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At present, energy shortages are becoming increasingly severe, and the concept
of park level multi energy complementary systems (MECS) has provided
direction for sustainable energy development. In recent years, how to improve
the economy and reliability of multi energy complementary systems has
become a research hotspot in this field. In this paper, a two-layer optimal
scheduling strategy is proposed to allocate the capacity of various energy
equipment in the park, considering the comprehensive energy self-sufficiency
rate, comprehensive energy utilization rate and energy shortage expectation. The
proposed capacity allocation scheme can effectively improve the economy of
MECS in the park. Finally, the effectiveness and practicability of the algorithm are
verified by simulation analysis.
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1 Introduction

In recent years, there has been a significant shift in the global energy landscape
towards renewable and sustainable energy, which has given rise to the concept of a MECS
that integrates various renewable energy, storage technologies, and energy management
strategies to improve the efficiency and reliability of the overall system (Zheng et al.,
2019; Deng et al., 2021; Weizhen et al., 2021; Qian et al., 2022). As the deployment of such
systems expands, optimizing their configuration becomes crucial for maximizing their
benefits. A key challenge in optimizing MECS is to evaluate their performance using
multiple metrics. Traditional single indicator optimization methods often fail to capture
the complex interdependence between various system components and their impact on
different evaluation criteria (Liu et al., 2020a; Miguel and Ren, 2021; Liu et al., 2022a;
Yang et al., 2022). Therefore, it is imperative to develop a comprehensive optimization
method that considers multiple evaluation indicators simultaneously (Xu et al., 2020a;
Zhang et al., 2021a; Liu et al., 2021).

In recent years, many scholars have conducted research on the optimization scheduling
problem of park level MECS. In reference (Wang et al., 2021a), a coordinated optimization
framework for the world’s largest multi energy complementary base and MECS in
the upper reaches of the Yellow River was proposed, which combines a long-term
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optimal operationmodelwith a short-termoptimal operationmodel
to determine the proportion of multiple energies and optimize
the maximum peak shaving capacity; Using the large-scale system
decomposition and coordination method to solve the proposed
two-level operational model. In reference (Yin et al., 2021), a risk
constrained stochastic scheduling model was proposed to utilize
the potential scheduling capabilities of multi energy systems, while
maintaining the level of system operational risk, to seek solutions
for economic operation in response to uncertain renewable energy
generation. In reference (Mao et al., 2021), a cooperative operation
framework model for a wind solar combined cycle multi energy
system was studied. Describing the optimal operation scheduling
problem of multi energy systems as a Nash bargaining optimization
problem, rather than traditional non cooperative solution based
methods, and solving it through the alternating direction multiplier
method. In reference (Wang et al., 2020), in order to obtain the
minimum operating cost, an operational optimization model was
established and the moth flame optimization algorithm was used
to optimize the schedule of each unit in the hybrid energy system.
In reference (Xu et al., 2020b), an iterative solution was developed
to arrange multiple energy conversion and storage devices within
the hub to efficiently utilize available hybrid solar wind renewable
energy. In reference (Wang et al., 2021b), an optimal scheduling
model was proposed for wind power, photovoltaic, hydropower,
thermal power, and outsourced power generation systems, with
the minimum economic cost of thermal power generation as the
objective function, including a complementary system of wind
power, photovoltaic, hydropower, and thermal outsourced power. In
reference (Zhang et al., 2023a), an energy hub (EH)model including
energy storage systems and integrated electric vehicles (EVs) was
established. Based on this model, the impact of the pollutant
trading market on total operating costs was analyzed, and further
optimization scheduling strategies were proposed to achieve the
minimum purchase cost and emission tax cost of MES. In reference
(Zhang et al., 2023a), a multi product optimal scheduling algorithm
considering the complementarity of different hydrogen products
is proposed to optimize the scheduling factors of the energy hub
system and achieve Profit maximization within the limited resource
range. In reference (An et al., 2020), an optimization scheduling
model was established with the goal of minimizing output power
fluctuations, considering multiple power supply constraints. In
order to solve the problem of premature and slow convergence
in the second half of Particle swarm optimization (PSO), a niche
Particle swarm optimization method is proposed to determine the
optimal solution of the model combined with the niche technology
in evolution.

However, most of the references mentioned above only consider
economic and carbon emission costs, without considering issues
such as comprehensive energy utilization and self-sufficiency
(Liu et al., 2020b; Zhang et al., 2020; Chen et al., 2021; Liu et al.,
2022b; Ororbia and Warn, 2022; Zhang et al., 2022; Li et al., 2023).
This study aims to address this urgent need and propose an
innovative method for optimizing the configuration of park level
MECS that considers multiple evaluation indicators. By doing so,
we seek to identify the most effective and sustainable configurations
that alignwith the overall goals of energy security, cost-effectiveness,
environmental sustainability, and operational reliability (Yu-
Kai et al., 2013; Liu and Mancarella, 2016; Qinglai et al., 2017;

Du et al., 2020; Du and Li, 2020; Zhang et al., 2021b; Cai and Ying,
2021).

In order to achieve our research objectives, we will adopt
a holistic perspective and consider the interaction of different
energy, storage technologies, and energy management strategies
within the framework of a multi energy park. This study will
utilize advanced modeling and simulation techniques to analyze the
dynamic behavior and interactions of different system components
(Zhang et al., 2021c; Wang et al., 2022; Xue et al., 2022; Liu et al.,
2023a; Liu et al., 2023b; Zhang et al., 2023b; Yang et al., 2023). On
the basis of existing literature, this paper takes into account
various needs such as economy, energy sustainability, efficiency,
and reliability. Among them, economy and energy sustainability
are represented by the comprehensive energy self-sufficiency rate,
efficiency is represented by the comprehensive energy utilization
rate, and reliability is represented by reliability indicators. By
examining multiple indicators simultaneously, we can gain a
more comprehensive understanding of system performance and
determine the optimal configuration to achieve a balance between
different evaluation criteria. The results of this study will provide
valuable insights for policymakers, energy planners, and system
operators to design and deploy future MECS at the park level. The
research findings will help promote sustainable energy solutions
and facilitate the transition to a low-carbon and resilient energy
future.

In the following chapters, the specific arrangement is as follows:
In Chapter 2, the overall architecture and equipment model of the
park level MECS are introduced; In Chapter 3, three evaluation
indicators and their mathematical models are introduced; In
Chapter 4, the two-layer optimization model and algorithm used
in this paper are introduced; In Chapters 5 and 6, corresponding
conclusions were obtained through simulation analysis, proving
the accuracy and practicality of the algorithm proposed in this
paper.

2 Modeling of park level MECS

2.1 Structure of park level MECS

The park level MECS includes links such as energy production,
conversion, and storage. This paper uses an energy hub model
to describe the energy flow coupling relationship of the park’s
comprehensive energy new system, and constructs a typical park
level MECS structure as shown in Figure 1.

2.2 Model of energy equipment

2.2.1 Renewable energy power generation
equipment model

Photovoltaic power generation is related to light intensity, and
its output model is described as follows:

PPV,t =
{
{
{

αtPPV,N/αN 0 ≤ αt < αN
PPV,N αt ≥ αN

(1)

where, PPV,t represents the actual photovoltaic power during time
t, PPV,N represents the rated photovoltaic power, αt represents the
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FIGURE 1
Structure of the Park’s MECS.

actual light intensity during time t, and αN represents the rated light
intensity.

2.2.2 Energy conversion equipment model
2.2.2.1 Cogenerationmodel

PeCHP,t = η
e
CHPP

g
CHP,t (2)

PhCHP,t = η
h
CHPP

g
CHP,t (3)

where, PeCHP,t and PhCHP,t respectively represent the electric power
and thermal power generated by Cogeneration in period t, PgCHP,t
represents the natural gas power absorbed by Cogeneration in
period t, and ηeCHP and ηhCHP respectively represent the power
generation efficiency and heat generation efficiency of cogeneration.

2.2.2.2 Gas boiler model

PhGB,t = ηGBP
g
GB,t (4)

where, PhGB,t is the heat generation power of the gas boiler, ηGB is the
heat generation efficiency of the gas boiler, and PgGB,t is the natural
gas consumption power of the gas boiler during time t.

2.2.2.3 Electric boiler model

PhEB,t = ηEBP
e
EB,t (5)

where, PhEB,t is the heat generation power of the electric boiler at
time t, ηEB is the heat generation efficiency of the electric boiler,
and PeEB,t is the electrical power consumed by the electric boiler at
time t.

2.2.3 Energy storage equipment model
2.2.3.1 Electric energy storagemodel

For electric energy storage equipment, the energy storage ratio
during time t is related to the charging and discharging power during
that time period and the energy storage state of charge during time

t-1, specifically expressed as:

SES,t = SES,t−1 + P
+
ES,tη
+
ESΔt−

P−ES,tΔt
η−ES

(6)

where, Δt is the optimized time interval, SES,t is the energy of
electric energy storage equipment in t period, P+ES,t and P−ES,t are
respectively the charging and discharging power of electric energy
storage equipment in t period, and η+ES and η−ES are respectively
the charging and discharging efficiency of electric energy storage
equipment.

2.2.3.2 Thermal energy storagemodel
For thermal energy storage equipment, the energy storage ratio

during time t is related to the storage and heat release power during
that time period and the energy storage ratio during time t-1,
specifically expressed as:

SHS,t = SHS,t−1 + P
+
HS,tη
+
HSΔt−

P−HS,tΔt
η−HS

(7)

where, SHS,t is the energy of thermal energy storage equipment in
period t, and P+HS,t⋅ and ⋅P

−
HS,t are respectively the charging and

discharging power of thermal energy storage equipment in period
t, and η+HS⋅ and ⋅η

−
HS are respectively the charging and discharging

efficiency of thermal energy storage equipment.

2.2.3.3 Photovoltaic systemmodel
The output of photovoltaic power generation is related to light

intensity, and its output model is specifically described as:

PPV,t =
{{
{{
{

PratedPV
αt

αrated
0 ≤ αt ≤ αrated

PratedPV αt > αrated
(8)

where, PPV,t is the actual power of the PV during period t, PratedPV is
the rated power of the PV, is the actual light intensity during period
t, and αratedis the rated light intensity.
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3 Evaluation indicators for park level
MECS

This article suggests evaluation indicators to assess the
sustainability, efficiency, and reliability of the park’s MECS. The
proposed indicators include the comprehensive energy self-
sufficiency rate, comprehensive energy utilization rate, and energy
shortage expectation.

3.1 Comprehensive energy self-sufficiency
rate

The comprehensive energy self-sufficiency rate represents the
proportion of renewable energy generated by the park’s MECS
compared to the energy demanded by its users. A higher
comprehensive energy self-sufficiency rate signifies a larger share of
renewable energy utilized by the park’s MECS, leading to increased
energy sustainability. This rate can be quantified as follows:

μCESR =
Eres

Ee +
Eh
vK
+ vLHVEg

(9)

where, μCESR represents the comprehensive energy self-sufficiency
rate, Ee,Eh, and Eg represent the e electricity, heat, and natural
gas output f from the MECS in the park, vLHV representing the
low calorific value of natural gas combustion, vK represents the
unit conversion coefficient of electricity and heat energy, and Eres
represents the electricity produced by renewable energy equipment.

3.2 Comprehensive energy utilization rate

The comprehensive energy utilization rate serves as a crucial
metric for assessing the operational efficiency of the park-level
MECS. A higher comprehensive energy utilization rate implies
reduced energy loss and improved operational efficiency of the
system. This rate can be expressed as follows:

μCEUR =
Ee +Eh/vk + vLlvEg +Ese
Eres +Ebe + vLHVEbg

(10)

where, μCEUR is the comprehensive energy utilization rate, Ebe is the
electricity purchased by the park level MECS from the superior
power grid, Ese is the electricity sold by the park level MECS from
the superior power grid, and Ebg is the natural gas purchased by the
park level MECS from the superior natural gas grid.

3.3 Energy shortage expectations

The energy shortage expectation of Class β energy refers to the
expected value ofClassβ energy shortage in the park energy internet,
taking into account the probability of component failure in the event
of N-1 failure of energy equipment.The energy shortage expectation
of Class β energy is an important indicator to measure the reliability
of the Internet supply of Class β energy in the park. The smaller the
energy shortage expectation of Class β energy, the smaller the load of
Class β energy that needs to be cut off in case of N-1 failure of energy

equipment, and the higher the reliability of the Internet supply of
Class β energy in the park.

4 Double layer optimization
configuration model

This paper takes into account the above evaluation indicators
and constructs a two-layer optimization configuration model for
the park level multi energy complementary system, as shown in
Figure 2.

The upper level planning model takes minimizing the annual
comprehensive cost as the optimization objective, and the decision
variables are the installation type and quantity of energy equipment;
the lower level planning model takes the minimization of typical
daily operating costs as the optimization objective under specific
types and quantities of energy equipment installation. The decision
variable is the scheduling situation of energy equipment, and the
operating costs are transmitted to the upper level to calculate the
upper level objective function value.

4.1 Upper level planning model

The objective function of the upper level planning model is the
annual comprehensive cost, expressed as

minC = Ciwv + 365
S

∑
s=1

psCop (11)

where, C is the annual comprehensive cost, Cinv is the equivalent
annual investment cost of all equipment, ps is the probability of the
occurrence of typical day s,S is the total number of selected typical
days, and Copis the operating cost of the system under typical day s.

Cinv =∑
τ
∑
k
IτkC

inv
τ ηcr fτ (12)

where, Iτk is the 0–1 logical variable indicating the installation
status of the k τ class of energy equipment (including class i energy
conversion equipment, class j energy storage equipment, and class
1 renewable energy equipment). When installing this equipment,
Iτk = 1, otherwise Ikk = 0,Cinv

τ are the investment cost of class energy
equipment, and ηcrfτ is the equivalent annual fund recovery rate of
class τ energy equipment. The specific description is as follows

ηcr fr =
r(r+ 1)yr
(r+ 1)yr − 1

(13)

where, r is the discount factor, and yr is the service life of Class τ
energy equipment.

Cop specifically includes operation and maintenance costs C1,
fuel costs C2, electricity trading costs C3, carbon emissions tax C4,
and energy deficiency penalty costs C5.

The specific description is as follows

Cop = C1 +C2 +C3 +C4 +C5 (14)

C1 =∑
i
∑
k
∑
t
oECi Pinik,t +∑

j
∑
k
∑
t
oESj (P

dis
jk,t + P

ch
jk,t)

+∑
l
∑
k
∑
t
oRESk Plk,t

(15)
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FIGURE 2
Dual layer optimization configuration model for park level MECS.

C2 =∑
t
cb,et Pb,et Δt−∑

t
cs,et Ps,et Δt (16)

C4 =∑
t
ccaeP

b,e
t Δt+∑

t
ccagP

b,g
t Δt (17)

C5 = λeE
e
EES + λhE

h
EES (18)

where, Pinik,t is the input power of the kth i-class energy conversion
device during the t period; Pchjk,t and Pdisjk,t are the charging and
discharging power of the kth class j energy storage equipment during
the t period, respectively; Plk,t s the output power of the kth Class 1
renewable energy equipment during the t period; oECi ,o

RES
l and are

the operating and maintenance costs of Class I energy conversion
equipment, Class J energy storage equipment, and Class I renewable
energy equipment, respectively; Pb,et ⋅ P

s,e
t and cb,et ,c

s,e
t respectively

represent the purchase/sale power andpurchase/sale electricity price
of the park’s energy internet and power grid during time t;Pb,gt
is the gas purchasing power of the park’s energy internet during
time t; cfielis the price of natural gas; ae and ag are the carbon
emission coefficients of electricity and natural gas, respectively;
cc is the carbon tax price; λe and λh are the penalty costs for
electrical and thermal load interruptions, respectively; EeEES and E

h
EES

represent the expected shortfall in electrical and thermal energy,
respectively.

4.2 Lower level planning model

The lower level planning model aims to minimize the operating
cost of a typical daily park level MECS, specifically represented
as

minCop (19)

In addition to meeting the operational constraints of the park
level MECS, this paper also takes into account the constraints of
the comprehensive energy self-sufficiency rate, utilization rate, and
shortage expectations, which are as follows:

4.2.1 Energy and power balance constraints
The operation of a park level MECS requires maintaining a

balance of energy power among electricity, heat, and natural gas,

expressed as:

Pb,et − P
s,e
t +∑

l
∑
k
Plk,t +∑

i
∑
k
Pout,eik,t

=∑
i
∑
k
Pn,eik,t +∑

j
∑
k
Pchm,ejk,t −∑

j
∑
k
Pdis,ejk,t + P

L,e
t

(20)

∑
i
∑
k
Pout,hik,t =∑

j
∑
k
Pch,hjk,t −∑

j
∑
k
Pdis,hjk,t + P

L,h
t (21)

Pb,gt = P
L,g
t +∑

i
∑
k
Pin,gik,t (22)

where, Pin,eik,t ,P
in,g
ik,t , and Pout,e,ik,t ,P

out ,h
ik,t respectively represent the input

power, natural gas power, output power, and thermal power of
the kth class i energy conversion equipment during the t period;
Pdis,ejk,t .P

ch,e
jk ,P

dis,g
jk,t , and Pch,gjk are the charging and discharging, and

charging and discharging heat powers of the kth jth class energy
storage equipment during the t period, respectively;PL,et .P

L,h
t andPL,gt

are the electricity, heat, and natural gas loads during time t.

4.2.2 Operational constraints of energy storage
equipment

Energy storage equipment includes electrical energy storage
equipment and thermal energy storage equipment. Energy storage
devices can only supplement or release energy during the same
period, and the power of charging and discharging energy is limited
by the maximum power of charging and discharging energy and
the current remaining capacity. The constraints it needs to meet are
specifically expressed as:

0 ≤ Pchjk,t ≤ ujk,tP
max
j (23)

0 ≤ Pdisjk,t ≤ P
max
j − ujk,tP

max
j (24)

Sjk,0 = Sjk,T (25)

Smin
jk ≤ Sjk,t ≤ S

max
jk (26)

where,Pmax
j is themaximumcharging and discharging energy power

of the j-type energy storage device, Sjk,0 and Sjk,T are the energy
stored by the kth j-type energy storage device during the initial
and end optimization periods, respectively; Smax

jk and Smin
jk are the

upper and lower limits of the energy stored by the kth j-type energy
storage device, respectively; ujk,t is a binary variable that represents
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the charging state of the kth j-type class energy storage device during
the time period t. The charging state is ujk,t = 1, otherwise ujk,t = 0.

4.2.3 Operational constraints of energy
conversion equipment

Energy conversion equipment includes cogeneration, gas boiler
and electric bioler. The output of energy conversion equipment is
limited by its own installed capacity, and the operation of energy
conversion equipment is also constrained by climbing, specifically
represented as:

0 ≤ Pinik,t ≤ IikP
rated
i (27)

−riΔt ≤ P
in
ik,t − P

in
ik,t−1 ≤ riΔt (28)

where, Pratedi is the Nameplate capacity of class i energy konversion
equipment; ri is the maximum climbing rate of Class I energy
conversion equipment.

4.2.4 Energy reserve constraints
The backup constraints of energy conversion equipment are

expressed as:

{
{
{

Rβ
ik,t ≤ IikP

rated ,β
i − Pβik,t

0 ≤ Rβ
ik,t ≤ Iikr

β
i

(29)

where, Pβik,t and Rβ
ik,t are the output power and backup power of the

kth class i energy conversion equipment class energy during the
t period, respectively; Prated, ,βi provides the rated power of Class I
energy conversion equipment for Class β energy.

The backup constraints of energy storage devices are expressed
as:

{
{
{

Rjk,t ≤ IjkP
max
j ηdisj + P

ch
jk − P

dis
jk

0 ≤ Rjk,t ≤ Sjk,tη
dis
j − S

min
jk ηdisj

(30)

where, rβi is themaximum climbing rate of Class I energy conversion
equipment providing Class I energy; ηdisj is the energy release
efficiency of Class J energy storage equipment; Rjk,t is the backup
power of the kth class j energy storage device during the t
period.

4.2.5 Energy interaction power constraints
The interaction power between the park level MECS and the

superior power grid, natural gas network, needs to meet certain
constraints, and the interaction power during the same time period
is unidirectional, specifically represented as:

0 ≤ Pb,et ≤ u
b,e
t Pb,emax (31)

0 ≤ Ps,et ≤ P
s,e
max − u

b,e
t Ps,emax (32)

0 ≤ Pb,gt ≤ P
b,g
max (33)

where, Pb,gmax,P
b,e
max and Ps,emax respectively represent the maximum

purchasing power rate of the energy internet in the park, the
maximum purchasing and selling power with the upper power grid;
The state variable of the park’s energy internet electricity purchase
ub,et = 1 is the state variable of the park’s energy internet electricity
purchase ub,et = 0

4.2.6 Constraints on comprehensive energy
self-sufficiency rate

In order to meet the energy sustainability requirements of the
park level MECS, the corresponding constraints are expressed as:

ωCESR ≥ ωmin
CESR (34)

where, ωmin
CESR is the lower limit of the comprehensive energy self-

sufficiency rate.

4.2.7 Constraints on comprehensive energy
utilization rate

In order to achieve the required efficiency of the park level
MECS, the corresponding constraints are expressed as:

ωCEUR ≥ ωmin
CEUR (35)

where, ωmin
CEUR is the lower limit of the comprehensive energy

utilization rate.

4.2.8 Energy deficiency expectation constraint
This paper considers the N-1 failure of energy equipment, and

the probability of only energy equipment failure is

pβγ = IγpFRγ Π
γ′≠γ
(1− Iγ′p

FR
γ′ ) ≈ Iγp

FR
γ (36)

where, pFRγ′ is the failure rate of the energy equipment γ′ (including
the failed energy equipment); Iγ and Iγ′ are 0–1 logical variables
that indicate the installation status of energy equipment and energy
equipment E that have failed, respectively.

Introduce the binary logical variable φβγ,t to indicate whether
there is an energy like power shortage. If there is a Class β energy
power shortage, then φβγ,t = 1, otherwise φβγ,t = 0. φ

β
γ,t satisfies the

following constraints:

P̂βγ,t =
{{
{{
{

Pβγ,t −∑γ′≠γ
Rβ
γ′,t > 0 φβγ,t = 1

Pβγ,t −∑γ′≠γ
Rβ
γ′,t ≤ 0 φβγ,t = 0

(37)

where, P̂βγ,t is the difference between the power provided by energy
equipment β during time t when it interrupts to provide Class γ
energy and the total backup power provided by all non faulty energy
equipment for Class β energy; Pβγ,t refers to the power of Class γ′
energy provided by the energy equipment F during the t periodwhen
it is interrupted; γ provides backup power for Class β energy for
energy equipment H during time t.

When only energy equipment γ fails, the power shortage P̂L,βγ,t of
Class β energy during time t is:

P̂L,βγ,t = φ
β
γ,tP̂

β
γ,t (38)

Considering

−∑
γ′
Prated ,βγ′ ≤ P̂

β
γ,t ≤∑

γ′
Prated ,βγ′ (39)

where, Prated,βγ′ is the rated power of Class β energy provided by
energy equipment γ′.

φβγ,t satisfies the following constraints:

P̂βγ,t

∑
γ′
Prated ,βγ′

≤ φβγ,t ≤
P̂βγ,t +∑γ′

Prated ,βγ′

∑
γ′
Prated ,βγ′

(40)
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FIGURE 3
Typical daily energy load curve in spring and autumn.

Furthermore, P̂βγ,t can be simplified as:

P̂βγ,t = P
β
γ,t −

Σ

∑
γ′≠γ

Rβ
γ′,t

= Pβγ,t +R
β
γ,t −ΣγR

β
γ′,t = P

β
γ,t +R

β
γ,t −R

β
t

(41)

where, Rβ
γ,t is the backup power of the energy equipment providing

class energy during period t, andRβ
t is the total backup power of class

energy during period t, expressed as

Rβ
t =∑

γ′
Rβ
γ′,t (42)

Considering the probability of failure of energy equipment, the
expected energy shortage for Class β energy is expressed as:

EβEES =∑
γ
∑
t
pβγP̂

L,β
γ,t Δt (43)

The simultaneous equation yields

EβESS =∑
γ
∑
t
Iγp

FR
γ φβγ,t (P

β
γ,t +R

β
γ,t −R

β
t ) (44)

Remark 1: This equation is a nonlinear equation, making the
lower level programmingmodel a nonlinear model. In order to get a
mixed certificate Linear programming (MILP) model that is easy to
solve, this paper uses equivalent transformation method to linearize
it.

Proof: Equivalent Transformation Linearization Method
Introduce two new variables for equivalent replacement:

{
{
{

μβγ,t = Iγφ
β
γ,t

vβγ,t = p
FR
γ (P

β
γ,T +R

β
γ,t −R

β
t )

(45)

where, μβγ,t is a binary variable and vβγ,t is a continuous variable,
meeting the following constraints:

{
{
{

0 ≤ μβγ,t ≤ Iγ

Iγ +φ
β
γ,t − 1 ≤ μ

β
γ,t ≤ φ

β
γ,t

(46)

For the convenience of description, it is simplified as:

πβγ,t = Iγp
FR
γ φβγ,t (P

β
γ,t +R

β
γ,t −R

β
t ) = μ

β
γ,t × v

β
γ,t (47)

In order to linearize the above equation, it can be described as:

{{{{
{{{{
{

μβγ,t × v
β
γt ≤ π

β
γ,t ≤ μ

β
γ,t × ̄v

β
γ,t

vβγ,t − ̄v
β
γ,t × (1− μ

β
γ,t) ≤ π

β
γ,t

≤ vβγ,t − v
β
γ,t × (1− μ

β
γ,t)

(48)

where, ̄νβγ,t and vβγ,t are the upper and lower limits of νβγ,t, denoted as:

{
{
{

̄vβγ,t = p
FR
γ × P

rated ,β
γ

vβγ,t = −p
FR
γ ×Σγ′P

rated ,β
γ′

(49)

The simultaneous equation yields

{{{{{{{{
{{{{{{{{
{

μβγ,t × p
FR
γ × (−∑γ′

Prated,βγ′ )

≤ πβγ,t ≤ μ
β
γ,t × p

FR
γ × P

rated,β
γ

vβγ,t − p
FR
γ × P

rated,β
γ × (1− μβγ,t) ≤ π

β
γ,t

≤ vβγ,t − p
FR
γ × (−∑γ′

Prared,βγ′ ) × (1− μ
β
γ,t)

(50)

From this, πβγ,t can be transformed into a linear model through
the above equation, and EβEES can be represented as:

EβEES =∑
γ
∑
t
πβγ,tΔt (51)

The corresponding energy deficiency expectation constraint is:

EβEES ≤ Ē
β
EES (52)

where, ĒβEES is the expected upper limit of energy shortage for Class
β energy.
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FIGURE 4
Typical daily energy load curve in summer.

FIGURE 5
Typical daily energy load curve in winter.

4.3 Catastrophic Genetic Algorithm-CPLEX
hybrid strategy

In the above park level MECS planning model, the upper level
planning model transfers the energy equipment configuration plan
to the lower level. The lower level planning model optimizes the
coordinated operation of the park level MECS based on the energy
equipment configuration plan, and returns the operating cost to the
upper level. The upper level then calculates the comprehensive cost
based on the operating cost returned by the lower level, Optimize
the installation type and quantity of energy equipment in the park
level MECS.

Cataclysmic genetic algorithm (CGA) is based on genetic
algorithm and introduces a mutation operator to avoid the
population falling into local optima. It has advantages such as wide
applicability, strong optimization ability, and good convergence.

This article uses it to solve the configuration problem of energy
equipment in the upper planning layer. If there is no new optimal
solution every 10 generations and 4 consecutive generations, a
mutation operation is carried out to retain the optimal individual
and randomly generate other individuals. CPLEX is suitable for
solving MILP, with advantages such as fast solving speed and strong
robustness. In this paper, it is used to solve the optimization problem
of the energy internet in the park in the lower running layer. A lower
running layer model is constructed on the software, and the CPLEX
solver is called to easily achieve the solution. The solution process
for the hybrid strategy is as follows:

Algorithm: Catastrophic Genetic Algorithm - CPLEX Hybrid
Strategy

• Data initialization: Input data on photovoltaic lighting and
electrical, thermal, and gas loads.
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FIGURE 6
Electricity price curve.

TABLE 1 Energy conversion equipment parameters.

Energy conversion
equipment

Capacity
(kW)

Investment costs
(CNY/kW)

Operation and
maintenance costs

(CNY/kW)

Conversion efficiency Ramp
rate

(kW/h)

Lifetime
(years)

Probability of
failure (%)Electricity Heat

Cogeneration 1 2,000 4,450 0.155 0.35 0.45 1,200 25 7

Cogeneration 2 3,800 4,000 0.154 0.42 0.46 2,400 25 5

Gas Boiler 1 1,000 2,580 0.038 0.71 620 20 4.5

Gas Boiler 2 1,900 1,820 0.038 0.74 1,180 20 2

Electric boiler 1 1,000 2,410 0.025 0.70 780 20 3.8

Electric boiler 2 1,950 1,700 0.025 0.76 1,590 20 1.8

TABLE 2 Energy storage equipment parameters.

Energy storage equipment Electricity storage Heat storage Energy storage equipment Electricity storage Heat storage

Investment costs (CNY/kW) 580 460 Upper and lower limits of energy (kW⋅ h) 2100/20 2200/20

Operation and maintenance costs (CNY/kW) 0.001 0.001 Lifetime (years) 10 20

Charging and discharging energy efficiency 90% 90% Probability of failure 1% 1%

Power cap (kW) 510 500

TABLE 3 Renewable energy equipment parameters.

Renewable energy equipment Photovoltaicarry

Capacity (kW) 1,000

Investment costs (CNY/kW) 11,200

Operation and maintenance costs (yuan/kW) 0.025

Lifetime (years) 20

Probability of failure 1%

1. Make the population algebra g = 0 to generate the initial
population;

2. Determine whether the catastrophic conditions are met. If
so, perform a population catastrophic operation and perform

CPLEX to solve the lower level programming model; If
not, proceed directly to CPLEX to solve the lower level
programming model.

3. Calculate the objective function value and fitness value of the
upper level planning;

4. Determine whether it converges or reaches the maximum
algebraic value, and if so, obtain the optimal configuration
plan; If not, perform population selection, crossover, and
mutation operations until g = g+1, and then return to
step 2.

Remark 2: The steps for CPLEX to solve the lower level
planning model include: inputting the capacity of energy devices,
constructing a park level MECS operation optimization model, and
calling the CPLEX solver to solve.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1281772
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Wu et al. 10.3389/fenrg.2023.1281772

TABLE 4 Comparison of four optimization Configuration scenarios.

Scene Comprehensive energy self-sufficiency rate Comprehensive energy utilization rate Energy eficiency expectation

1 × × ×

2 √ × ×

3 √ √ ×

4 √ √ √

TABLE 5 Configuration quantity of energy equipment in different scenarios.

Scene CHP1 CHP2 GB1 GB2 EB1 EB2 ES HS PV

1 0 3 4 1 1 0 11 6 14

2 0 3 0 2 0 2 11 9 17

3 0 3 0 2 1 2 10 5 17

4 0 3 1 2 0 2 11 7 17

TABLE 6 Optimization results under different scenarios.

Scene 1 2 3 4

Equivalent annual investment cost (10,000 CNY) 1,687.4 1932.4 1933.2 1952.0

Annual operating costs (10,000 CNY) 4,152.4 3,963.2 3,960.3 3,930.8

Annual penalty costs (10,000 CNY) 55.0 28.5 66.2 0

Annual comprehensive costs (10,000 CNY) 5,980.7 5,923.4 5,958.2 5,878.9

Expected power shortage (kW⋅ h) 26,560 34,492 30,378 0

Expectation thermal energy deficiency (MJ) 86,399 80,807 88,372 0

5 Example analysis

This paper takes a typical park levelMECS as the research object,
and its structure is shown in Figure 1. The typical daily load curve is
shown in Figures 3–5. Among them, the probability of typical days
appearing in spring and autumn is 45{%}, and the probability of
typical days appearing in summer and winter is both 20{%}. This
paper adopts a three stage electricity price from peak to flat to valley,
with a peak hour electricity price of 1.15 CNY/(kW⋅h), a regular
electricity price of 0.85 CNY/(kW⋅h), and a valley hour electricity
price of 0.35 CNY/(kW⋅h). The electricity price curve is shown in
Figure 6.

The price of natural gas is 3.25 CNY/m3. The CO2 emission
coefficients of natural gas and traditional power plants are
1.88 kg/m3 and 0.82 kg/(kW⋅h), respectively, with a carbon tax
price of 0.3 CNY/kg.The optional energy equipment parameters are
shown in Tables 1–3. Optimization interval is 0.05 s.

The three indicators in this article are in a progressive
relationship, which requires considering the comprehensive energy
utilization rate and reliability indicators on the basis of meeting the
comprehensive energy self-sufficiency rate. Therefore, this article
only considers four application scenarios, as shown in Table 4.
Through simulation verification, the configuration quantity of
energy equipment in different scenarios is shown in Table 5, and the
optimization results in different scenarios are shown in Table 6. The
optimization configuration model in Scenario 1 does not consider
any constraints of evaluation indicators. The heat load is jointly

supplied by CHP, GB, and EB;The electrical load is mainly supplied
jointly by CHP and PV. Meanwhile, the EB capacity of the park’s
energy internet configuration is smaller than that of CHP and GB,
because the cost of configuring EB and using electricity for heating
is higher than that of configuring CHP or GB and using natural gas
for heating.

Compared to Scenario 1 and Scenario 2, Scenario 2 is equipped
with 3 more PVs to meet the requirements of comprehensive energy
self-sufficiency rate. Additionally, onemore EB2 device is configured
to absorb the surplus electricity generated during daytime PV power
generation peaks, while reducing the capacity of GB and increasing
the capacity of HS to meet thermal load balance. The equivalent
annual investment cost of Scenario 2 is greater than Scenario 1, but
the PV installation capacity of Scenario 2 is larger. The energy input
of the park level MECS from the superior energy network under
Scenario 2 is smaller, so the annual operating cost of Scenario 2 is
smaller than Scenario 1. Overall, the annual comprehensive cost of
Scenario 2 is greater than Scenario 1.

Comparing Scenario 2 and Scenario 3, in order to meet
the requirements of comprehensive energy utilization, the system
reduces the configuration and use of ES and HS, thereby reducing
energy loss during the charging anddischarging process. At the same
time, increasing the configuration of EB capacity to directly consume
the electricity generated by photovoltaic production reduces the
losses in the ES energy storage process. Due to increased constraints
on comprehensive energy utilization, the annual comprehensive cost
of scenario 3 is greater than that of scenario 2.

Compared to Scenario 3 and Scenario 4, the expected electrical
and thermal energy deficits for Scenario 3 are 30378 kW⋅h and
88372 MJ, respectively, while the expected electrical and thermal
energy deficits for Scenario 4 are both 0. After considering the
reliability indicators, the system has added 1 ES, 2 HS, and 1 GB
to provide sufficient backup and reduce the penalty cost of cutting
off the load in the event of N-1 faults in energy equipment. At the
same time, reduce the configuration of one EB to meet the balance
of thermal load. It can be seen that after considering the reliability
indicators, the equivalent annual investment cost of the system has
increased, but the annual operating cost and annual penalty cost
have both decreased, overall reducing the overall cost.

In summary, after considering the evaluation indicators of
comprehensive energy self-sufficiency rate and comprehensive
energy utilization rate, the energy sustainability and efficiency of the
system can meet the requirements, but correspondingly reduce the
economic efficiency of the system; After considering the evaluation
indicators of energy deficiency expectations, the reliability of
the system can meet the requirements while also improving its
economy. It can be seen that the proposed two-layer optimization
configuration model, which takes into account multiple evaluation
indicators, can pursue the economy of system configuration while
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meeting the requirements of energy sustainability, efficiency, and
reliability.

6 Conclusion

This paper constructs a multi indicator evaluation system
for park level MECS, taking into account various constraints,
and establishes a two-layer optimization configuration model for
park level MECS. Through simulation analysis, the following
conclusions are drawn: the proposed park level MECS optimization
configuration model can fully consider the impact of system
operating costs on energy equipment configuration, and the
configuration plan is more reasonable; On the other hand,
considering the constraints of comprehensive energy self-sufficiency
rate, comprehensive energy utilization rate, and expected energy
shortage indicators, the configuration plan takes into account
various needs such as economy and energy sustainability. Different
degrees of indicator constraints have different economic impacts on
the configuration results.The stricter the constraints, the greater the
annual comprehensive cost of the system.Therefore, in the context of
energy marketization, the construction and operation of park level
MECS can be guided by economy, and government departments
can constrain and guide them by formulating different evaluation
indicators.
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