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Commercial buildings consume a large portion of energy and the heating,
ventilation, and air conditioning (HVAC) system is the major contributor to this
high consumption. Though there are many reported works on the optimal
scheduling of HVAC systems, practical considerations such as equipment
cycling and possible rebound effects are rarely considered. This paper provides
insights into the optimal scheduling of the HVAC system in an actual 3-floor
commercial building where the cycling and rebound effects are addressed in
the optimization. The experimental results prove that energy cost reduction can
be achieved while ensuring temperature comfort and longer life expectancy of
the HVAC. The results also show that considering the cycling and rebounds will
affect the potential cost reduction.
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1 Introduction

Buildings' energy consumption has increased in recent years to represent a major part
of the primary energy consumption. According to the latest statistics from U.S. Energy
Information Administration (EIA), the combined residential and commercial buildings are
estimated to consume around 40% of the total primary energy (EIA, 2023). The Heating,
Ventilation, and Air Conditioning (HVAC) is the main reason that drives the consumption,
accounting for about 44% of the building energy consumption (Tian, 2022). Therefore,
modeling and optimizing HVAC systems have drawn attention.

The Building models can be generally classified into physics-based models (white box),
data-driven models (black box), and hybrid models (gray box). In physics-based models,
underlying first principles are used to model the building dynamics while in data-driven
models, sensor data from the building automation systems are used. In hybrid models,
simplified physics-basedmethods are used where the parameters of themodels are identified
using empirical data.

Physics-based models usually require the identification of physical parameters that
range from the identification of equivalent lumped parameters in simplified models to
complex parameter identification via the use of building geometry layouts, material types,
equipment types, and operational schedules in detailed building models. In Jindal et al.
(2018), simplified heat balance equations, characterizing the operation of fan coil units,were
used to form the bases of a mixed integer linear programming (MILP) problem that
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minimizes the energy cost of a university building.Other researchers
used detailed physics-based model predictive controller (MPC) for
HVAC scheduling (Žáčeková et al., 2014; Sturzenegger et al., 2015).
It was found that the challenge against the deployment of physics-
based MPC is the time, cost, and effort to capture the dynamic
features of the building. In addition, the demanding process of
building model and calibration must be repeated for each building
if more than one building will be controlled (Žáčeková et al., 2014).
The significantmodeling effort explains the reasonwhyunoptimized
rule-based methods are the most common scheduling mechanisms
in commercial building automation systems.

Due to these reasons, some researchers tried to develop and use
data-drivenmodels for the control of commercial HVAC systems. In
Smarra et al. (2018), regression trees and random forests were used
as data-drivenmodels for building energy optimization.The authors
showed that data-driven predictive control can provide comparable
performance with respect to control based on a perfectly known
mathematical model. Linear regression and cubic functions were
used in Hao et al. (2016) to approximate the temperature dynamics
and fan power consumption of a variable air volume box.Themodels
were used in setting the bidding strategies of a commercial building
participating in the market.

In an attempt to combine the virtues of both methods and
to compensate for the inaccuracy of data-driven models, some
researchers explored the use of hybrid models (Ma et al., 2014;
Kannan et al., 2019; Vishwanath et al., 2019). In Ma et al. (2014),
the authors developed simplified nonlinear models for the thermal
zones of the building. Then, state feedback linearization was used
to develop a linear model that can be used by the model predictive
controller (MPC). In Vishwanath et al. (2019), the authors deployed
their prior knowledge of some physical parameters of the system
as well as data coming from the building management system to
formulate a MILP problem to optimize the cooling consumption of
a large commercial building.

With the fast development of demand response programs for
commercial buildings, the rebound effect has become a practical
issue (Tian et al., 2021). Grid-interactive building refers to those
that temporarily raise their HVAC temperature setpoints to reduce
power consumption in response to grid signals. The rebound effect
is the high power rebound that occurs after the setpoint is restored to
the nominal value. The rebound effect of multiple buildings can be
stacked when the coordination of cycling is lacking. These practical
issues can have a great effect on the lifetime of the equipment

and demand response performances, yet, proper cycling strategies
are rarely studied. In addition, if not properly addressed, they
can counter-affect the resulting cost reduction which is the main
objective of the reported work. This happens because the rebound
effect might introduce load peaks that in turn can increase the total
consumption cost of the building operator, given the fact that many
buildingmanagers are subjected tomonthly peak time-of-use tariffs,
known as demand charge costs (DukeEnergy, 2020).

Therefore, this paper presents a low-dimensional data-driven
model and conventional optimal scheduling formulation of an actual
3-floor building to minimize the energy cost. The conventional
formulation might result in cycling and system peak problems. So,
the paper presents a potential solution to these problems while
resulting in cost minimization as well. Real-world results of both
cases are provided and discussed.

2 Building modeling

Building modeling is an important step for the optimization
of the HVAC system. Usually, building models are used to mimic
and generate the temperature and consumption dynamics of the
building, that is, used as an oracle/model for the optimizer
while evaluating different possible decision variables. The building
under consideration is an actual 3-floor office/classroom building.
According to the DOE classification, the building is considered a
medium office building.The building has more than 100 offices that
are distributed among different floors. The test building structure,
including both the room sectioning and the thermal zone sectioning,
is shown in Figure 1. It is equipped with advanced chilled-beam
technology as themain air distribution system. Each group of rooms
is supplied by pre-processed air coming from the variable air volume
box (VAV) and the VAV boxes of each floor are supplied from an
air handling unit (AHU). The scheduling of the AHUs controls the
building's temperature. Finally, the AHUs are fed from the central
chiller of the university campus.

As most commercial buildings are equipped with a building
management system that stores historical data of different sensors
of the building and HVAC system, data-based models arise as viable
options that can be developed directly without the need to have in-
depth knowledge about the different components of the building
and HVAC system. Linear models are adopted in this work. The
advantages of linear data-drivenmodels include reduced complexity

FIGURE 1
Floor plan and thermal zone sectioning of the test building.
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and compatibility with numerical optimization. Two data-driven
models are developed to mimic the behavior of in-door building
temperature and energy consumption. The control input to the
system is the HVAC schedule O.

2.1 In-door temperature model

A linear regression model is used to develop the building
temperature. The adopted features for the models are the HVAC
schedule O, outside ambient temperature Tamb and the building
temperature at the previous time step Tt−1

BLD. Though the selected
features do not directly include the set-point temperature, it is
implicitly included in the schedule O. In commercial buildings, the
schedule O reflects a temperature set point that the chiller and the
cooling coil should achieve. According to the (ASHRAE) standards,
the On status can mean a working hour temperature set-point of
74°F or 75°F while the Off status means a setback temperature
of 80°F. The temperature model is illustrated by (1) where βi
represents the temperature regression coefficients and β0 is the
intercept.

Tt
BLD = T

t−1
BLD ⋅ β1 +T

t
amb ⋅ β2 +O

t ⋅ β3 − β0 (1)

2.2 HVAC consumption model

A similar model for the HVAC consumption is adopted and
the consumption model is described by (2) where γi represents
the power consumption regression coefficients and γ0 is the
intercept.

Pt = Tt−1
BLD ⋅ γ1 +T

t
amb ⋅ γ2 +O

t ⋅ γ3 − γ0 (2)

3 Optimal HVAC scheduling

3.1 Basic formulation—Synchronized
scheduling

First, a formulation is used where the objective is to minimize
the electricity cost of the building by controlling the switching on/off
status O of the AHUs. In this section, the monitored variable is the
building temperature which represents the average temperature of
all rooms in the buildingTBLD. It is assumed that theAHUswork in a
synchronous way (following the same schedule).These assumptions
are common practices in many university campuses around the
United States. Thus, the problem is formulated as an integer linear
programming where the optimization problem is formulated as
follows:

min
O

T

∑
t=1

ct ⋅ Pt (3a)

s.t. Tlower ≤ T
t
BLD ≤ Tupper (3b)

Ot+1 ≥ Ot −Ot−1 (3c)

1−Ot+1 ≥ Ot−1 −Ot (3d)

Where: Eq. 3a represents the objective of minimizing the energy
cost where c is the time of use (ToU) tariff and P is the power
consumed per unit of time by the HVAC system. Constraint
(3b) states that the average building temperature should be
always maintained between a lower comfort level and an upper
comfort level. The comfort bounds are different during the day
between working and non-working hours. Constraints (3c) and
(3d) put limits on the minimum up and down times to reduce
the wear and tear due to the switching on/off. These constraints
are commonly used in the literature (Vrettos and Andersson,
2015; Tian et al., 2020). 30 min was set as the minimum up/down
times. The temperature and power consumption at the next time
step are obtained using the regression model as described by
(1, 2).

3.2 Practical asynchronous formulation

The previous formulation may cause several practical issues
which are: Rebound effect: the commonly used synchronized
operation of the AHUs can cause power spikes. When all the AHUs
are turned off simultaneously, the temperature in all rooms will
increase simultaneously, and when the AHUs are turned on in the
next time step, a large increase in the chilled water consumption
will be induced tomaintain the temperature within the bounds.This
is similar to the typical rebound phenomenon observed in demand
response programs when a larger peak is introduced in the system
when the off-peak signal is sent. The presence of power spikes can
have negative consequences on the mechanical equipment as well as
the electrical equipment. In addition, the presence of power spikes
can eliminate the savings generated during the turn-off periods and
may increase the demand charge costs of the building. Temperature
deviations: Since different parts of the buildings are subjected to
different heat gains andmay have different wall structures, using the
same schedule might result in temperature deviations. For example,
the upper floor receives a direct hit from the Sun during the middle
of the day so this floor typically has much lower inertia compared to
other floors and its temperature will rise quickly when the AHU is
turned off, compared to other floors. Excessive cycling: though the
basic formulation includes a limit on the minimum up and down
times, excessive cycling of the AHUs can happen during moderate
temperature days. This is because the optimizer will tend to turn on
and off more often to minimize the cost. If the minimum up and
down time is set to be a long period to avoid excessive cycling, it will
reduce potential savings that can be obtained.This happens because
the optimizer will avoid turning off theAHUs since a longminimum
downtime means that the AHU will be off for an extended time
which might result in temperature deviations. This is particularly
true during hot days.

To consider these practical issues, first, the temperature
dynamics of the AHUs are captured separately where each AHU
will have its own temperature model according to (4). The average
temperature of each AHU is a function of its previous temperature
(the temperature of all rooms served by the AHU) and its own
schedule as well as the outside temperature. As for the building
consumption, there is no way to know the consumption of each of
the AHUs separately as the chilled water meter shows only the total
consumption. Therefore, the building power consumption model
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TABLE 1 Regressionmodel parameters.

Parameter Value Parameter Value Parameter Value

Floor area 15,786 sqft Cooling setpoints 74°F, 80°F Heating setpoints 65°F, 70°F

Air flow 1670 CFM Fresh air 5.585 CFM/person Max occupancy 299 person

Computer power 1.7 W/sqft Lighting power 1.0 W/sqft Tub, T lb 72°F, 76°F

TABLE 2 Regressionmodel parameters.

Parameter Value Parameter Value Parameter Value Parameter Value

α0 −17.8 α1 70.7 α2 0.24 α3 0.022

β0 37.9 β1 −2.07 β2 0.15 β3 0.45

δ0 4.4873 δ1 0.93312 δ2 0.0070424 δ3 −0.13935

γ0 96.141 γ1 −2.089 γ2 0.91425 γ3 8.506

γ4 9.0627 γ5 7.4664

FIGURE 2
Ambient temperature profiles of the test day and a similar day.

will be a function of the average temperature of the AHUs, outside
temperature, as well as their individual schedules are given by (5)
where αi represents the power consumption regression coefficients
in this case.

Tt
AHU = T

t−1
AHU ⋅ δ1 +T

t
amb ⋅ δ2 +O

t
AHU ⋅ δ3 − δ0 (4)

Pt = average(Tt−1
AHU1,T

t−1
AHU2,T

t−1
AHU3) ⋅ α1 +T

t
amb ⋅ α2

+Ot
AHU1 ⋅ γ3 +O

t
AHU2 ⋅ γ4 +O

t
AHU3 ⋅ γ5 − γ0 (5)

Tlower ≤ T
t
AHU ≤ Tupper (6)

Ni

∑
t=1
|Ot+1

i −O
t
i| ≤ Ncycle, i ∈ {NH} (7)

NH

∑
t=1

Ot
i ≥ Non, t ∈ {Nt} (8)

In addition to separate temperaturemodels of each of the AHUs,
the previous constraints have been modified as follows: Constraint
(6) considers the average temperature of the rooms served by
different AHUs separately. It ensures that the average temperature
of the different AHUs is within the bounds. Constraint (7) is used
to limit the number of cycles of the AHU by ensuring that the total
number of switching cycles during the operation day is less than a
certain number of cyclesNcycle.This number is a factor to be decided
by the building operator. To avoid the simultaneous switching off
of the AHUs, constraint (8) is used to ensure that at each time
step, there will be a certain minimum number of AHUs Non that
will be on out of the total number of AHUs NH. This constraint
helps smooth the load profile of the building and limits loading
spikes.

4 Results

The optimization problem is resolved for real-world scenarios
where the basic formulation will first be tested then the
asynchronous practical formulation will be evaluated. For real-
world scenarios, the regression model is trained using actual
data from the building automation system. The weather forecast
for the next day is obtained through an Application Program
Interface (API) with NOAA weather forecast. To evaluate the
effectiveness of the proposed formulation, the obtained costs
will be compared to a standard non-test day of the building
operation. Since the consumption will be affected by the outside
temperature and it is hard to find two actual days with the exact
ambient temperature, a similar day criterion (Sangrody et al.,
2020) is adopted to ensure a fair comparison. A similar day is
selected based on the minimum ambient temperature squared
error between test days and other days in the same month. Finally,
the building is subjected to Duke energy time of use tariff (ToU)
(DukeEnergy, 2020) with the on-peak period between 12:00–21:00
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FIGURE 3
Optimized building temperature and power consumption under the synchronous scheduling method.

FIGURE 4
Optimized AHU temperature profiles and total HVAC power consumption under the asynchronous scheduling method.

p.m. Detailed building parameters and test settings are summarized
in Table 1.

4.1 Experimental results—Synchronous
scheduling

In this test, the regression model is trained using 2 months
of actual data and the obtained parameters are summarized in
Table 2. The root means squared error (RMSE) for the temperature
model is 0.1 and the RMSE error for the power model is 14.9. The
data is coming from the building automation system with a 15-
min resolution. The ambient temperature for the optimized test day
is shown in Figure 2. The minimum up and down times was set
to two time steps (30 min). Figure 3 depicts a comparison between

the expected behavior using the regression model and the actual
behavior of the building using the optimized schedule. Figure 3
also shows the average temperature of the rooms served by the
different AHUs. The figure depicts the synchronous behavior of
the scheduling where the temperature increases/decreases in all the
AHUs simultaneously. The results show that the regression model is
able to track the pattern but it underestimates the temperature and
the energy consumption. The actual deviation in temperature is less
than 0.5–1°F. Figure 3 also shows that the temperature deviation is
different among the AHUs.This is because different heat gains affect
different AHUs (i.e., the heat gain from the Sun increases as we go
up).

Figure 3 shows that there are multiple cycles (turning on and
off) during the test day which represents a concern for the building
operator as it will reduce the lifetime of the mechanical equipment.
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For other moderate temperature test days, excessive cycling was
observed as the optimizer was trying to minimize the cost by more
frequently turning on and off the equipment. These results were not
shown due to space limitations. Figure 3 also shows that there is a
spike in consumption whenever the building is turned off during
the middle of the day since the building is trying to maintain
the temperature after the building is heated up during the turn-
off period. Also, these spikes partially contributed to the transient
of the PI controller at the lower level of the control sequence
of the equipment. Whenever a turn-on control signal is initiated
after a turn-off period, the PI controller overshoots before settling
down.

Finally, the energy and cost savings obtained using the optimized
schedule are compared to a similar unoptimized day. The closest
day to the test day and its consumption are shown in Figure 2 and
Figure 3. It is obvious that the 2 days are very close to each other.
The numerical results show that the optimized schedule will result
in 115.9 kWh energy reduction (25.4%) and $11.96 cost reduction
(31.2%), indicating the ability of a low dimensional model to achieve
high savings without the need for extra complexities. Although the
basic optimization formulation can result in excessive cycling and
load peaks.

4.2 Experimental results—Asynchronous
scheduling

In this case study, the practical formulation discussed in section
III is used. In this case study, different schedules for the different
AHUs are used. The maximum number of allowed cycles during
working hours is 6 cycles and the minimum number of operating
AHUs at any time instant is two AHUs. The performance of the
building was also compared to a non-optimized day using the
similar day criterion applied before. The left subplot of Figure 4
illustrates the average temperature behaviors of the rooms/offices
served by the different AHUs. The figure shows that on average
there is no temperature deviation above 74°F has occurred. The
temperature behavior also shows the alternating behavior of the
schedules where there is no simultaneous turning off of the AHUs
(i.e., the temperatures do not go up simultaneously at the same
time). This is because only one AHU of the three AHUs is
allowed to turn off at a time. Also, the figure shows that the
average temperature does not go up and down many times during
the middle of the day. This is a direct result of the maximum
number of cycles constraint. The alternating behavior of the turn-
off procedure and limits on the number of cycles resulted in a
smoother consumption profile as shown in the right subplot of
Figure 4 where we can see the absence of large power spikes shown
before. Also, these constraints ensure that there will always be
a minimum load applied to the chiller (source of cooled water)
as shown in the figure (i.e., the entire system never shuts down
during working hours). This helps ensure a longer life expectancy
for the equipment. Finally, when comparing the numerical results
to similar day consumption, the proposed algorithm results in an

energy reduction of 60.53 kWh (18.4%) and cost reduction of $4.59
(19.5%).

5 Conclusion

This paper addresses the power rebound issue in grid-interactive
buildings. An asynchronous cycling method is proposed to ensure
a smooth consumption profile. The performances of the proposed
low-dimensional regression model and optimization method were
validated through an experiment on a 3-floor commercial building.
The objective of the optimization problem was to minimize the cost
of the chilled water consumption while the building is subjected to
Duke Energy's time-of-use tariff. The case study results showed that
the proposed method can 1) achieve lower electricity cost under
TOU; 2) effectively mitigate the rebound effect by optimizing the
equipment cycling; and 3) increase the life expectancy of AHU
equipment.The future work is to enhance the modeling accuracy by
incorporating more features and non-linear characteristics among
them.
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Nomenclature

α0−3 AHU power model coefficients

β0−3 Room temperature model coefficients

δ0−3 AHU temperature model coefficients

γ0−5 HVAC power model coefficients

Ncycle Number of cycles allowed

Non Minimum number of AHU is on

O HVAC status

P HVAC system power consumption

TAHU Air temperature in AHU

Tamb Ambient temperature

TBLD Indoor air temperature

Tlower Lower bound of temperature comfort zone

Tupper Upper bound of temperature comfort zone

i AHU index

t Time step index
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