TABLE 1 Literature comparison.

Existing research 1 2 3 4 5 6 7 8

Tran et al. (2016) √ × × √ × × √ ×

Cao et al. (2018) × √ × √ × × √ ×

Mohammed and Brik (2018) × × × √ × × √ ×

Aujla Singh et al. (2017) × × × √ × × √ ×

Bahrami et al. (2019) × × × √ × × √ ×

Sun et al. (2021) √ × × √ × × √ ×

Li and Peng (2021) √ × × √ × × × ×

Ye Gao (2022) √ √ × × √ × × √

This paper √ √ √ √ √ √ √ √

Note (√ for yes and × for no): 1) the electricity price is optimized rather than selecting the retailers with fixed price; 2) the microgrid devices are considered rather than only modeling the servers;

3) the real-time electricity purchasing price is considered; 4) the data center operation is not directly interfered with; 5) a win–win result can be achieved for both retailers and data centers; 6) the

energy efficiency in the model is considered; 7) a new problem-solving algorithm is proposed; and 8) a global optimal can be achieved rather than a one-step optimal.
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ignored the operation optimization of data center microgrid devices,
such as generators and ESS, and the electricity purchasing price of the
retailer. Cao et al. (2018) proposed a bargaining approach for the data
center demand response, which takes renewable energy into
consideration, but this method only improved the absorption of
renewable energy and social welfare and ignored the benefit of data
center operators and electricity retailers. Mohammed and Brik (2018)
introduced a game theoretic approach for task scheduling in multiple
data centers, yet it did not consider the cooperation with electricity
retailers or the impact of varying electricity purchase costs on the
optimization results. Aujla Singh et al. (2017) and Bahrami et al. (2019)
proposed Stackelberg game methods for the data center workload
scheduling, considering local renewable energy output and electricity
price, but this method used the game theory to select the retailer with a
fixed electricity price rather than to bargain and decide the electricity
price. Sun et al. (2021) proposed a workload balance method in
deregulated electricity markets and used the iteration gaming
method to solve it, and Li et al. (2021) proposed a game theory-
based workload management method for distributed data centers, but
these models only considered the scheduling of computational
workload and ignored the data center microgrid devices. Ye and
Gao (2022) proposed a cooperative game-based electricity pricing
method for data center and electricity retailer cooperation, where the
electricity retailer directly controls the load of the data center, which
may not be practical due to security and independent authority issues.
The differences in the existing research studies are given in Table 1.

In summary, the existing research on optimizing data center
operations still has certain shortcomings. First, most of the existing
research on data center scheduling optimization only achieves
microgrid operational optimization under given electricity prices,
neglecting the possibility of involving data centers in electricity
pricing as major electricity consumers. Second, the existing research
on data center electricity pricing ignored the operation of microgrid
devices. Third, the variations in electricity purchase costs for retailers at
different times are not considered; thus, the revenue for electricity
retailers is not fully considered. Therefore, the scheduling flexibility of
data center workload is not fully utilized to optimize electricity prices,

and the optimized electricity price in the previous research cannot fully
benefit both participants in the electricity trading.

This paper innovatively combines data center microgrid operational
optimizationwith electricity pricing, introducing a novel non-cooperative
game-based method for coordinating data center electricity pricing and
operational scheduling to achieve the global optimum of data center
operational costs and revenue for electricity retailers. This paper
establishes a Stackelberg game model between electricity retailers and
data centers to effectively depict the optimization of electricity prices and
data center operations. To effectively model the real-time electricity
purchase costs for local electricity retailers, the weighted average
electricity procurement cost is introduced into the model, which can
accurately describe the impact of data center operational optimization on
the electricity purchase costs and revenue for electricity retailers.
Furthermore, a novel hybrid problem-solving method combining the
genetic algorithm and branch-and-cut algorithm is proposed to solve this
optimization problem. The simulation results demonstrate that this
method can significantly reduce data center operational costs by 3%
while increasing revenue for the electricity retailer by 17%. The innovative
contributions are summarized below:

(1) This paper proposes a non-cooperative game theory model
for electricity pricing and data center operation
optimization in the electricity trading between the data
center microgrid and electricity retailer, which considers
the characteristics of the data center microgrid and the
income of both sides.

(2) To solve the optimization problem, a hybrid problem-solving
method combining the genetic algorithm and branch-and-cut
algorithm achieves a fast solution.

2 System model and mathematical
formulation

This paper focuses on a data center and a electricity retailer as
the research subjects. It comprehensively considers the pricing

FIGURE 1
Relationship between electricity pricing and data center operational optimization.
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game between the electricity retailer and the data center in
electricity trading, the optimized operation within the data
center microgrid, and the load optimization and scheduling
within the data center. The study conducts coordinated
optimization between the electricity retailer and data center,
whose framework and research approach are shown in
Figure 1. In contrast to traditional methods, this paper
proposes an electricity pricing method tailored to the data
center scenario and a real-time electricity price model, which

fully considers the flexibility of data center workload scheduling
and the potential for real-time operation optimization. As a
consequence, a win–win situation for the data center and
electricity retailer can be achieved.

The detailed process of electricity trading is shown in
Figure 2. The proposed model comprehensively takes into
account data center workload scheduling, data center
microgrid operation, and the retailer’s electricity purchase
costs and revenue in the transaction. The following analysis

FIGURE 2
Scheme of energy trading between the data center microgrid and local electricity retailer.

FIGURE 3
Architecture of an internet data center.
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focuses on the decision-making of the participants in electricity
trading and the transaction process.

2.1 Analysis of the electricity retailer’s game
behavior in electricity trading

The electricity retailers act as intermediaries in the electricity
market, purchasing electricity from the generation side and selling it
to end users. In the proposed model, we only focus on the game

between the electricity retailer and a data center, and treat the power
grid as an infinite grid. Therefore, the data center’s electricity
purchase will not influence the power flow and losses. The
primary cost for the electricity retailer is the electricity
procurement cost. Due to the stochastic and time-varying nature
of renewable generation, the energy composition at different time
intervals within a day varies, resulting in different electricity
procurement costs.

The electricity retailer’s revenue is solely determined by the data
center’s electricity purchases, which are influenced by both the
electricity procurement quantity and the real-time electricity
pricing. The electricity retailer holds a dominant position in the
transaction and can adjust the electricity selling price to further
increase the revenue or influence the data center’s electricity
consumption behavior.

FIGURE 4
Flowchart of the proposed hybrid problem-solving method.

TABLE 2 Hybrid problem-solving method combining the genetic algorithm and branch-and-cut algorithm.

Algorithm 1: The proposed optimization method

Input: Load parameters, renewable energy power, and data center micro grid equipment operating parameters
Output: Optimal electricity price πgrid opt

t , data center costs Ctotal
t , and retailer revenue Egrid

t .
1. Initialization: generate electricity price πgrid

t by random encoding.
2. Input πgrid

t to the lower-level optimization.
3. Start the branch-and-cut algorithm to solve the lower-level optimization described in Eqs 1–26.
4. Determine the optimal scheduling scheme for the data center microgrid.
5. Output the Pgrid

t to the upper-level problem.
6. Calculate Egrid

t based on Eqs 27–29.
7. Select the genetic encoding for the next iteration.
8. Crossover and mutation to generate the next iteration.
9. Repeat steps 2–8. If the algorithm converges, end iteration and output πgrid opt

t ,Ctotal
t , Egrid

t .

TABLE 3 Number and rated power of servers.

Server cluster Rated power (MW) Server number

1 15 1.8*105
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2.2 Analysis of the data center’s electricity
purchasing behavior

The data center is the electricity purchasing entity studied in this
paper, and it is an important participant in the electricity pricing game,
whose objective is to minimize its own operational cost. Compared to
traditional electricity consumers, data centers are major electricity
consumers due to their significant annual electricity consumption
and, therefore, have more potential for participating in electricity
pricing, which makes the negotiation with the local retailer feasible
(Jiang, 2018). The operational costs for data centers mainly include
electricity purchasing costs and the operating costs of generators. During
periods of high electricity prices, data centers utilize on-site generators
and energy storage systems to reduce electricity purchases from the grid,
which would reduce the electricity purchasing costs but increase
generator operational costs. In contrast, during periods of low
electricity prices, data centers tend to purchase electricity from the
local retailer since the operational cost of the generator exceeds the
real-time electricity price.

For instance, in the case of an independent operator in California,
electricity procurement involves day-ahead and real-time markets, with
the procurement cost being determined by real-time electricity prices
and the amount of electricity purchased. The electricity retailer provides
time-varying electricity prices to users through a real-time pricing
market (Ren et al., 2017; Yang et al., 2019). Meanwhile, the data
centers equipped with energy storage units, renewable energy
sources, and generators exhibit characteristics of both the load and
generator, providing significant optimization opportunities.

3 Proposed game model

This paper fully considers the game between data centers and
electricity retailers in the electricity transaction and models it as a

Stackelberg game model. In this model, the interactions between
data center workload scheduling, data center microgrid operation,
and the electricity retailer’s purchase cost and revenue are
comprehensively considered. The electricity retailer acts as the
leader in the electricity price game, aiming to set an optimal real-
time electricity price to achieve higher profits and influence user
behavior. The data center, on the other hand, acts as the follower in
the game, adjusting its real-time operational mode to reduce
electricity and operational costs, thus maximizing its own
benefits. By optimizing the real-time electricity prices offered by
the electricity retailer to the data center, the data center operational
costs can be reduced, and the electricity retailer’s revenue can be
increased at the same time, achieving a win–win outcome through
cooperation.

3.1 Data center microgrid model

The scheduling of the data center microgrid operation is the
lower-level optimization problem in the proposed game
model. The basic structure of the data center microgrid is
shown in Figure 3. In each microgrid, the servers and UPSs
are powered by solar power, wind power, a conventional
generator unit, and a utility grid. Energy storage systems
are also deployed to reduce the volatility of renewable
energy and reduce the electricity cost by making use of the
daily electricity price difference. The abovementioned
equipment can be classified into electricity load and the
microgrid equipment.

The electrical load in the data center primarily consists of
servers and supporting equipment like cooling systems, whose
real-time power consumption exhibits an approximate linear
relationship with the computational workload. The
computational workload can be divided into the interactive
workload and batch workload. Interactive workload, such as
game services, online shopping, and stock trading, have low
tolerance for response delays and should be processed
promptly at each moment; otherwise, significant penalties may
be incurred. Batch workloads, on the other hand, involve tasks
like data processing for large-scale research projects or neural

TABLE 5 Parameters of conventional generator units.

Unit Fuel
type

High/low
sustainable
limit (MW)

Ramp-up/
down rate
(MW/h)

Minimum
up/down
time (h)

Initial
state

Initial
power
(MW)

Start-up/
shut-
down
cost ($)

No
load
cost
($)

Marginal
cost

($/MWh)

Unit 1 Gas 15/5 4/4 4/4 Off 0 50 40 18

Unit 2 Coal 20/9 6/6 3/3 Off 0 40 30 16

TABLE 6 Electricity purchasing price.

Fuel type Wind Solar Gas Water

Average price ($/MWh) 26.3 28.3 54 20

TABLE 4 Parameters of the energy storage system.

Maximum/minimum
capacity (MWh)

Initial
status (MWh)

Maximum charge/discharge power
(MW/h)

Charge/discharge
efficiency

30/5 5 5 0.8
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network training, which can tolerate delays of a few minutes or
hours. Consequently, the data center’s batch workloads can be
integrated into the demand response by adjusting their execution
times, thereby regulating the load characteristics of the data
center. The electrical load of the data center can be modeled
as follows:

λj,t � ζ interj,t +∑A

a
μbatcha,j,t ∀j, t( ), (1)

0≤ λj,t ≤Capj ∀j, t( ), (2)

∑Dbatch
a

tbatcha
μbatcha,j,t � ∑A

a
μbatchtotal,a ∀a ∈ A( ), (3)

max Δtbatcha( )≤Tbatch
a , (4)

Pservers
j,t ≤PUPS

rated,j ∀j, t( ). (5)

In addition, for every time slot, the total real-time power of the
node j in the data center is

Pservers
j,t � Mj × φserver

j ×
λj,t

Capj
+ P

idle

j

⎛⎝ ⎞⎠ ∀j, t( ), (6)

where

φserver
j � Ppeak

j − P
idle

j
. (7)

TABLE 7 Comparison of the benefits.

Before electricity price optimization After electricity price optimization

Data center operational cost ($) Revenue of the
retailer ($)

Data center operational
cost ($)

Revenue of the
retailer ($)

26,751.67 4,221.25 25,948.5 4,945

FIGURE 5
Working condition in the game between the data center and local electricity retailer, (A) electricity purchasing price, (B) real-time electricity selling
price, and (C) renewable power output.
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In the above equations, λj,t represents the total computational
workload at time t in the data center. μbatchtotal,a is the total workload of
the batch workload in the data center. μbatcha,j,t and ζ interj,t are the batch
and interactive workloads at each time t in the data center,
respectively. Capi,j is the maximum load capacity of the servers.
Δtbatcha is the required time for task a to complete, which should be
less than the allowable maximum time delay Tbatch

a . Ppeak
j represents

the peak power consumption of each server, while Pidle
j represents

the idle power consumption of the servers.Mj is the total number of
servers in the data center. Pservers

j,t is the real-time power
consumption of all servers within the data center.

UPS power loss nonlinearly varies depending on the load rate,
which is decided by server power, and can be expressed as follows:

Pload
t � PLoss UPS

rated,i,j × a0 + a1 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

+ a2 ×
Pservers
i,j,t

PLoss UPS
rated,i,j

⎛⎝ ⎞⎠2⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ ∀i, j, t( ). (8)

Pload
t is the total power of servers and the corresponding UPSs

and is nonlinearly determined by the ratio of real-time server power
to rated power PLoss UPS

rated,i,j of power supply devices. In the above
equation, a0 = 0.0455, a1 = −0.0162, and a2 = 0.0345, which is
obtained from the most classic paper by Pratt et al. (2007).

The microgrid equipment includes the energy storage system,
conventional generators, and renewable energy sources. The energy
storage system can be modeled as follows:

ESt+1 � ESt + ηchar ·Pchar
t − ηdischar ·Pdischar

t ∀t( ), (9)

FIGURE 6
Operations of the data center micro grid before and after the optimization, (A) electricity price, (B) load power, (C) electricity purchase amount, and
(D) generator power output.
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ESmin ≤ ESt ≤ ESmax ∀t( ), (10)
Zchar
t ,Zdischar

t ∈ 0, 1{ } ∀t( ), (11)
Zchar
t + Zdischar

t ≤ 1 ∀t( ), (12)
0≤Pchar

t ≤Pchar
max · Zchar

t ∀t( ), (13)
0≤Pdischar

t ≤Pdischar
max · Zdischar

t ∀t( ). (14)

Eq. 9 represents the relationship between the energy storage
capacity of the data center’s energy storage devices and the charging
and discharging power. In addition, Eqs 10–14 represent the upper
and lower constraints on the energy storage capacity and charging
and discharging power. ESt represents the state of charge of the
energy storage battery in the data center at time t. Zchar

t , Zdischar
t ,

Pchar
t , and Pdischar

t represent the charging and discharging operations
and power of the data center’s energy storage devices, respectively.
ηchar and ηdischar represent the efficiency of charging and discharging
processes, respectively.

A conventional generator unit commitment decision model can
be described as follows (Wang et al., 2022):

Punit
min ,l · ounitl,t ≤Punit

l,t ≤Punit
max ,l · ounitl,t ∀j, t( ) − ounitl,t−1 + ounitl,t − ounitl,k ≤ 0,

(15)
2≤ k − t − 1( )≤MUunit

l ∀j, t( ) ounitl,t−1 − ounitl,t + ounitl,k ≤ 1, (16)
2≤ k − t − 1( )≤MDunit

l ∀j, t( ), (17)
−ounitl,t−1 + ounitl,t + uunit

l,t ≤ 0 ∀j, t( ), (18)
ounitl,t−1 − ounitl,t + vunitl,t ≤ 0 ∀j, t( ), (19)

Punit
l,t − Punit

l,t−1 ≤ 2 − ounitl,t−1 − ounitl,t( ) · Punit
min ,l + 1 + ounitl,t−1 − ounitl,t( )

· URunit
l ∀j, t( ), (20)

Punit
l,t−1 − Punit

l,t ≤ 2 − ounitl,t−1 − ounitl,t( ) · Punit
min ,l + 1 − ounitl,t−1 − ounitl,t( )

· DRunit
l ∀j, t( ), (21)

ounitl,t , vunitl,t , uunit
l,t ∈ 0, 1{ } ∀j, t( ). (22)

ounitl,t , uunitl,t , and vunitl,t represent the operating state and start–stop state
of the traditional generator, respectively. Punit

l,t represents the real-time
power output of the generator. MUunit

l and MDunit
l represent the

minimum start and stop times of the generator, respectively, while
URunit

l and DRunit
l represent the maximum ramp-up and ramp-down

rates during the generator’s start-up and shut-down processes,
respectively. Eq. 15 represents the constraints on the maximum and
minimum output power of the generator. Eqs 16–19 represent the
constraints on the start-stop time of the generator. Eqs 20–22 represent
the maximum and minimum ramp rate constraints during the
generator’s start-up and shut-down processes.

In implementation, the microgrid prioritizes the utilization of
renewable generation to minimize electricity purchases and
associated costs. As the renewable generation might be insufficient
to meet the entire load demand, the output power of renewable
generation, including photovoltaic and wind power, is considered a
fixed value in the optimization scheduling for computational
simplification, which are represented by PPV

t and Pwind
t , respectively.

In the operation of the data center microgrid, it is necessary
to satisfy the power balance constraint, which ensures that the
real-time power consumed by the loads and energy storage
system is equal to the sum of the power generated by
microgrid devices and purchased from the grid. Combining
the supply side and demand side, the power balance
constraints can be obtained as follows:

Pgrid
t � θPUE·Pload

t + ηchar ·Pchar
t − ηdischar ·Pdischar

t −∑L

l
Punit
l,t − PPV

t

− Pwind
t ∀t( ).

(23)
Pgrid
t represents the real-time power, which the data center microgrid

purchases from the distribution grid. θPUE represents the power usage
effectiveness, which is used to characterize the relationship between the
total electrical load of the data center and the energy consumption of the
server and power supply devices in the data center. It is evident that the
real-time power purchased by the data center microgrid is jointly
determined by the total energy consumption of the data center
facility and the operational state of the microgrid.

The aforementioned equations can fully describe the operations
of the data center microgrid, which should be optimized in the lower
level of the optimization problem. The optimization objective of the
lower-level optimization problem is tominimize the operational cost
of the data center microgrid, which is represented by Ctotal

t and
consists of the electricity bill Cgrid

t and the operational cost Cunit
t of

the generators in the microgrid, as shown in Eq. 24:

Ctotal
t � ∑T

t�1 C( grid
t + Cunit

t ). (24)

Cgrid
t in Eq. 24 is decided by the electricity price πgrid

t and
electricity purchasing amount Pgrid

t , as shown in Eq. 25:

Cgrid
t � Pgrid

t ·πgrid
t ∀t( ). (25)

Cunit
t is described in Eq. 26, which consists of start-up cost

CUunit
l , shut-down cost CDunit

l , no-load cost COunit
l , and marginal

cost CMunit
l . The start-up and shut-down costs represent the cost

generated in each start and stop processes of the generators. The no-
load cost represents the cost when the generators run without
electricity load, and the marginal cost represents the cost
required to generate each unit of electricity.

Cunit
t � ∑L

l�1 CUunit
l ·uunit

l,t + CDunit
l ·vunitl,t + COunit

l ·ounitl,t + CMunit
l ·Punit

l,t( ) ∀i, t( ).
(26)

3.2 Electricity pricing and income model for
the electricity retailer

The electricity pricing and electricity retailer income
optimization is the objective of the upper-level problem in the

TABLE 8 Comparison of algorithm performance.

Algorithm GA (min) Proposed method (min) Branch-and-cut algorithm

Solving time 1 h 19 1.5 Infeasible
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proposed model. The electricity retailer’s net income in the
transaction is as follows:

Egrid
t � ∑T

t�1 Sgridt −Bgrid
t( ). (27)

In this equation, the net income Egrid
t for the power retailer is

determined by the real-time electricity sales revenue Sgridt and the
electricity purchasing cost Bgrid

t .
Since only one retailer and one electricity consumer are

considered in the model, the real-time electricity sales revenue
Sgridt is equal to the electricity bill of the data center, as shown below:

Sgridt � Cgrid
t � Pgrid

t ·πgrid
t ∀t( ). (28)

The electricity purchasing cost is described in Eqs 29 and 30:

Bgrid
t � Ppurchase

total,t ·ρpurchaseaverage ∀t( ), (29)

ρpurchaseaverage � ∑K

k�1
Ppurchase
k,t

Ppurchase
total,t

·ρpurchasek
⎛⎝ ⎞⎠ ∀k, t( ). (30)

As shown in the equation, the cost of electricity purchasing,
represented by Bgrid

t , varies according to the amount of
electricity purchased from the energy generation side
Ppurchase
total,t and the real-time electricity purchasing price

ρpurchaseaverage , which is time-variant and decided by the unit price
of energy sources ρpurchasek and the proportion of the
corresponding energy source in the total electricity

purchasing amount
Ppurchase
k,t

Ppurchase
total,t

at different time intervals. The

average electricity purchase price at each time interval can
be calculated using the weighted averaging value.

To increase the revenue of the power retailer, the real-time
electricity sales prices πgrid

t should be optimized to facilitate
electricity trading, and the electricity should be purchased at
times when ρpurchasek is lower. By doing so, the power retailer can
maximize its revenue while ensuring efficient electricity trading.

3.3 Optimization problem analysis

In the Stackelberg game, the private information about each
market entity is shared and centralized by the system operator
for decision-making. It belongs to a multi-level hierarchical
decision problem, studying the counter-strategy behaviors of
decision-makers at different levels (Huang et al., 2018). The
decision mechanism of this game problem is that the upper-level
decision-maker first announces its decision variables, which will
affect the objective function of the lower-level decision-maker.
The lower-level decision-maker then makes decisions that
optimize their own objective function under this premise,
which, in turn, affects the objective function of the upper-
level decision-maker. The upper-level decision-maker then
adjusts their decision variables accordingly to achieve the
optimal objective.

During the operation of the data center microgrid, the pricing
game is mainly dominated by the electricity retailer. The retailer
determines the real-time electricity price, and the data center adjusts
its load curve and microgrid operations, such as battery charging
and discharging, and generator start-up and shutdown based on the

electricity price. Subsequently, the electricity retailer further adjusts
the electricity price based on the data center’s load status to
maximize its own interests. This game problem exhibits a
leader–follower decision relationship and can be mathematically
formulated as a bi-level programming problem. The upper-level
optimization objective is to maximize the electricity retailer’s net
income in the electricity transaction, while the lower-level
optimization objective is to minimize the data center’s
operational cost.

4 Hybrid problem-solving method
combining the genetic algorithm and
branch-and-cut algorithm

4.1 Necessity for the algorithm design

From a mathematical analysis perspective, the above analyzed
Stackelberg game-based electricity pricing problem can be taken as a
mixed-integer nonlinear programming problem, which cannot
obtain the accurate analytical solution using the existing
problem-solving methods.

On one hand, the optimization problem is a cubic-order
nonlinear optimization problem, while the existing analytical
problem-solving algorithm can only solve the problem whose
order is not more than quadratic. In detail, the optimization
problem includes two components: electricity price optimization
and data center scheduling optimization. The electricity price
optimization is the upper-level problem, whose optimal solution
is decided by the data center scheduling method. The data center
scheduling optimization is the lower-level problem, whose
optimization objective is quadratically decided by the decisive
variables, in which the electricity price given by the upper-level
optimization has significant influence. Therefore, the problem is
coupled with the electricity price, which makes the objective a cubic
function of the decision variables. When dealing with the
optimization problem, the traditional analytical algorithms, such
as branch-and-bound or branch-and-cut algorithms, which are
dedicated to linear or quadratic programming problems, can only
solve the lower-level optimization quickly but cannot handle the
entire optimization.

On the other hand, there are instances where continuous
variables are multiplied by integer variables in the optimization
objective and constraints, so the surface composed of feasible
solutions is a discrete curved surface, which makes it hard to
solve using the existing problem-solving methods. Intelligent
algorithms such as the genetic algorithm can help solve the
nonlinear programming problem, but it performs relatively
poorly when dealing with the discrete nonlinear programming
problem. When the number of variables increases, the feasible
solutions that need to be searched increase significantly;
therefore, the problem solving time will increase quickly. For
example, in the encoding process of the genetic algorithm, a
continuous variable can be represented by a float number, while
a binary number can represent a 0/1 discrete variable. In the
proposed model of the optimization problem, each day is divided
into 24 time slots to represent the 24 h in a day, which is the least
number of time slots and, thereby, reduce the number of decisive
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variables, whose number will directly influence the problem solving
time. In each time slot, there are five discrete variables, Zchar

t , Zdischar
t ,

ounitl,t , uunitl,t , and vunitl,t , and seven continuous variables, namely, μbatcha,i,j,t ,
ζ interi,j,t , Pchar

t , Pdischar
t , Punit

l,t , Pgrid
t , and πgrid

t . In the optimization
problem, a total of 7 × 24 sets of continuous variables and 5 × 24 sets
of discrete variables need to be solved, so the problem can be taken as
an optimization problem consisting of 5 × 24 continuous nonlinear
programming sub-problems involving 7 × 24 sets of continuous
variables. Assuming that the solving time for each sub-problem is
T0, the search time required would be T0×2

5×24. It is obvious that the
scale of the genetic algorithm is huge. The genetic algorithm will face
significant challenges in application.

4.2 Introduction of the hybrid problem-
solving method

To facilitate the solution of the bi-level programming problem, we
propose a hybrid problem-solving method combining the genetic
algorithm and branch-and-cut algorithm. In this method, the upper
level employs the genetic algorithm to search for optimal real-time
price, while the lower level uses the branch-and-cut algorithm to rapidly
solve the data center scheduling problem under the given electricity
price. The electricity purchase in the optimal solution of the lower-level
problem will be fed back to the upper-level optimization, enabling the
iterative selection that maximizes benefits. Due to the considerable
variation in electricity price data and in order to reduce the number of
encoded bits, we adopt true-value encoding in this approach.
Specifically, 24 float numbers are used to represent the electricity
prices at different time slots during a day, and the genetic algorithm
encoding the length is reduced to 24 bits, which significantly reduces the
scale of the problem. Assuming a search process involving m iterations,
each iteration consists of n genetic encoding sequences and the solution
time for the lower-level problem is T1; the total solving time is m×n×T1.
Obviously, the proposed method can significantly reduce the iterations
and number of genes per iteration compared to the direct application of
the genetic algorithm and then saving the total solving time.

The algorithm flow chart is shown in Figure 4. In the upper-level
optimization process, to maximize the interests of the electricity
retailer, the genetic algorithm uses the reciprocal of the electricity
retailer’s net income Egrid

t in Eq. 27 as the fitness function. In each
iteration, it searches and selects the combination of electricity prices
that yields the highest value of this fitness function. In the lower-
level optimization, the branch-and-cut algorithm aims to minimize
the data center’s operational cost Ctotal

t . In each iteration, the genes
are selected as parents using the roulette wheel selection method,
and offspring individuals are generated through a single-point
crossover and single-point mutation for the next iteration. The
roulette wheel selection method is a common selection strategy
used to choose parent individuals for crossover and mutation
operations based on their fitness values. This method simulates a
scenario akin to a roulette wheel in a casino, where each individual
occupies a segment on the wheel circumference proportional to its
fitness value. In the roulette wheel selection process, first, the fitness
values of each individual in the population are calculated, typically
evaluated through an objective function. Subsequently, these fitness
values are normalized to obtain normalized fitness values.
Normalized fitness values represent the probability of an

individual being selected, meaning individuals with higher fitness
values have a greater probability of being chosen. During the roulette
wheel selection process, a random number in the range [0,1] is
generated. Then, based on the normalized fitness values, the first
individual whose cumulative fitness value exceeds or equals the
random number is selected as the parent individual. This process
mimics the spinning of a roulette wheel in a casino, eventually
stopping at a specific individual, who is then chosen as the parent.
The roulette wheel selection method possesses stochastic selection
probabilities based on fitness, enabling individuals with higher
fitness to have a higher chance of being chosen. This increases
the representation of high-fitness individuals in the offspring,
steering the algorithm toward the evolution of better solutions.

In the algorithm, the genetic algorithm first randomly
generates the electricity within a certain range, and the
electricity price is introduced as a fixed value into the
operation optimization problem of the data center microgrid
in the lower level. Then, the branch-and-cut algorithm is called to
solve the operation optimization problem, and the income of
both sides is returned to the genetic algorithm, which uses it to
calculate the fitness function and iterate to select the optimal
electricity price. In essence, the algorithm reduces the problem-
solving time by splitting the large-scale problem into several
quadratic programming problems. The specific operation steps
are given in Table 2:

4.3 Convergence analysis

In the proposed algorithm, we adopted the real number-coded
genetic algorithm and the roulette wheel method, which is a
proportional selection method. The random mutation method is
used to enhance the random search, and the branch-and-cut
algorithm is used to reduce the dimension of the problem and
accelerate the problem-solving process. To prove the convergence of
the algorithm, the convergence in probability and metric space is
introduced into the proof process.

Definition 1: Convergence in probability. Assume that f(j) is the
minimum fitness function of all the genes in thepopulation of the
j th generation.minf is the minimum value of fitness function F(j)
in the set of all the possible genes X. If f(j) can satisfy Eq. 31,

lim
j→∞

p f j( ) � minf{ } � 1, (31)

then, the algorithm can converge to the optimal solution.

Definition 2:Metric space. Assume thatX is a nonempty set, and d
is a mapping from X × X to R, and for ∀x, y, z ∈ X, the following
equation can be satisfied: d(x, y)≥ 0 and d(x, y) � 0 only if � y;
d(x, y) � d(y, x); d(x, y)≤ d(x, z) + d(z, y). Then, d can be
defined as the metric of X, and (X, d) is the metric space.

Theorem 1: In the metric space (X, d), for ∀x, y, z ∈ X,
|d(x, z) · d(z, y)|≤d(x, y); for ∀x, y, x1, y1 ∈ X, |d(x, z) ·
d(x1, y1)| ≤ d(x, x1) + d(y, y1).
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Definition 3: In the metric space (X, d), xn{ } is a series. If
∃N ∈ N+,∀n>N and d(xn, x)< ε, then xn{ } converges to x,
recorded as xn → x.

Definition 4: In the metric space (X, d), xn{ } is a series. If
∀ε> 0,∃N ∈ N+,∀m, n >N, d(xm, yn)< ε, then xn{ } is the
Cauchy series. If all the xn{ } converge, then (X, d) is a complete
metric space.

Definition 5: In the metric space (X, d), for the mapping
f: X → X,∃ε ∈ [0, 1),∀x, y ∈ X, if d(f(x), f(y))≤ ε · d(x, y),
then f is a contraction mapping.

Theorem 2: (Banach’s contraction mapping theorem): If the
metric space (X, d) is a contraction mapping, then there is only
one fixed point x* ∈ X, and for ∀x0 ∈ X, x* � fk(x0), where
f0(x0) � x0 and fk−1(x0) = f(fk(x0)).

Based on the above given theory, the convergence of the
proposed algorithm is proved below.

Assume that X is a population of the genetic algorithm, and its
amount is p, which means X � x1, x2, . . . , xp{ }. In the genetic
algorithm, the roulette wheel method is selected, which is a
proportional selection method; the ith individual in the jth
generation can be selected into the next generation by a
probability of ps(j), which is shown in Eq. 32:

ps j( ) � F j( )∑p
j�1F j( )≥ fmin

p · fmax
� M, (32)

wherexji belongs to the group consisting of thep-th individual, which is
F(j) � xj

1, x
j
2, . . . , x

j
p{ }, andM is a constant, which is irrelevant to the

number of iteration j and the number of groups in F(j).
According to the Banach contraction mapping theorem, it is

easy to prove that the algorithm can converge to a fixed point x* ∈ X
for ∀x0 as the initial population if there is a metric space (X, d),
which can make the operator consisting of the genetic algorithm and
branch-and-cut algorithm a contraction mapping.

Assume that the minimum value of the objective function is
minf and d is a mapping from X × X, which can be described by
Eq. 33:

d X1, X2( ) � 0 X1 � X2

1 +M − F X1( )| | + 1 +M − F X2( )| | X1 ≠ X2
{ .

(33)
Then, the mapping d can satisfy

d X1, X2( )≥ 0 ∀X1, X2 ∈ X;

d X1, X2( ) � d X2, X1( ) ∀X1, X2 ∈ X;

d X1, X2( )≤ d X1, X3( ) + d X2, X3( ) ∀X1, X2 ∈ X.

Therefore, the mapping d is a metric, and (X, d) is a metric
space. Since X is a finite set, each Cauchy series in X will converge.
So, (X, d) is a complete metric space.

The operator, which consists of the genetic algorithm and
branch-and-cut algorithm, is defined as g: X → X, and j
represents the number of generations. Since the selection method
is a proportional selection method, and the gene which leads to
infeasibility of the lower-level problem is eliminated before the
selection, the average fitness in each generation increases.

Therefore, for the mapping g, the Eq. (34) can be satisfied as

d(g X1 j( ), X2 j( ))( ) � 1 +M − F g X1 j( )( )( )∣∣∣∣ ∣∣∣∣
+ 1 +M − F g X2 j( )( )( )∣∣∣∣ ∣∣∣∣

< ε · 1 +M − F X1( )| | + 1 +M − F X2( )| |( )
� ε · d g X1 j( ), X2 j( )( )( ), ε ∈ 0, 1( ).

(34)
Therefore, g is a contraction mapping, and the proposed

algorithm should converge to the only fixed point x* ∈ X
according to the Banach contraction mapping theorem, and the
proposed genetic algorithm is convergent.

5 Case study

5.1 Simulation setup

In this study, a data center located in California is selected as
the case for analysis (Liu and Peng, 2021; Singh and Saxena,
2021). The data center is powered by a microgrid system, which
includes energy storage, photovoltaic (PV) generation, wind
power, natural gas, and conventional generators. The specific
capacity configuration and operating parameters of the servers,
generators, and energy storage are given in Tables 3–6. 2) The
data on servers, generators, and ESS are obtained from the papers
by Cao and Wang (2019) and Ding et al. (2018). The total
computational workload is based on historical data from
Alibaba’s data center, with a time delay tolerance of 24 h for
the batch workload. 4) The power losses can surely be modeled as
a quadratic equation, which is decided by the electrical
characteristics of UPS, as shown by Guo et al. (2019). The
capacity of PV and wind power is 10 MW. The electricity
purchasing and selling prices, as well as the output power of
renewable energy sources, are shown in Figure 5. The existing
electricity price is obtained from real-time electricity price data
on a typical day in July 2022 provided by California Independent
System Operator (CAISO). The electricity purchasing prices are
calculated based on the real-time weighted average price of
different fuel types, while the PV and wind power outputs are
calculated using the ratio of wind and solar power to their
installed capacities for that specific day. In the study of
microgrid scheduling, since the operation of conventional
units usually takes no less than 1 h, we set 1 h as a time slot
to narrow the dimension of decision variables and simplify
problem solving.

The aforementioned case study was conducted on a desktop
computer equipped with an Intel Core i5-8400 processor and
8 GB RAM. The genetic algorithm used for the upper-level
electricity price optimization is coded in PyCharm software,
while the lower-level linear optimization problems are solved
using Gurobi simulation software. In this simulation, the genetic
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algorithm is set with a population size of 50 individuals,
20 generations of iterations, a mutation rate of 0.01, and a
crossover rate of 0.9.

5.2 Result analysis

Under the aforementioned parameter settings, simulations are
conducted for both the case with CAISO’s daily pricing and the case
using the proposed game theory-basedmethod. The operating costs and
revenues of both the data center and electricity retailer are analyzed, and
the simulation results are given in Table 7. It can be observed that after
applying the proposed game-theoretic method, the data center’s
operating costs decreased by 3%, and the electricity retailer’s profit
increased by 17%. This indicates that the proposed method effectively
enhances the revenues of both the data center and electricity retailer.

The electricity price curves and the data center microgrid
operations before and after the optimization are shown in Figure 6.
Figure 6A displays the real-time electricity price curve before and after
optimization. Figure 6B shows the time distribution of the data center’s
electricity load before and after optimization. It can be observed that the
time distribution of the data center’s electricity load changes with the
variation in grid electricity prices, indicating that the electricity
consumption behavior of the data center is influenced by adjusting
the electricity price. Figure 6C shows the data center’s electricity
purchase before and after optimization. A comparison showed that
after the electricity price adjustment, the amount of electricity
purchased from the grid by the data center significantly increases,
and therefore, the electricity retailer gains more revenue through the
strategy of small profit but quick turnover. Figure 6D illustrates the
variation in the output power of the generators in the data center
microgrid before and after optimization. By comparing it with the
traditional generator output power in the figure, it can be observed that
after the electricity price optimization, the data center generators stop
running, and all the electricity is supplied by the renewable energy and
the utility grid, resulting in a significant reduction in the additional
operating costs.

Table 8 presents a comparison of the problem solving times for
the genetic algorithm, branch-and-cut algorithm, and the proposed
two-layer solution method. Since the problem to be solved is a high-
order nonlinear optimization problem, the traditional branch-and-
cut algorithm is unable to solve it. Furthermore, the solution time for
the traditional genetic algorithm exceeds 1 h because of the large
scale of the problem, making it ineffective to be applied in the
implementation. In contrast, the newly proposed hybrid problem-
solving method combining the genetic algorithm and branch-and-
cut algorithm significantly reduces the solution time to 1.5 min,
which improves the solution efficiency.

Furthermore, the universality of results can be guaranteed. First, the
simulation verification is based on public data which can be found in the
website of CAISO (2022), Alibaba, and other related websites. Second,
the model and algorithm are coded in PyCharm software and based on
an open-source software package, which can be reproduced on other
computers. Third, although a random search in the problem-solving
process is caused by the genetic algorithm and branch-and-cut
algorithm, the convergence of the algorithm proved in Section 4.3
can ensure the recurrence of the results.

6 Conclusion

In this paper, we proposed a non-cooperative game theory-
based optimization method for data center electricity
procurement negotiation and operation scheduling. The
proposed method models the electricity pricing between the
electricity retailer and the data center as a Stackelberg game
model, and a hybrid problem solving method combining the
genetic algorithm and branch-and-cut algorithm is proposed,
thus achieving coordinated optimization of electricity pricing
and data center microgrid scheduling in the electricity trading
process. The simulation results demonstrate that the proposed
method reduces the data center operational cost by 3% while
improving the retailer’s revenue by 17%, and the problem-solving
time is significantly reduced.
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