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The stiffness confinement method (SCM) is frequently employed to solve the
reactor dynamics equations because it confines the stiffness of the problem by
frequency transformation. However, the balance between the error and efficiency
of the SCM has not been well studied. This paper reports the error analysis of the
SCM. The error by SCM is derived mathematically and written as integral error,
driven by the integral of the frequency interpolation function. An easy-to-
implement adaptive time-stepping (ATS) algorithm is proposed based on the
error analysis by controlling the neutron flux amplitude error. First, a fine-step
PKE is leveraged to estimate the second-order derivative of the flux amplitude-
frequency, which is used to predict the error of the neutron flux amplitude. The
low cost of solving the PKE incurs a negligible effect on the algorithm’s efficiency.
Second, based on the error analysis, an error estimator proposed to determine an
optimal time-step size for the neutron temporal-spatial equation. With a pre-set
error tolerance, the ATS algorithm is exempted from the empirical selection of the
time-step size in transient simulations. Numerical tests with TWIGL and modified
2D LMW benchmark problems show that the optimal time-step size effectively
confines the local truncation error of the flux amplitude within the pre-set
tolerance. The ATS algorithm yields a higher accuracy at a commensurate
computational cost than calculations with fixed time-steps.
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1 Introduction

Reactor dynamics equations (NDEs), such as the neutron temporal-spatial equation
(NTSE) and the point kinetics equation (PKE), are employed to predict the transient
behaviors of the neutron flux and precursors in a nuclear reactor. In the NDEs, the
generation time of prompt and delayed neutrons involves multiple time scales. As these
different time scales bring stiffness in the NDE, the time-step size must be sufficiently small
to yield accurate results. The fine time-step causes a significant computational burden to the
reactor dynamics calculations. Therefore, the stiffness confinement method (SCM) was
proposed. In doing so, the SCM introduces the flux frequency and the precursor frequency to
decouple the precursor equation from the NDE, thus confining the stiffness to the prompt
neutron equation (Chao and Attard, 1985). Next, an exponential solution assumption
decomposes the flux amplitude-frequency into the amplitude and shape frequencies (Park
and Joo, 2015). By these means, the problem is transformed into a dynamic eigenvalue
problem (EVP) that exhibits a similar equation form as that for the steady-state eigenvalue
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problem. Therefore, the dynamic EVP can be solved efficiently by
power iteration and the non-linear iteration algorithm.

The SCM has already been applied in the PKE and the diffusion
and transport NTSEs (Park and Joo, 2015; Tang et al., 2019). It has
been demonstrated that the SCM can provide accurate and stable
solutions. However, although the SCM enables solving the NTSE
with a large time-step size, the computational cost of the NTSE at
each time step is still high, especially for transport calculations. The
adaptive time-stepping (ATS) algorithm has received much
attention for further reducing computational costs. It allows
transient solvers to optimally determine the time-step sizes
according to the current transient state and the pre-set error
tolerance. The algorithm improves the computational efficiency

by allocating more time steps in time intervals where necessary.
In addition, the ATS algorithm saves the trouble of empirically
selecting the time-step size in transient simulations. Hence, ATS
algorithms have been applied in solution methods to NTSE, such as
the implicit Euler method, the quasi-static method, and the PKE-
based SCM (Caron et al., 2017). However, an effective ATS
algorithm for the three-dimensional SCM has yet to be developed
because of the lack of comprehensive error analysis.

ATS algorithms are generally based on estimating and
controlling of the local truncation error. Classically, the local
truncation error ε of a numerical method of order q can be
expressed as (Tang et al., 2019):

ε t( ) � Θ t( )hq+1 + O hq+2( ) (1)
where t denotes the time, Θ is the norm of the principal error
function, and h is the time-step size. Generally, Θ is estimated
with an error bound. The error bound is appropriated via the
high-order derivative or even the Jacobian matrix of the solution.
For lower complexity, Θ can be assumed as constant between
successive time steps and calculated by numerical differentiation.
The numerical differentiation is computed using solutions from
previous time steps (Caron et al., 2017). This approach does not
require extra computation, but the predicted error may deviate
significantly from the actual error. The deviation leads to a non-
optimal time-step size and affects the efficiency of the ATS
algorithm. Another practical ATS algorithm estimates the
error by comparing the solution with a reference solution.
With gradually reduced time-step size, the solution is rejected
until the error between the computed solution and the reference
solution reaches the pre-set tolerance. The adaptive time-step
size is found by successively comparing solutions with two
different time-step sizes and choosing the finer step solution
as the reference one (Boffie and Pounders, 2018). Another
approach is the embedded pair, which selects the time-step
size by embedding low-order methods in the high-order
method. For instance, a generalized Runge-Kutta method of
fourth-order accuracy embeds a third-order solution to
estimate the adaptive time-step size (Zimin and Ninokata,
1998). Although these ATS algorithms are easy to implement,
the rejection-acceptance procedure calls for extra computation.
Therefore, it is beneficial to develop an ATS algorithm that can
efficiently and accurately control the time-step size for the SCM.

In this work, a theoretical error analysis of the SCM is performed.
The theoretical analysis produces a mathematical error expression of
the SCM. Further, an ATS algorithm is proposed by controlling the
error of the neutron flux amplitude. In doing so, a fine-step PKE solver
is used to evaluate high order derivatives of the neutron flux amplitude
in the error expression. In addition, an error estimator based on the
error expression is proposed and examined using benchmark problems.

FIGURE 1
Illustration of integral error and zero-point bias with linear
approximation.

FIGURE 2
Layout of TWIGL benchmark problem.

TABLE 1 Transient cases in TWIGL benchmark problem.

Case Perturbation

Composite
Σa,2 �r, t( ) �

Σa,2 �r, 0( ) × 1 − 0.2905t( ) t≤ 0.2s
Σa,2 �r, 0( ) × 1.01167 + 0.05833 t − 0.2( )[ ] 0.4s≥ t> 0.2s
Σa,2 �r, 0( ) 0.5s≥ t> 0.4s

⎧⎪⎨⎪⎩
Note: �r∈ regionofMaterial1.
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It is demonstrated that the ATS algorithm yields a higher accuracy at a
commensurate computational cost than calculations with fixed time-
steps.

The remainder of the paper proceeds as follows. Section 2
briefly describes the frequency-transformed NTSE and PKE.
Solution methods to these equations are introduced in Section
3. In Section 4, the SCM’s theoretical error analysis is
performed, and an ATS algorithm based on the error
analysis is proposed. Section 5 elaborates the coupling
between the NTSE solver with the PKE solver. Section 6
illustrates the performance of error estimators and offers
comparisons of the efficiency and accuracy between ATS and
fixed time-stepping (FTS). Section 7 concludes the paper and
points to directions for future research.

2 Frequency-transformation of
dynamics models

The derivation of the SCM starts with the definition of the
dynamic frequency. The dynamic frequency α(r, t) of a physical
quantity f(r, t) is defined as (Chao and Attard, 1985):

α r, t( ) � 1
f r, t( )

∂f r, t( )
∂t

r ∈ R3, t ∈ R (2)

where r is the spatial variable and t is the time variable. By
introducing the dynamic frequency, a composite exponential
function is employed to describe f(r, t). Thus, the following
exponential form of the solution is obtained:

f r, t( ) � f r, t0( )e∫ t

t0
dt′α r,t′( )

(3)

Transient equations imposed with the dynamic frequency are
called frequency-transformed equations. The frequency-
transformed equations are solved by discretizing the time variable
and searching α(r, t) iteratively.

For simplicity, we investigate the application of the SCM to the
NTSE with diffusion approximation. Extending the methodology to
neutron transport problems is not arduous (Park and Joo, 2015).
Transient multi-group neutron diffusion equations with delayed
neutron precursors are given as:

1
vg

dφg r, t( )
dt

+ −∇ ·Dg r, t( )∇ + Σt,g r, t( )[ ]φg r, t( )

� χg r( ) 1 − β( )Q r, t( ) +∑G

g′�1Σg′−g r, t( )φg′ r, t( )[ ]
+∑I

i�1χigλiCi r, t( ) g � 1,/, G (4)
dCi r, t( )

dt
� βiQ r, t( ) − λiCi r, t( ) i � 1,/, I (5)

FIGURE 3
Initial power distribution for TWIGL.

FIGURE 4
Comparison of ATS-0.5% and FTS-20 ms in TWIGL (A) Core power (B) Time-variant adaptive time-step size.
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where φg(r, t) represents the neutron flux of group g, Ci(r, t) is the
delayed neutron precursor concentration of precursor family i, and
other notations are conventional. The fission source Q is defined as:

Q r, t( ) �∑G

g′�1]Σf,g′ r, t( )φg′ r, t( ) (6)

The neutron flux frequency is introduced to derive the
frequency-transformed dynamics model:

ωg r, t( ) ≡ 1
φg r, t( )

∂
∂t
φg r, t( ) (7)

where ωg(r, t) represents the neutron flux frequency which can
be further split as ωg(r, t) � ωS,g(r, t) + ωT(t). The flux
amplitude-frequency ωT(t) represents a global quantity and is
dependent only on time; the flux shape-frequency ωS,g(r, t) is
dependent on space, time, and energy. For normalization, a
physics-based constraint on the shape-frequency is introduced
as (Chao and Attard, 1985):

∑G
g�1
∫

V
drκΣf,g r, t( )φg r, t0( )e∫ t

t0
dt′ωS,g r,t′( ) � P t0( ) (8)

where, κ is the heat release per fission reaction, and P(t0) is the
initial total power of the nuclear reactor. The constraint guarantees
that the shape-frequency affects only the flux shape, not the total
power. The power distribution q(r, t) is defined as:

q r, t( ) �∑G
g�1

κΣf,g r, t( )φg r, t0( ) (9)

The precursor concentration frequency is defined as:

μi r, t( ) ≡ 1
Ci r, t( )

∂
∂t
Ci r, t( ) (10)

Introducing the frequency-transformation, the transient multi-
group neutron diffusion equations and associated delayed neutron
precursor equations are rewritten as:

−∇ ·Dg r, t( )∇ + Σt,g r, t( )[ ]φg r, t( ) + ωS,g r, t( ) + ωT t( )
vg

φg r, t( )

� χg r( ) 1 − β( ) +∑I

i�1
χigβiλi

μi r, t( ) + λi
[ ]Q r, t( )

+∑G

g′�1Σg′−g r, t( )φg′ r, t( )
g � 1, ..., G

(11)
μi r, t( )Ci r, t( ) � βiQ r, t( ) − λiCi r, t( ) i � 1, ..., I (12)

Equation 11 is the frequency-transformed temporal-spatial
equation. Taking all frequencies in Eq. 11 to be zeros yields the
static neutron diffusion equation:

FIGURE 5
Comparison of ATS-0.1% and FTS-12.5 ms in TWIGL (A) Core power (B) Time-variant adaptive time-step size.

TABLE 2 Comparison of global amplitude error between ATS and FTS in TWIGL.

Time Reference power FTS-20 ms error ATS-0.5% error FTS-12.5 ms error ATS-0.1% error

0.2 s 51.222 1.354% 1.504% 0.542% 0.400%

0.4 s 0.725 4.092% 2.514% 2.634% 1.403%

0.5 s 1.123 4.072% 2.412% 2.623% 1.351%

Number of steps 500 25 25 40 41
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−∇ ·Dg r, t0( )∇ + Σt,g r, t0( )[ ]φg r, t0( )

� χg r( )
keff

∑G

g′�1]Σf,g′ r, t0( )φg′ r, t0( ) +∑G

g′�1Σg′−g r, t0( )φg′ r, t0( )
g � 1,/, G

(13)
The adjoint equations corresponding to Eq. 13 are:

−∇ ·Dg r, t0( )∇ + Σt,g r, t0( )[ ]φ†
g r, t0( )

� ]Σf,g r, t0( )
keff

∑G

g′�1χg′ r( )φ†
g′ r, t0( ) +∑G

g′�1∑g−g′ r, t0( )φ†
g′ r, t0( )

g � 1,/, G

(14)

The left-hand side of Eq. 14 is the adjoint diffusion-absorption
operator, which is self-adjoint, and the right-hand side is the adjoint
fission-scattering operator. Eqs 13, 14 are both EVPs, which can be
solved by power iteration.

The PKE is a lumped-parameter model used to analyze the
dynamic behaviors of the flux amplitude while neglecting the
flux shape. As will be shown, this model is beneficial in the error
analysis of the SCM. The PKE results by integrating Eqs 4, 5
weighted with the initial adjoint flux. The resulting
equations are:

dn t( )
dt

� ρ t( ) − β

Λ n t( ) +∑I
i�1
λiCi t( ) (15)

dCi t( )
dt

� βi
Λ n t( ) − λiCi t( ) i � 1, 2, ..., I (16)

in which the notations are conventional thus are neglected for
brevity. Readers can find detailed definitions of the dynamic
parameters in Appendix-A. Correspondingly, the neutron density
frequency for the PKE is be given by:

ω t( ) ≡ 1
n t( )

dn t( )
dt

(17)

which can also be called the amplitude-frequency. The
frequency-transformed point kinetics model is expressed as:

ω t( ) � ρ t( ) − β

Λ + 1
n t( )∑Ii�1λiCi t( ) (18)

The precursor concentration equations are identical to Eq. 16.

3 Solution method for frequency-
transformed equations

Introducing the dynamic eigenvalue kD in Eq. 11, the equation
can be transformed into an EVP:

−∇ ·Dg r, t( )∇ + Σt,g′ r, t( )[ ]φg r, t( )

� χ′g r( )
kD

Q r, t( ) +∑G

g′�1Σg′−g r, t( )φg′ r, t( ) g � 1, ..., G (19)

where, Σt,g′ (r, t) is the dynamic total cross-section, and χ′g(r) is the
dynamic fission spectrum, which are respectively defined as:

∑
t,g
′ r, t( ) ≡ Σt,g r, t( ) + ωS,g r, t( ) + ωT t( )

vg
(20)

χ′g r( ) ≡ χg r( ) 1 − β( ) +∑I

i�1
χigβiλi

μi r, t( ) + λi
(21)

The dynamic frequencies rendering the maximum
eigenvalue kD equal to 1are the solutions to Eq. 19. It is
noted that the dynamic eigenvalue kD can be expressed as a
non-linear function of the flux amplitude-frequency ωT. Thus,
the dynamic frequencies are solved iteratively using power

FIGURE 6
Layout of modified LMW-2D benchmark problem.

TABLE 3 Perturbations in modified LMW-2D benchmark problem.

Region Perturbation

CR 1

Σa,2 �r2 , t( ) �
Σa,2 �r2 , 0( ) × 1 − 10t( ) + Σa,2 �r1 , 0( ) × 10t t≤ 0.1s

Σa,2 �r1 , 0( ) 0.1s< t≤ 0.4s

Σa,2 �r2 , 0( ) × 5t
3
− 2
3

( ) + Σa,2 �r1 , 0( ) × 5
3
− 5
3
t( ) 0.4s< t≤ 1.0s

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
CR 2

Σa,2 �r2* , t( ) �

Σa,2 �r2* , 0( ) × 1 − 10t( ) + Σa,2 �r1 , 0( ) × 10t t≤ 0.1s

Σa,2 �r1 , 0( ) 0.1s< t≤ 0.2s

Σa,2 �r2* , 0( ) × 5t
3
− 1
3

( ) + Σa,2 �r1 , 0( ) × 4
3
− 5
3
t( ) 0.2s< t≤ 0.8s

Σa,2 �r2* , 0( ) 0.8s< t≤ 1.0s

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
Note: �r1 ∈ regionofFuel1, �r2 ∈ regionofCR1, �r2* ∈ regionofCR2
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iteration and the non-linear iteration algorithms. The non-linear
iteration algorithm employed in this paper is the k − ω iteration,
as shown in Algorithm 1:

function SPATIALSOLVERSCM(tN, h, XS)

{tn}←{0 : h : tN } Time steps

~φg(r,t0),keff ← EVPSOLVER(XS(t0))

~φg(r,t0) ← P0∫
V
dr~q(r,t0)

~φg(r,t0) Normalize initial flux

Ci(r,t0) ← βi
λi
Q(r,t0)

ωT(t0),ωS,g(r,t0),μi(r,t0) ← 0

while n ≤ N do

ω(0)
T (tn) ← ωT(tn−1)

ω(0)
S,g(r,tn) ← ωS,g(r,tn−1)

C(0)
i (r,tn) ← Ci(r,tn−1)

KOMEGAITERATION(··· )
Pn ← ∫

V
drq(r,tn)

end while

return φg(r,tn){ }, Ci(r,tn){ }, ω(r,tn){ }
end function

function EVPSOLVER(XS)

% Any existing neutron transport or diffusion EVP

solver

return ~φg(r),keff
end function

function KOMEGAITERATION( )

% Input and output variables are omitted

while m≤M do

~φ(m)
g (r,tn),k(m+1)

D ←EVPSOLVER(XS′(t0))
ω(m+1)
T (tn) ← Updateω(m+1)

T (tn) based on Eq. 22

~φ(m+1)
g (r,tn) ← Pn−1∫

V
dr�q(r,tn )

~φ(m)
g (r,tn)

ωS,g(tn) ← 1
h ln(

φ(m+1)
g (r,tn)
φg(r,tn−1) )

φg(r,tn) ← φ̂(m+1)
g (r,tn)e

ω(m+1)
T

(tn )+ωT (tn−1 )
2 h

C(m+1)
i (r,tn) ← UpdateC(m)

i (r,tn) based on Eq. 26

μ(m+1)
i (r,tn) ← Updateμ(m)

i (r,tn) based on Eq. 28

if |k(m+1)
D − 1|< ε then

break

end if

XS′(tn)← Update dynamics cross-sections based Eqs.

20 and 21

end while

end function

Algorithm 1. SCM for time-spatial equations.
where XS denotes all coefficients in Eqs 11, 12, including cross-

sections and dynamic parameters, h is the time step size, and tN is the
last time point. If not otherwise specified, n andm denote the time step
index and iteration index, respectively. In this study, the finite difference
method (FDM) is applied to solve the EVP of the neutron diffusion
equation, and the solutions are ~φg(r, t) and the associated eigenvalue kD.
Besides, other spatial discretization algorithms are also applicable, such
as the nodal method (Abo et al., 2008) and the finite element method.

The amplitude-frequency is updated using the secant method
(Chao and Attard, 1985):

ω m+1( )
T tn( ) � ω m( )

T tn( ) + ω m−1( )
T tn( ) − ω m( )

T tn( )[ ] 1 − k m( )
D

k m−1( )
D − k m( )

D

(22)

The iteration continues until the dynamic eigenvalue converges
to 1. According to Eq. 8, normalization is necessary to update the
shape-frequency with the normalized neutron flux φ̂g(r, tn):

φ̂g r, tn( ) � P tn−1( )∑G
g�1
∫
V
drκΣf,g r, tn( )~φg r, tn( )

~φg r, tn( ) (23)

Such a normalization enforces the total power contributed by
the normalized flux to equal the power of the previous time step,
which ensures that the shape-frequency is independent of the flux
amplitude. Thus, the update formula of the shape-frequency is:

�ωS,g r, tn( ) � 1
Δtn

ln
φ̂g r, tn( )
φg r, tn−1( )⎡⎣ ⎤⎦ (24)

where Δtn � tn − tn−1, and �ωS,g(r, tn) is the average shape-frequency
in [tn−1, tn]. According to Eq. 3, the update formula for the actual
neutron flux is:

φg r, tn( ) � φg r, tn−1( )eωT tn( )+ωT tn−1( )
2 Δtn+ �ωS,g r,tn( )Δtn

� φ̂g r, tn( )eωT tn( )+ωT tn−1( )
2 Δtn (25)

When the actual neutron flux is solved, the precursor
concentration is calculated by:

Ci r, tn( ) � Ci r, tn−1( )e−λiΔtn + βie
−λiΔtn∫tn

tn−1
ΔQ r, t( )eλi tdt (26)

Suppose that the fission source changes linearly within [tn−1, tn],
the expression of the fission source is given by:

Q r, t( ) � Q r, tn−1( ) + Q r, tn( ) − Q r, tn−1( )
Δtn

t − tn−1( ) (27)

According to Eq. 12, the precursor frequency is calculated by:

μi r, t( ) � βi
Q r, t( )
Ci r, t( ) − λi Ci r, t( ) ≠ 0

0 Ci r, t( ) � 0

⎧⎪⎪⎨⎪⎪⎩ (28)

The resulting flux and precursor frequencies are then used to update
the dynamic cross-section. For the case of the PKE, the non-linear
frequency-transformed equations can be solved using Algorithm 2:

function PKESOLVERSCM(tN, h, IC, DP)

tn{ } ← 0: h: tN{ } Time steps

n(t0),Ci(t0),ω(t0) ← IC Initial conditions

while n ≤ N do

ω(0)(tn) ← ω(tn − 1)
C(0)
i (tn) ← Ci(tn−1)

while m≤M do

n(m+1)(tn) ← n(tn)e
ω(m) (tn )+ω(tn−1 )

2 h

ω(m+1)(tn)←Update ω(m)(tn) based on Eq. 31

C(m+1)(tn)←Update C(m)
i (tn) based on Eq. 33

if |f|< ε then

break

end if

end while

end while

return {n(tn)}, {Ci(tn)}, {ω(tn)}

end function

Algorithm 2. SCM for PKE.
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where IC represents the initial conditions, andDP is the dynamic
parameters in Eqs 16, 18. With a linear approximation of the neutron
density frequency, the neutron density can be updated by:

n tn( ) � n tn−1( )eω tn( )+ω tn−1( )
2 h (29)

in which ω is solved iteratively. According to Eq. 18, function f
is introduced:

f tn( ) � −ω tn( ) + ρ tn( ) − β

Λ + 1

n tn−1( )eω tn( )+ω tn−1( )
2 h

∑I
i�1
λiCi tn( ) (30)

In this case, ω is solved with the secant method until f(tn) � 0:

ω m( ) tn( ) � ω m−1( ) tn( ) − ω m−1( ) tn( ) − ω m−2( ) tn( )[ ]
f m−1( ) tn( ) − f m−2( ) tn( )[ ]f m−1( ) tn( ) (31)

The precursor concentration Ci(tn) can be determined using the
analytical solution to Eq. 16:

Ci tn( ) � Ci tn−1( )e−λiΔtn + βi
Λe−λiΔtn∫tn

tn−1
n t( )eλi tdt (32)

Assuming that the neutron density changes linearly with time,
Eq. 32 is transformed into:

Ci tn+1( ) � Ci tn( )e−λiΔtn

+ β

Λλ2i Δtn
−Δtnλin tn( ) − n tn( ) + n tn+1( )[ ]e−λiΔtn
+Δtnλin tn+1( ) + n tn( ) − n tn+1( ){ } (33)

4 Error analysis and error estimator

In the SCM, polynomial functions are used to interpolate the
exact frequency. The interpolation points are frequencies obtained
by solving frequency-transformed equations at different time points.
Figure 1 offers a schematic view of errors in the numerical integral.
As shown in the figure, when a polynomial interpolation function ω′
replaces the original function ω*, error is introduced when
integrating over the time interval. The error can be estimated by
the difference in the covered area between the original function and
the interpolation function in Figure 1.

With the foregoing considerations, we define the integral error
contributing to truncation error in the SCM:

Definition 1. (Integral error): The integral error εint is defined as the
difference between the integral using the original function ω* and
the integral using the polynomial interpolation ω′ of ω*:

FIGURE 7
Initial power distribution for modified 2D-LMW (Only non-zero
power displayed).

FIGURE 8
Comparison of ATS-0.5% and FTS-25 ms in modified 2D-LMW (A) Core power (B) Time-variant adaptive time-step size.
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εint ≡ ∫
Δt
ω* t( )dt − ∫

Δt
ω′ t( )dt (34)

The interpolation error at t isω*(t) − ω′(t), which is the difference
between the original function providing the interpolation points and the
interpolating polynomial. Assume that ω′(t) is the (degree n or less)
interpolating polynomial fitting the n + 1 points (t0,ω*(t0)),{
/, (tn,ω*(tn))}. Without loss of generality, it is assumed that the
frequency is (n + 1)-order differentiable due to the smooth variation of
reactivity ρ in Eq. 18. The interpolation error is then (Zhang et al., 2017):

ω* t( ) − ω′ t( ) � 1
n + 1( )!ω

* n+1( ) ξt( )∏n

i�0 t − ti( ) (35)

where ξt lies between [t0, tn], and ω*(n+1) is the (n + 1)-order
derivative of the frequency. When the neutron density frequency
is interpolated with a linear function within a time step, by
applying the mean value theorem of integrals, the integral
error in [tn−1, tn] is obtained as:

εint � ∫tn

tn−1
ω* t( )dt − ∫tn

tn−1
ω′ t( )dt � − 1

12
ω* 2( ) ξ( ) tn − tn−1( )3

ξ ∈ tn−1, tn[ ]
(36)

Because the exact value of ξ is uncertain, Eq. 36 can be used to
provide error bounds to the solutions. Hence, the optimal time step
is given using the error estimator:

h′ �
������
12εtol
ω 2( ) ξ( )

3

√
h′ ∈ R+ (37)

5 Coupling of the NTSE solver with the
PKE predictor

Based on the above discussions, one can select the optimal time
steps for the SCM based on Algorithms 3, 4:

FIGURE 9
Comparison of the ATS-0.1% and FTS-20 ms in modified 2D-LMW (A) Core power (B) Time-variant adaptive time-step size.

FIGURE 10
Comparison of relative spatial error at 0.4 s between ATS-0.1% and FTS-20 ms. (A) ATS-0.1%; (B) FTS-20 ms.
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function SPATIALSOLVERADAPTIVESCM(tN, hmax, hmin, εtol, XS)

t0←0

ϕ̃g(r,t0),keff ← EVPSOLVER(XS(t0))

φg(r,t0) ← P0∫
V
dr~q(r,t0)

~φg(r,t0) Normalize initial flux

Ci(r,t0) ← βi
λi
Q(r,t0)

ωT (t0),ωS,g (r,t0),µi(r,t0)←0

for tn ≤tN do n++

t′
n ← tn−1 + h max

ICn−1,DPn−1← Initialized IC and DP

hn←TIMESTEPSELECTION(εtol,hmax,hmin,ICn−1,DPn−1)

tn←tn−1 +hn

ω(0)
T (tn) ← ωT(tn−1)

ω(0)
S,g(r,tn) ← ωS,g(r,tn−1)

C(0)
i (r,tn) ← Ci(r,tn−1)

KOMEGAITERATION(···)
Pn ← ∫

V
drq(r,tn)

end for

return {ϕg {r,tn},{Ci(r,tn)}, {ω(r,tn)}

end function

Algorithm 3. Adaptive time stepping SCM based on PKE
predictor.

function TIMESTEPSELECTION(εtol, hmax, hmin, IC, DP)

hsub ← h max
K Sub − stepforPKE

{ωk}←PKESOLVERSCM(hmax,hsub,IC, DP)

ω[2]
k{ }← ωk−12ωk+ωk+1

h2
sub

ω[2] ← max |ω[2]
k |{ }

h′←ERRORCONTROL(εtol,ω[2])

h←max{hmin, min{h′, hmax}}

return h

end function

function ERRORCONTROL(εtol, ω[2])

h
�����
12εtol
ω[2]

3
√

return h′
end function

Algorithm 4. Adaptive time step selection based on PKE.
Algorithm 4 shows the time-step selection subroutine with

the error estimator demonstrated in Eq. 37. An optimal time-
step size is chosen using the error estimator to control the local
error within the pre-set error tolerance in this subroutine.
Algorithm 3 is obtained by embedding Algorithm 4 in
Algorithm 1.

The key to the ATS algorithm is to solve the PKE in the time interval
[tn−1, tn−1 + hmax] before solving theNTSE. In solving the PKE, dynamic
parameters and initial conditions are generated using the solution of the
NTSE and the initial adjoint flux. To make appropriate predictions, the
following assumptions are used for solving the PKE:

• Theflux shape isfixed in the prior interval and the solutionφg(r, tn−1)
is used to evaluate all necessary parameters and initial conditions;

• All dynamic parameters are constant in the prior interval
except the reactivity ρ(t);

• ρ(t) is a linear function in the prior interval, while ρ(tn−1) and
ρ(tn−1 + hmax) are evaluated based on Supplementary Eq. 4.

The SCM is also applied to solve the PKE because it directly
provides the frequency for error estimation.

6 Numerical Results

In this section, the efficiency and accuracy of the ATS algorithm
are tested by comparing it with FTS calculation. We examine the
time stepping algorithm in the TWIGL problem and the modified
LMW-2D problem. The TWIGL problem represents a transient case
with step perturbation, and the LMW problem involves smooth
reactivity insertions with more complicated geometrical layout that
that of the TWIGL problem. The combination of the two problems
can be utilized to examine the performance of the ATS algorithm
under different transient scenarios.

The cross-sections and dynamic parameters of the two problems
are presented in Appendix-B. The reference solutions are obtained
by fine time-step size calculations. We apply the ATS algorithm to
the problems with specified error tolerance. For comparisons, we
also adopt FTS calculations with the same number of time steps as
those used to produce the ATS results to evaluate the accuracy
improvements of using the ATS algorithm. For ease of description,
in these discussions we denote ATS with a tolerance of x% as ATS-x
%, and denote FTS with the time step of y ms as FTS-y ms.

6.1 TWIGL

The TWIGL benchmark problem is one quarter of a 2D reactor
core consisting of three kinds of fuel materials, as shown in Figure 2
(Kennedy and Riley, 2012).

TABLE 4 Comparison of global amplitude error between ATS and FTS in modified 2D-LMW.

Time Reference power FTS-25 ms error ATS-0.5% error FTS-20 ms error ATS-0.1% error

0.1 s 11.07 3.430% 0.620% 2.182% 0.101%

0.2 s 997.86 5.812% 1.690% 3.651% 0.359%

0.4 s 55591.11 6.017% 1.628% 3.992% 0.570%

0.8 s 3776.35 5.258% 0.402% 3.470% 0.257%

1.0 s 2871.30 5.161% 0.564% 3.295% 0.348%

Number of steps 1,000 40 33 50 50
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The TWIGL benchmark problem includes two different
reactivity insertion cases: a simple ramp case and a
composite case. The composite case is adopted to validate the
ATS algorithm, which is shown in Table 1. The transient
durations for both cases are 0.5 s. Note that perturbations
occur only in Material 1; the other materials remain in their
initial conditions. The initial power distribution is shown in
Figure 3.

In the TWIGL problem, the pre-set maximum and minimum
time-step sizes are chosen as 50 and 1 ms, respectively. Figure 4A
compares ATS-0.5% and FTS-20 ms. Figure 4B presents the
adaptive time-step size. As shown in Figure 4A, the power curve
of ATS agrees well with the reference solution, especially shortly
after the step points. Step perturbations are introduced at 0.2 and
0.4 s. Accordingly, the ATS algorithm automatically refines step
sizes shortly after step points but otherwise uses a coarse step
size. Such a time step adjustment intelligently allocates time
steps and spends more computational resources on the interval
with rapid changes.

Figure 5A, B compare the results of ATS-0.1% and FTS-
12.5 ms. The performance is similar to that in the previous error
tolerance setting.

Table 2 summarizes the global core power error at different
time step points. The ATS algorithm significantly improves the
computational accuracy when the same number of time steps is
used, with an error reduction of up to 40~50%. The comparison
of ATS-0.5% and FTS-12.5 ms in Table 2 indicates that the ATS
algorithm can reduce by 37% the computational time of the FTS
calculation with similar numerical accuracy. More significant
gains can be expected for large-scale neutron transport
problems.

6.2 Modified 2D-LMW

The second 2D benchmark problem is modified from the 3D
LMW (Langenbuch, Maurer, Werner) problem without
thermal-hydraulic feedback to match the simulation code
used in the paper (Kennedy and Riley, 2012). The reactor
core is a simplified pressurized water reactor containing two
kinds of fuel assemblies and two groups of control rods (CR), as
shown in Figure 6.

The modified 2D LMW problem is designed to model a
reactivity insertion case, as shown in Table 3. This case is the
superposition of ramp perturbations in different regions, by
perturbing materials in CR 1 and CR 2. The initial power
distribution is illustrated in Figure 7.

For the modified 2D-LMW, Figures 8, 9 present a
comparison between the results of the ATS and FTS
calculations. In Figure 8A, the error of the power peak, which
appears at 0.4 s, is 905.02 and 3344.92 for ATS and FTS,
respectively. In Figure 9A, the error of the power peak is
316.87 and 2219.20. The noticeable improvement in the
accuracy of the power peak demonstrates the efficacy of the
ATS algorithm.

Figure 10 presents the relative spatial error at 0.4s for ATS
and FTS. We can observe that the error distribution is fairly

uniform in both cases, but the accuracy of ATS is higher than
that of FTS.

Table 4 summarizes the global core power error. The results
show that the numerical accuracy can be improved significantly.
For example, comparing FTS-20 ms and ATS-0.1%, the error
reduction can be up to 90%~95%. The core power increases by
more than four orders of magnitudes from the initial power,
whose variation is much wider than that in the TWIGL problem,
but there is no step perturbation. Thus, continuity of frequency
enables superior error control.

7 Conclusion

In this work, we perform theoretical and numerical error analyses of
the SCM. By expressing the error term using integral error, the
mathematical expression of the amplitude error is derived. The
integral error is caused by using a polynomial function to represent
the exact solution. Based on theoretical analysis, we develop an efficient
and easy-to-implement ATS algorithm based on the PKE predictor. A
fine-step PKE solver is used to rapidly evaluate high order derivatives of
the neutron flux amplitude in the theoretical error expression. The high-
order derivatives are used to determine the optimal time-step size for the
NTSE. A time step error-estimator for this ATS algorithm is derived, and
numerical validation indicates that the ATS is satisfactory in
performance and easy to implement.

The accuracy and computational cost of ATS and FTS are examined
using benchmark problems. Comparisons show that the ATS algorithm
can achieve higher accuracy with the same number of time steps, and
significantly improve computational efficiency in the NTSE. It was found
that theATS algorithm significantly improves the computational accuracy
when the same number of time steps is used, with error reductions of up
to 40%~50% for the TWIGL benchmark and up to 90%~95% for the
LMW benchmark. With similar numerical accuracy, the ATS algorithm
can reduce by 37% the computational time of the FTS calculation. Future
work is to apply the adaptive SCM to 3D neutron transport problems.
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