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Power systems faces significant uncertainty during operation owing to the
increased integration of renewable energy into power grids and the expansion
of the scale of power systems, these factors lead to higher load-loss risks;
therefore, realization of a fast online load-loss risk assessment is crucial to
ensuring the operational safety and reliability of power systems. This paper
presents an online load-loss risk assessment method for power systems based
on stacking ensemble learning. First, a traditional load-loss risk assessment
method based on power flow analysis was constructed to generate risk
samples. The label of the sample is load-loss risk assessment index and the
features are multiple operational variables of the power system. And the
recursive feature elimination using cross validation (RFECV) was adopted for
feature selection. Second, four different machine learning models, including
support vector regression (SVR), extremely randomized trees (ET), extreme
gradient boosting (XGBoost) and elastic network (EN) were used to form a
stacking ensemble learning model for sample training. Moreover, to further
improve the model performance, the particle swarm optimization (PSO)
algorithms was used for parameter optimization. Finally, based on this model,
the online load-loss risk assessment of a power system was realized. The
application of the proposed method on IEEE test systems demonstrated that
the proposed method was more accurate than methods based on individual
machine learning models, from which the stacking was designed, while still
maintaining a significant advantage in terms of runtime compared to the
traditional risk assessment method.
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1 Introduction

With the increasing integration of renewable energy sources into power systems and
growing load demands, the power system structure is becoming more complex. A power
system is subject to a large variety of uncertainties during its operation, such as renewable
energy output fluctuations, load fluctuations, and component failures, which lead to a rise in
the risk of load shedding caused by generation–load imbalance or violation of safe
operational limits, and these factors reduce the reliability and economy of the system
operation.

Power system operational risk assessment is a comprehensive measure of the probability
and severity of random disturbances that may occur in a power system within a given time

OPEN ACCESS

EDITED BY

Zhengmao Li,
Aalto University, Finland

REVIEWED BY

Chunyu Chen,
China University of Mining and
Technology, China
Ziming Yan,
Nanyang Technological University,
Singapore

*CORRESPONDENCE

Yalong Li,
201726@cumtb.edu.cn

RECEIVED 22 August 2023
ACCEPTED 13 September 2023
PUBLISHED 27 September 2023

CITATION

Wang Y, Sun Y, Dan Y, Li Y, Cao J and
Han X (2023), Online load-loss risk
assessment based on stacking ensemble
learning for power systems.
Front. Energy Res. 11:1281368.
doi: 10.3389/fenrg.2023.1281368

COPYRIGHT

© 2023 Wang, Sun, Dan, Li, Cao and Han.
This is an open-access article distributed
under the terms of the Creative
Commons Attribution License (CC BY).
The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the original
publication in this journal is cited, in
accordance with accepted academic
practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 27 September 2023
DOI 10.3389/fenrg.2023.1281368

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1281368/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1281368/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1281368/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1281368&domain=pdf&date_stamp=2023-09-27
mailto:201726@cumtb.edu.cn
mailto:201726@cumtb.edu.cn
https://doi.org/10.3389/fenrg.2023.1281368
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1281368


scale (Li et al., 2015; Ansari and Chung, 2019; Ansari et al., 2020).
This measure can help dispatchers ascertain the level of load-loss
risk of a power system in a timely manner and formulate
corresponding risk control strategies to ensure operational safety.
This has become an indispensable task in the current-day power
sector. The standard process of power system risk assessment, which
is complex and time consuming, is as follows: first, probabilistic
modeling of each part of the system, such as loads, wind farms, and
units, is conducted. Then, using enumeration or the Monte Carlo
method, a large number of possible states of the system are
generated. This is followed by quantifying the severity of each
possible state based on the power flow analysis. Finally, the risk
index of the system, based on the probabilities of all the possible
states and their severity values, is calculated (Wenyuan, 2014; Wang
et al., 2019; Lin et al., 2023).

Using the results of risk assessment to support online scheduling
that is minutes or hours ahead requires a fast and accurate
calculation of risk indices. Over the past decades, many fast risk
assessment methods have been proposed, and most of them have
focused on improving the process of generating possible states of the
system; this accelerates the convergence process of risk index
calculation by generating possible states that contribute more to
the risk index, thereby reducing the computational effort. Liu
derived a fast sorting algorithm by a pre-process that arranges
the system components in a descending order of their outrage
rate, which can select the required number of system states in a
descending probability order (Liu et al., 2008). Jia improved Liu’s
method by arranging system components based on the severity
coefficients determined by both their outrage rate and outage
capacity and reduced the computational effort by defining the
replaceable neighboring states of a state (Jia et al., 2013). Zhao,
Yan, and Geng introduced importance sampling, and Shu and
Taghavi introduced the Latin hypercube sampling method to
improve the computational speed of risk indexes (Shu et al.,
2014; Yan et al., 2017; Geng et al., 2019; Zhao et al., 2019;
Taghavi et al., 2022). As quantifying the severity of possible
states through power flow analysis is the most time-consuming
process in risk assessment, efforts have been made to improve the
computational speed by improving the power flow model used for
severity quantification. Hou proposed a fast optimal load shedding
method based on the shadow price theory (Hou et al., 2022). Zuo
converted the optimal power flow model into a multi-parameter
linear programming model to speed up the risk assessment (Zuo
et al., 2022).

The abovementioned studies have effectively improved the risk
assessment efficiency. However, with the rapid expansion of the
scale of power systems owing to the growth of renewable energy
integration capacity and load demands, the number of possible
states to be analyzed in the online risk assessment of power systems
has also increased dramatically; this increases the computational
pressure further, requiring further exploration of new theories and
techniques.

The development of artificial intelligence facilitated new
solutions to online risk assessment of a power system. Based on
the training of a large number of samples, machine learningmethods
can directly establish the mapping between the input and output
features, thereby eliminating the complex intermediate process and
reducing the computation time; this is highly suitable for the

problem of online risk assessment; therefore, in recent years,
there have been some research studies on machine learning-
based risk assessment of power systems (Alimi et al., 2020;
Gholami et al., 2020; Mehrzad et al., 2023; Prusty et al., 2023).
Yun used the static voltage stability margin as a severity index of the
possible state of a power system for voltage safety risk assessment
and introduced a support vector machine (SVM) to achieve a rapid
calculation of severity while optimizing the parameters of the SVM
by the genetic algorithm (Yun et al., 2017). To improve the
computational speed of the dynamic risk assessment of power
systems, Jaiswal classified the contingencies into two categories,
namely, security and insecurity, and trained a random forest (RF)
with voltage magnitude and phase, current magnitude, real power,
and reactive power as features and the contingency categories as
labels (Jaiswal et al., 2019). Liu applied iterative random forests to
calculate the severity of possible system states for dynamic security
risk assessment of power systems (Liu et al., 2020). Jia established a
mapping relation between N-k cascading contingencies and the
severity index based on a random vector functional-link neural
network (Jia et al., 2015). Li trained a multi-step adaptive LASSO
regression model to compute the severity index for each possible
state of the power system by considering both node voltage and
power (Li et al., 2018). Jmii trained an artificial neural network to
quickly determine whether a possible state of the power system is
insecure (Jmii et al., 2019). Yang proposed a deep-learning method
based on a stacked denoising auto-encoder network to achieve
optimal power flow in a fast manner for risk assessment (Yang
et al., 2019). Du transformed the computation of the severity index
into a multi-classification problem and used convolutional neural
networks to achieve fast classification of N-1 contingencies (Du
et al., 2019). Li developed an extreme gradient boosting (XGBoost)
regression model, and Zhu proposed an end-to-end machine
learning model to quantify the relationship between uncertain
parameters and risk indexes (Li et al., 2022; Zhu and Singh,
2023). Zhang used multiple extreme learning machines to form
an ensemble learning model to quickly classify the risk level of the
system state, and the results show that the classification accuracy of
the integrated learning model is better than that of an individual
learning model (Zhang et al., 2017).

The abovementioned studies have laid a good foundation for
machine learning-based risk assessment methods for power systems;
however, most of these studies have only used a single machine
learning model; as there may be multiple mappings that can all
achieve good performance in data training, the mappings learned
using a single model may result in a poor generalization
performance owing to stochasticity. Ensemble learning models
can synthesize the advantages of multiple individual models to
improve performance, but there are fewer studies using ensemble
learning models for power system risk assessment. To further
improve the performance of machine learning-based risk
assessment methods, this study formed a stacking ensemble
learning model with multiple differentiated machine learning
models and used it to realize the online load-loss risk assessment
of a power system. The main contributions of this study are as
follows:

A traditional risk assessment method based on power flow
analysis is first constructed to generate risk samples. The label of
the sample is the value of the system load-loss risk assessment index,
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and the features are multiple operational variables of the power
system. Then, support vector regression (SVR), extremely
randomized trees (ET), and XGBoost were used as base models,
while elastic network (EN) was used as a meta-model to form the
stacking ensemble learning model to learn the relationship between
stochastic variables and the risk assessment index; on the other
hand, recursive feature elimination using cross-validation (RFECV)
and particle swarm optimization (PSO) algorithms were used for
feature selection and parameter optimization. Based on this model,
the online load-loss risk assessment of a power system was realized.
This proposed risk assessment method still maintained a significant
advantage in runtime over traditional risk assessment methods, was
more accurate than methods based on individual machine learning
models, and displayed a high potential for online applications.

The rest of this paper is structured as follows: Section 2 details
the process of generating training samples and the feature selection
method. Section 3 explains the principle of stacking ensemble
learning and the design of the proposed stacking ensemble
learning model. Section 4 describes the overall process of the
online load-loss risk assessment method. Section 5 provides a
case study, and Section 6 concludes the paper.

2 Risk sample generation and feature
selection

2.1 Risk sample generation

The first step in applying the stacking ensemble learning model
to the load-loss risk assessment of a power system is to construct a
risk sample set for model training. The task of the stacking ensemble
learning model in this study is to replace the process of possible state
generation and severity quantification of possible states in
traditional risk assessment methods, which is a supervised
learning task. Each sample is of the form “feature vector-label,”
in which the label of the sample is the value of the system risk index.
This study chose the expected demand not supplied (EDNS) as the
risk assessment index, as it is one of the most commonly used indices
in assessing load-loss risks for power systems (Cao et al., 2022). The
specific calculation formula is given as follows:

EDNS � ∑
i

p Ei( )S Ei( ), (1)

where p(Ei) denotes the probability that the system is in the state Ei;
C(Ei) denotes the shedding load of the system to eliminate
unbalanced power and security limit violations after the
occurrence of state Ei.

The feature vector can be taken from various power system
operation variables related to the risk index value, such as the
forecasting renewable generation output of the power system,
forecasting load of the power system, scheduled output and
scheduled start-up status of conventional units, and failure rate
of conventional units and lines.

To guarantee the performance of the trained model, the risk
samples should cover, as much as possible, the operating
conditions that may occur in practice. The specific process is
as follows:

After determining the domains of the power system operation
variables based on the historical operational data of the system, a
feature vector was formed by uniformly sampling each operation
variable in its domain; this vector was then used as the baseline
operating condition of the power system for risk assessment, and the
corresponding risk assessment index could be calculated based on a
traditional risk assessment method. The aforestated process was
repeated until the desired number of risk samples was obtained.

The specific process of calculating the risk indices, based on the
traditional risk assessment method for each feature vector, is as
follows:

First, a large number of possible states of the power system were
generated. In this study, the uncertainties of renewable energy
generation, load, and system failure were considered; therefore,
the complete system state consisted of the renewable generation
level, system load level, and system failure. Among them, as
renewable generation is the sum of its forecasting output and
forecasting error, this study used the typical seven-interval
discretization of the zero-mean continuous normal-distributed
function to describe the forecasting error; therefore, seven
possible renewable generation levels were obtained. Similarly,
seven possible levels of load and their probabilities could be
obtained by discretizing the normal distribution into seven one-
standard-deviation-wide intervals. As for the system failure, in this
paper, we used the improved fast sorting algorithm proposed by Jia
to generate N-k failures (Jia et al., 2013). Then, the optimal power
flow model proposed by Wang was used to calculate the shedding
load for each possible state (Wang et al., 2023). Finally, the EDNS of
the power system was calculated based on the probability of the
possible states and their shedding loads.

The flowchart for risk sample generation is presented in
Figure 1.

FIGURE 1
Flowchart of risk sample generation.

Frontiers in Energy Research frontiersin.org03

Wang et al. 10.3389/fenrg.2023.1281368

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1281368


2.2 Feature selection based on the RFECV
algorithm

Feature dimensions can grow rapidly with the scaling-up of a
power system, leading to a dimensionality catastrophe. In addition,
the irrelevant and redundant features can also degrade the
performance of machine learning models.

The RFE algorithm is a wrapper algorithm that requires a
machine learning model to implement feature selection
(Upadhyay et al., 2021). The algorithm starts with all the
features, ranks them based on the importance scores after
model training, and removes one or more features with the
lowest importance scores; this process is repeated until the
number of remaining features reaches a desired number.
However, it is difficult to determine the optimal number of
features with this algorithm; furthermore, it cannot take into
account the interactions among the features, which may lead to a
deterioration of the model performance after certain features are
removed. To make up for the shortcomings of the RFE
algorithm, this study adopted the RFECV algorithm for
feature selection; it can automatically determine the optimal
number of features by averaging the model performance based
on cross-validation. We chose the RF model combined with the
RFECV algorithm for feature selection. The process of power
system risk feature selection based on the RFECV algorithm is as
follows:

(1) The original risk samples are input.
(2) The RF model with the current features is trained based on

cross-validation, and the importance score of each feature and
the performance evaluation index of the RF model are
calculated. The RF model can measure the feature
importance according to the Gini index or the error of the
out-of-bag samples; the latter was chosen in this study (Jaiswal
et al., 2019). The R-squared error (R2) was chosen to evaluate the
model performance, the value of R2 was in the range (0, 1), and
the model performed better when R2 tended to 1 (Alimi et al.,
2020).

(3) The features are ranked in descending order according to their
importance scores, and the last-ranked feature is removed from
the current features.

(4) It is checked whether the number of features is equal to 0; if yes,
then it means that sorting of all the features is complete; we
return to (5); otherwise, we return to (2).

(5) The features corresponding to the RF model with the highest
performance evaluation index are selected as the optimal
features, and these features are output.

The flowchart of risk feature selection of the power system based
on the RFECV algorithm is presented in Figure 2.

3 Stacking ensemble learning model

3.1 Principles of stacking ensemble learning

The stacking ensemble learning model was first proposed by
Worlpert in 1992; it consists of multiple base models and a meta-
model, where multiple base models are trained with the same
dataset, and then, the outputs of the base models are used as
inputs to train the meta-model (Chatzimparmpas et al., 2021).
Compared with a single machine learning model, the stacking
model could reduce bias and decrease generalization errors.

The stacking ensemble learning model is usually trained based
on cross-validation to reduce the risk of overfitting (Xie et al., 2021).

FIGURE 2
Flowchart of risk feature selection of the power system based on
the RFECV algorithm.

FIGURE 3
Principle of the stacking ensemble learning model.
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If the original training setD containsm samples, thenD is randomly
divided into k subsets, with Di denoting the ith subset. For each base
model, the subset Di is sequentially left out, and the remaining
samples are used to train the base model; next, the ith trained base
model is used to generate the output corresponding to the subset Di.
According to the abovestated steps, the output of this base model for
the entire original training dataset D can be generated after k
trainings. The output of each base model is used as one-
dimensional feature data for the training of the meta-model. If
there are a total of J base models, J-dimensional feature data are
generated in the end, which, together with the sample labels of the
original training dataset, will form the training set D′ for the meta-
model. The principle of the stacking ensemble learning model is
depicted in Figure 3.

3.2 Base model and meta-model

Although the stacking ensemble learning model has no strict
limitation on the types of base and meta models, using multiple
heterogeneous machine learning models as base models provides
superior data mining capability from different spatial and structural
perspectives. In addition, compared with the meta-model, the training
samples of the base model have relatively higher feature dimensions;
therefore, it is appropriate to adopt a base model with a more complex
structure and a meta-model with a relatively simple structure.

In this study, three machine learning models were selected as
base models: SVR, ET, and XGBoost.

It is assumed that the training sample set is
(x1, y1), (x2, y2),/, (xi, yi),/, (xm, ym){ } ⊂ Rn × R. The SVR
transforms the regression problem into a problem of finding the
optimal hyperplane in a high-dimensional space, i.e., closest in
distance to the samples in the training set. The SVR is
mathematically sound, yields globally optimal solutions, and has
few hyperparameters; these advantages make it highly suitable for
high-dimensional nonlinear problems, such as the load-loss risk
assessment addressed in this study (Zhang et al., 2021; Li et al.,
2023). The general function of the SVR is given as follows:

f x( ) � ωTφ x( ) + b, (2)
where ω is a weighting matrix, b is a bias term, and φ(·) is a
nonlinear transformation from the n-dimensional space to a higher
dimensional feature space F. The SVR is learned by minimizing the
objective function given as follows:

min
ω,b

1
2
ω‖ ‖2 + C∑

m

i�1
lε f xi( ) − yi( ), (3)

where C is the penalty coefficient that determines the tradeoff between
model complexity and training errors and lε(·) is the loss function.

According to the Lagrange multiplier method, Eq. 3 can be
transformed into its dual form, and finally, the SVR shown in Eq. 4 is
obtained.

f x( ) � ωTφ x( ) + b � ∑
m

i�1
αi − α*i( )k xi, xj( ) + b, (4)

where αi and α*i are the Lagrange multipliers, k(xi, xj) is defined as
the kernel function, and its value is the inner product of the

feature vectors xi and xj in the space F,
i.e., k(xi, xj) � <φ(xi),φ(xj)> , where < ·, ·> denotes the inner
product. Any function that satisfies the Mercer condition can be
used as a kernel function for the SVRmodel, and in this paper, the
radial basis function is chosen.

ET is an ensemble learning model consisting of multiple
decision trees (Acosta et al., 2020). Unlike RT, ET uses the
whole training set to train each individual decision tree, which
helps to reduce the model bias. In addition, when performing
decision tree node splitting, RF searches for the optimal cut point,
while ET randomly draws the cut points and thresholds; this not
only simplifies the node splitting procedure and reduces the
computational load but also enhances the randomness of
decision tree generation and reduces the model variance. The
abovestated features of ET make it computationally efficient and
difficult to overfit; therefore, we chose ET as one of the base
models of the stacking ensemble learning model. It is constructed
as follows: 1) the training set is input; 2) multiple replicas of the
training set are generated by randomly sampling features; 3) for
each replica, a decision tree with randomly split nodes is trained;
and 4) the average of all the decision tree outputs is calculated as
the output of ET.

XGBoost is an extension model for gradient boosting trees
(Chen et al., 2018). It uses an objective function with a
regularization penalty term to control the complexity of the
model and adopts the feature subsampling technique, which not
only effectively resists overfitting but also reduces the training time.
Based on the abovestated advantages, this study selected XGBoost as
one of the base models of the stacking ensemble model. The final
output of the XGBoost consisting of K decision trees is given as
follows:

ŷi � ∑
K

k�1
fk xi( ), fk ∈ U, (5)

where ŷi denotes the final output of the XGBoost, which is the sum
of the outputs of the K decision trees, fk(xi) is the output of the kth
decision tree for the ith sample, and U is the space of the decision
trees.

In the tth iteration of the cumulative training, the tth decision
tree can be obtained by minimizing the objective function, which is
given as follows:

Obj t( ) � min ∑
m

i�1
l yi, ŷ

t
i( ) +Ω ft( )

� ∑
m

i�1
l yi, ŷ

t−1( )
i + ft xi( )( ) + Ω ft( ), (6)

where l(·) is the loss function that measures the difference between
the model output and the true sample label in the tth iteration, Ω(·)
is the regular penalty term, and Ω(f) � δT + 0.5λ∑

T

j�1
ω2
j , where T is

the number of leaves in the decision tree, ω is the score of leaf j, δ and
λ are the penalty coefficients.

For the meta-model, this study chose the EN model (Chen et al.,
2018), which is a combination of lasso and ridge regressions; thus,
the model has the ability of the lasso regression model to drop the
irrelevant features while maintaining the stability of the ridge
regression model.
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The objective function of the EN model is given as follows:

min
ω

1
2
∑
m

i�1
yi − ωTxi
				

				2 + βρ ω‖ ‖1 + β 1 − ρ( )
2

ω‖ ‖22 , (7)

where β and ρ are the hyperparameters of the EN model, β

determines the magnitude of the regularization terms, and ρ

regulates the tradeoff between the l1 regularization term ‖ω‖1 and
the l2 regularization term ‖ω‖2.

3.3 Parameter optimization based on the
PSO algorithm

In this study, the PSO algorithm was introduced to optimize the
parameters of the stacking model to further improve its
performance.

The PSO algorithm transforms an optimization problem into a
search process for the optimal position of a swarm of particles in the
search space (Li and Jiang, 2011). If the stacking model has Q
parameters to be optimized, a swarm of particles of size np and
dimension Q is generated. The initial velocity and initial position of
the particles are randomly generated in their feasible domains. The
position of each particle represents a feasible solution to the stacking
model parameters, and each dimension of the position corresponds
to a parameter of the base model or meta-model. Each particle
consecutively updates its position and velocity according to its own
experience and the best experience of the swarm, to obtain the
optimal solution after several iterations of updating the position of

the particles. The optimal position of each particle and the swarm
are determined based on the particle’s fitness value, and in this
paper, R2 of the stacking model is chosen as the fitness function.

The flowchart for optimizing the parameters of the stacking
ensemble learning model based on the PSO algorithm is shown in
Figure 4.

4 Online load-loss risk assessment of
the power system based on stacking
ensemble learning

Combining the contents in Section 2 and Section 3, the complete
online load-loss risk assessment method of the power system, based
on stacking ensemble learning, was obtained as described in (1–4)
involved in offline modeling, and (5) realizes the fast online
calculation of the risk index.

(1) Generation of risk samples based on historical power system
operation data. Random sampling of the operation variables
in their range, determined from historical data, was
performed to form feature vectors; a traditional risk

FIGURE 4
Flowchart for optimizing the parameters of the stacking
ensemble learning model based on the PSO algorithm.

FIGURE 5
Online load-loss risk assessment method of the power system
based on stacking ensemble learning.
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assessment method based on power flow analysis was used to
calculate the corresponding risk index, i.e., EDNS, to form
the power system risk samples.

(2) Feature selection based on the RFECV algorithm. Some of the
features with low contributions to the risk index were removed
by the RFECV algorithm to form the final training samples for
the stacking ensemble learning model.

(3) Parameter optimization of the stacking ensemble learning
model based on the PSO algorithm.

(4) Stacking ensemble learning model training. Using the optimal
parameters determined by the PSO algorithm, three base
models, namely, ET, XGBoost, and SVR, were trained based
on cross-validation. The base models were used to generate
training samples for the meta-model. The meta-model, i.e., the
EN model, was then trained using the optimal parameters
determined by the PSO algorithm. The trained base models
and meta-model were combined to form the stacking model.

(5) Online calculation of the risk assessment index. Feature vectors for
the moments to be assessed from power system online operation
data were extracted and input into the trained stacking model. The
corresponding risk assessment index could be calculated quickly,
and subsequently, the schedulers could decide on the scheduling
operations for these moments based on the risk level.

Figure 5 shows the online load-loss risk assessment method of
the power system based on the stacking ensemble learning model.

5 Case study

5.1 Case introduction

The performance of the proposed online assessment method was
demonstrated by applying it to the IEEE 24-bus system and IEEE
300-bus system. The IEEE 24-bus system contains 24 buses,
32 conventional units, and 38 lines, with a load peak of
2850 MW (Grigg et al., 1999). The topology of the IEEE 24-bus
system is shown in Figure 6, and the installed capacity of the
conventional units is presented in Table 1. The IEEE 300-bus
system contains 300 buses, 69 conventional units, and 411 lines
(University of Washington, 1993). As these two systems originally
had no renewable energy sources, buses 18, 22, and 23 of the IEEE
24-bus system and buses 20, 60, 100, 150, 200, and 245 of the IEEE
300-bus system were selected for the wind power integration, with
an installed capacity of 500 MW each.

For the IEEE 24-bus system, the forecasting load of the system,
forecasting wind power output of the system, failure rate of
conventional units, scheduled start-up status of conventional
units 20 and 22, and sum of the scheduled output of the
conventional units were selected as features of the risk sample.
The time scale for the risk assessment was taken as 1 h. The specific
generation process of the risk samples was as follows: the forecasting
load varied within [0.3, 1.2] based on the load peak, and the
forecasting wind power output varied within [0, 1] based on its
installed capacity. The failure rate of each conventional unit varied
within [1 × 10−6, 1 × 10−4], and the rest of the equipment in the
system was set to be 100% reliable, i.e., the failure rate was set to 0.
Only the scheduled outages of conventional units 20 and 22 were
considered; the probability of scheduled outage was set to 0.3, while
the rest of the conventional units were scheduled to start up. The
scheduled output of the conventional units was determined by the
optimal power flow model based on the premise of generation–load
balance under the randomly sampled forecasting wind power output
and forecasting load. The installed capacity of each start-up unit was
used as the weight of its scheduled output. Each time, after all the
risk features were sampled, they were used as the baseline operating
conditions of the system, and the EDNS was calculated according to
the traditional risk assessment method described in Section 2.1. The
standard deviation of the normal distribution for the wind power
forecasting errors was set to 5% of the forecasting wind power
output; the standard deviation of the normal distribution for the
load forecasting errors was set to 1% of the forecasting load; and the
number of N-k failures generated by the improved fast sorting
method was set to 5,000. Using the abovementioned process,
20,000 risk samples with 37-dimensional features were obtained.

FIGURE 6
IEEE 24-bus system.

TABLE 1 Installed capacity of the conventional unit of the IEEE 24-bus system.

Unit Capacity/MW

G1, G2, G5, and G6 20

G3, G4, G7, and G8 76

G9–G11 100

G12–G14 197

G15–G19 12

G20, G21, G30, and G31 155

G22 and G23 400

G24–G29 50

G32 350
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For the IEEE 300-bus system, the forecasting load of the system,
forecasting wind power output of the system, failure rate of
conventional units, scheduled start-up status of conventional
units 11, 16, 28, 33, and 62, and sum of the scheduled output of
the conventional units were selected as features of the risk sample.
Only the scheduled outages of conventional units 11, 16, 28, 33, and
62 were considered when sampling the risk samples. The number of
N-k failures generated by the improved fast sorting method was set
to 10,000, and the rest of the settings were the same as those of the
IEEE 24-bus system. A total of 50,000 risk samples with 77-
dimensional features were obtained.

The symbols of the features for the IEEE 24-bus system and
IEEE 300-bus system are presented in Table 2.

The risk samples were divided into training and test sets in a ratio of
7:3 for the stacking model training and performance testing, respectively.
The running environment is theWIN10 64-Bit system, Python platform.

Four indices, namely, the R2, mean square error (MSE), root
mean square error (RMSE), and mean absolute error (MAE), were
selected for the evaluation of the model performance. With the
exception of R2, the smaller the indices, the smaller the difference
between the values of the EDNS calculated by the model and their
true values, and hence, the better the model performance.

TABLE 2 Features of the risk sample.

Meaning IEEE 24-bus system IEEE 300-bus system

Symbol Number of features Symbol Number of features

Forecasting load of the system L_sum 1 L_sum 1

Forecasting wind power output of the system W 1 W 1

The sum of the scheduled output of conventional units G_sum 1 G_sum 1

The failure rate of conventional units GF1–GF32 32 GF1–GF69 69

The scheduled start-up status of conventional units GS20 and GS22 2 GS11, GS16, GS28, GS33, and GS62 5

Total number of features —— 37 —— 77

FIGURE 7
Feature importance scores of the features, (A) is feature importance scores of IEEE 24-bus system, (B) is feature importance scores of IEEE 300-bus
system.
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5.2 Analysis of results

5.2.1 Feature selection results
The feature importance scores in the first iteration of the RFECV

algorithm are presented in Figure 7.
As can be seen in Figure 7, for the IEEE 24-bus system, the top

30% features included the sum of the scheduled output of
conventional units (G_sum), the scheduled start-up status of
units 20 and 22 (GS20 and GS22), the forecasting load of the
system (L_sum), the forecasting wind power output of the system
(W), and the failure rates of conventional units 22, 23, and 32 (GF22,
GF23, and GF32). For the IEEE 300-bus system, the top 15% features
included the sum of the scheduled output of conventional units (G_
sum), the scheduled start-up status of units 11, 16, 28, and 62 (GS11,
GS16, GS28, and GS62), the forecasting load of the system (L_sum),
the forecasting wind power output of the system (W), and the failure
rates of conventional units 31, 48 56, and 62 (GF31, GF48, GF56, and
GF62).

For the IEEE 24-bus system, the importance scores of the failure
rates of conventional units 22, 23, and 32 were significantly higher
than those of the rest of the units, owing to the fact that the installed
capacity of each unit was used as its weight in determining the
scheduled output of the units in this case; thus, units with larger
installed capacity would take on more loads, and their failures would
cause a greater impact on the power balance of the system.
Conventional units 22, 23, and 32 had higher installed capacity
than the rest of the units; therefore, the load-loss risk was more
sensitive to changes in the failure rates of these conventional units.
For the same reason, the failure rates of conventional units 31, 48 56,
and 62 of the IEEE 300 node system were ranked higher than the
failure rates of the remaining conventional units of the system, and
the scheduled start-up status of conventional unit 11, 16, 28, and
62 were ranked higher than the scheduled start-up status of
conventional unit 33.

The optimal number of features selected by the RFECV
algorithm for the IEEE 24-node system and the IEEE 300-bus
node system was 18 and 29, respectively, and the R2 scores for
different numbers of features are presented in Figure 8. The
highest R2 score of 0.93 was achieved when 18 features were

selected for the IEEE 24-bus system, and the highest R2 score of
0.91 was achieved when 29 features were selected for the IEEE
300-bus system, which removed some of the failure rates of
conventional units with low installed capacities compared to
the original features.

5.2.2 Parameter optimization results
The following parameters of the stacking ensemble learning

model were optimized using the PSO algorithm: the number of
decision trees (n_estimator) and the maximum number of features
(max_features) for the ET; the penalty coefficient C and γ for the
SVR; the number of trees (n_estimator), the proportion of samples
sampled (Subsample), and the proportion of feature samples
(colsample_bytree) for the XGBoost; and the parameters β and ρ

for the EN.
The optimal parameters of the stacking ensemble learning

model obtained by the PSO algorithm are presented in Table 3:
The stacking ensemble learning model was trained separately

with optimal parameters and Python’s default parameters, and the

FIGURE 8
R2 scores for different numbers of features, (A) is R2 scores for IEEE 24-bus system, (B) is R2 scores for IEEE 300-bus system.

TABLE 3 Optimal parameters of the stacking ensemble learning model.

Model Parameter

IEEE 24-bus system IEEE 300-bus system

ET n_estimator = 350 n_estimator = 350

max_features = 32 max_features = 58

SVR C = 100 C = 100

γ = 0.005 γ = 0.005

XGBoost n_estimator = 500 n_estimator = 500

Subsample = 0.8 Subsample = 0.75

colsample_bytree = 0.9 colsample_bytree = 0.9

EN β = 0.01 β = 0.02

ρ = 0.85 ρ = 0.85
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scores of the performance evaluation indices of these two models on
the test set are enumerated in Table 4.

From Table 4, it can be seen that the MSE, RMSE, and MAE
scores of the stacking ensemble learning model with optimal
parameters were smaller than those of the stacking ensemble
learning model with default parameters, and the R2 score of the
stacking model with optimal parameters was larger than that of the
stacking model with default parameters; this indicates that the
model performance was improved after parameter optimization
through the PSO algorithm.

5.2.3 Performance of the load-loss risk assessment
method based on the stacking ensemble learning
model

Figure 9 illustrates the EDNS calculated by the stacking model
for 100 samples in the test set and the true value of the EDNS for the
corresponding samples.

From Figure 9, it can be observed that the EDNS calculated by the
stacking ensemble learning model was very close to its true value,
indicating that the stacking ensemble learning model had only a small
error.

To further illustrate the performance of the proposed method, this
study used three base models of the proposed stacking ensemble
learning model, i.e., ET, SVR, and XGBoost, for sample training
separately. Table 5 shows the performance evaluation index scores
of the risk assessment methods based on these different individual

machine learning models. From Table 5, it can be seen that among the
four methods, the one based on the stacking ensemble learning model
had the lowest MSE, RMSE, and MAE scores and the highest R2 score.

Three base models were used to form different stacking ensemble
learningmodels for sample training, and the performance indices of the
loss-of-load risk assessment methods based on different stacking
ensemble learning models are shown in Table 6.

According to Table 5 and Table 6, removing any one of the three
base models degrades the performance of the stacking ensemble
learning model. For the IEEE 24-bus system, XGBT had the best
performance among the three base models, and removing it had the
greatest impact on the performance of the stacking integration model.
Similarly, for the IEEE 300-bus system, removing the ETmodel with the
best performance metric score from the base models had the greatest
impact on the performance. This indicates that to ensure the
performance of the stacking ensemble learning model, the model
with its own good performance should be used as the base model.

The abovestated results indicate that compared to the risk
assessment methods based on individual machine learning
models, the one based on the stacking ensemble learning model
combined the advantages of the multiple individual models and
reduced the errors in calculating the risk assessment index.

EDNS calculations for the same number of risk samples were
performed using the traditional load-loss risk assessment method
described in Section 2.1, the proposed method, and the risk
assessment method based on individual machine learning

TABLE 4 Comparison of the performance evaluation indices of the stacking model with the optimal parameters and Python’s default parameters.

MSE/MW RMSE/MW MAE/MW R2

IEEE 24-bus system Default parameters 0.126 0.356 0.209 0.982

Optimal parameters 0.096 0.310 0.171 0.986

IEEE 300-bus system Default parameters 10.439 3.231 1.501 0.969

Optimal parameters 8.048 2.837 1.291 0.975

FIGURE 9
EDNS calculations for the test set of the load-loss risk assessment method based on the stacking ensemble learning model, (A) is EDNS calculations
for IEEE 24-bus system, (B) is EDNS calculations for IEEE 300-bus system.
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models, respectively. Table 7 displays the runtimes of these different
risk assessment methods.

As can be seen from Table 7, the stacking ensemble learning
model required a longer time to compute the risk indices than its
base models because it had a more complex structure. However,
compared with the traditional load-loss risk assessment method, the
proposed method still had a significant advantage in terms of
runtime; thus, it ensured the timeliness of the assessment results,
leaving more abundant time for risk control, and demonstrated
excellent potential for online applications.

6 Conclusion

In this study, we developed a load-loss risk assessment
method for power systems, using SVR, ET, XGBoost, and EN
to construct a stacking ensemble learning model and the RFECV
and PSO algorithms for feature selection and parameter
optimization, respectively. The case results showed that
compared with the risk assessment based on a single machine
learning model, using the stacking ensemble learning model
could combine the advantages of multiple machine learning

TABLE 5 Comparison of the performance indices of load-loss risk assessment methods based on different individual machine learning models and the proposed
stacking model.

Model MSE/MW RMSE/MW MAE/MW R2

IEEE 24-bus system ET 0.226 0.475 0.274 0.970

SVR 1.668 1.291 0.396 0.799

XGBoost 0.208 0.456 0.194 0.973

Stacking 0.096 0.310 0.171 0.986

IEEE 300-bus system ET 8.958 2.993 1.396 0.973

SVR 43.520 6.597 2.533 0.902

XGBoost 22.703 4.765 1.869 0.932

Stacking 8.048 2.837 1.291 0.975

TABLE 6 Comparison of the performance indices of load-loss risk assessment methods based on different stacking ensemble learning models.

Model MSE/MW RMSE/MW MAE/MW R2

IEEE 24-bus system Stacking (SVR, ET, and XGBT) 0.096 0.310 0.171 0.986

Stacking (ET and XGBT) 0.096 0.310 0.172 0.986

Stacking (SVR and XGBT) 0.106 0.326 0.177 0.984

Stacking (SVR and ET) 0.152 0.390 0.233 0.978

IEEE 300-bus system Stacking (SVR, ET, and XGBT) 8.048 2.837 1.291 0.975

Stacking (ET and XGBT) 8.265 2.875 1.320 0.974

Stacking (SVR and XGBT) 13.140 3.625 1.755 0.945

Stacking (SVR and ET) 8.922 2.987 1.391 0.973

TABLE 7 Comparison of runtimes of load-loss risk assessment methods based on different machine learning models and the traditional load-loss risk assessment
method (×10−2s).

Number of samples Traditional risk assessment method in Section 2.1 Stacking ET SVR XGBoost

IEEE 24-bus system 1 3867.187 2.275 2.398 0.071 0.251

10 39106.250 2.910 2.708 0.456 0.261

100 438542.187 9.523 4.136 4.353 0.301

IEEE 300-bus system 1 23737.519 6.555 2.498 0.215 0.260

10 222303.125 11.076 2.603 2.057 0.295

100 2417187.500 30.656 4.610 20.228 0.4186
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models to achieve a more accurate calculation of the EDNS.
Additionally, although the runtime of the load-loss risk
assessment method based on the stacking ensemble learning
model was longer than that based on a single machine
learning model, it was still significantly shorter than that of
the traditional risk assessment method; thus, the proposed
method has a very good potential for online applications.
Future research will focus on real-world applications of the
proposed method and further improving the accuracy and
runtime of the ensemble learning model for risk assessment of
power systems.
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