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With the rapid progression of Energy Storage Systems (ESSs), the capability of
extensively distributed and heterogeneous ESSs to support the power grid remains
largely underexplored. To better exploit the potential of these numerous ESSs and
enhance their service to the power grid, this paper proposes a model for
evaluating and aggregating the grid-support capability of energy storage
clusters by considering the peak regulation requirements. To begin with, the
proposed model employs subjective and objective combination weighting
methods to establish a grid-support capability matrix between ESSs indicators
and grid demand scenarios, thereby facilitating the identification of the ESSs with a
strong ability to regulate peak power. Next, based on the dual-peak pattern of grid
load and diverse characteristics of ESSs, the ESSs in the peak regulation cluster are
evaluated by clustering again. In addition, taking into account the operational
constraints of the ESSs and the peak regulation requirements, a grid-support
capability aggregation model for energy storage clusters based on the revised
Chino polytope is proposed. The case study results demonstrate that the
proposed model not only balances computational efficiency and aggregation
accuracy to a certain extent but also enhances the capability of energy storage
clusters to participate in peak regulation of the power grid.
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1 Introduction

As the integration of large-scale renewable energy sources into the power grid escalates
(Hua et al., 2019; Li et al., 2023) the lack of peak-shaving performance of the power system is
becoming increasingly evident (Li et al., 2019). Novel Energy Storage Systems (ESSs) are
proving to be crucial assets with their innate flexibility and adaptability, playing a substantial
role in achieving rapid peak shaving (Cui B. et al., 2021a). This is particularly noteworthy as
their incorporation within the grid systematically amplifies (Yi et al., 2022). However, due to
the numerous and diverse indicators of individual ESSs, their scattered locations, and varying
support capabilities for the power grid (Zhang and Hredzak, 2021; Han and Zhang, 2022), it
is challenging for individual ESSs to form effective regulatory resources and administer them
in isolation (Zhao et al., 2022). Nevertheless, energy storage clusters can provide scientific
decision-making basis for power system operation scheduling by managing dispersed ESSs.
Therefore, to enable the overall participation of ESSs in system peak shaving, it is necessary
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to evaluate the grid-support capability of massive ESSs and establish
an aggregation model for the energy storage clusters.

In regard to the evaluation and analysis of energy storage clusters,
extensive research has been conducted, focusing remarkably on the
indices associated with individual ESSs. Ding et al. (2018) propose a
comprehensive performance index system that combines structural and
functional aspects, as well as an improved genetic algorithm for cluster
evaluation. Ding et al. (2021) introduce the cluster flexibility supply-
demand balance index and flexibility balance index and combine them
with the modularity index to propose an evaluation method that
comprehensively considers cluster topology and flexibility balance
for energy storage clusters. A distributed dynamic evaluation
clustering algorithm is introduced that utilizes energy storage
capacity and local demand as state features, aiming to save
computational resources (Zhang et al., 2021). However, most
existing research focuses on evaluating different technical indicators
of ESSs without considering the varying demands of the power grid or
the balance between subjectivity and objectivity, which is not conducive
to energy storage to better serve the power grid. To address this gap, this
paper employs subjective and objective combination weighting
methods to establish a grid-support capability evaluation model for
energy storage clusters based on the peak shaving demands in a dual-
peak grid pattern. In the first step, a grid-support capability matrix is
solved to determine the support capability of each ESS for various grid
demand scenarios, facilitating the selection of peak-shaving ESSs. In the
second step, a comprehensive evaluation of power, capacity, and
ramping indicators is conducted, using the K-means clustering
algorithm to perform evaluations on power-type and energy-type ESSs.

The aggregation of energy storage cluster grid-support capability
essentially characterizes the feasible domain of cluster flexibility.
Energy storage capability can be described as the feasible region of
output power in all periods (Sajjad et al., 2016), which is influenced
by its operational constraints and grid scheduling constraints
(Zhang and Hredzak, 2021). Analyzing the feasible region of an
energy storage cluster requires considering the temporal coupling
characteristics, such as the time dependency of charging and
discharging (Wen et al., 2022a). Directly aggregating the feasible
region of an energy storage cluster may lead to the curse of
dimensionality (Muller et al., 2019), while approximating
solutions may reduce aggregation accuracy (Chen and Li, 2021;
Ayesha et al., 2023). Thus, there is a need for an efficient and
accurate method to aggregate the energy storage clusters, which will
lay the foundation for their efficient participation in grid peak
shaving. This paper presents a novel method for aggregating
ESSs based on the grid-support capability evaluation of energy
storage clusters, thereby improving the rationality and
computational efficiency of the aggregation process.

Regarding the aggregation of grid-support capability for ESSs,
there are primarily two approaches: top-down and bottom-up
(Wang and Wu, 2021; Bhatti et al., 2023). The top-down
approach directly constructs the feasible domain of a cluster
through data analysis and probabilistic modeling (Yi et al., 2020).
Wang andWu (2021) propose the high-dimensional polytope based
bound shrinking method to calculate the feasible region of
distributed energy resources considering the network constraints.
The kth-order approximate models and two types of multi-timescale
approximate models are proposed to analyze the exact aggregate
feasible region of ESSs. Wen et al. (2022b) propose a flexibility

optimization method and a backtracking elimination method to
aggregate the temporally coupled grid-support capability of ESSs
considering system security constraints. Nonetheless, an inherent
problem associated with these top-down approaches is that when
the computational scale enlarges, there is a concomitant and
substantial degradation in computational efficiency. On the other
hand, the bottom-up approach describes the feasible domain of
individual resources (Ma et al., 2023), followed by aggregating
multiple independent operating domains into a unified whole.

A plethora of scholarly research posits that calculating the
feasible domain of a cluster from a bottom-up perspective
involves computing the Minkowski sum of multiple high-
dimensional polytopes, for which there is no efficient general
solution. Therefore, existing research mainly focuses on
approximating the feasible domain using a concise and compact
model. Several basic geometric shapes, such as boxes (Chen et al.,
2020), ellipsoids (Chen and Li, 2021), and medians (Calero et al.,
2021), have been attempted for internal approximation. Among
them, the Chino polytope preserves the characteristics of the feasible
domain and has high aggregation efficiency (Cui Y. et al., 2021b).
However, there is a geometric difference between the Chino
polytope and the original feasible domain. To address this issue,
this paper proposes a feasible domain weight adjustment strategy
that prioritizes the high-demand peak-shaving feasible domain
portions to enhance the overall peak-shaving capability of the
energy storage cluster.

In summary, the contributions of this paper are as follows:

(1) To address the issue of incomplete evaluation of energy storage
clusters, this paper establishes a grid-support capability
evaluation model based on peak regulation requirements,
utilizing a subjective and objective combination weighting
method and the K-means clustering algorithm, which
facilitates a more comprehensive evaluation and set the stage
for aggregation.

(2) To address the issue of impractical computational scale and low
accuracy in aggregating energy storage clusters, this paper
proposes a novel grid-support capability aggregation method
based on the revised Chino polytope, which not only strikes a
balance between computational efficiency and aggregation
accuracy but also enhances the capability of energy storage
clusters to participate in peak regulation.

The remaining contents of the paper are as follows: Section 2
restates the background of the research question. Section 3
introduces the grid-support capability evaluation of energy
storage clusters. Section 4 proposes grid-support capability
aggregation based on the revised Chino polytope. Section 5
analyzes the result through the simulation. Section 6 summarizes
the whole paper and gives the conclusion.

2 Problem statement

According to the typical power load curves of various provincial
power grids published by the National Development and Reform
Commission and the National Energy Administration, most
provincial typical daily power load curves show a clear dual-peak
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trend. Specifically, there is an early peak during the daytime, while a
late peak occurs during the nighttime. During the daytime peak
period, the load is mainly driven by residential, commercial, and
industrial electricity consumption, with a longer duration of peak
load. During the nighttime peak period, the load is mainly driven by
residential and commercial electricity consumption, with a shorter
duration of peak load. The power grid regulation requirements differ
under these two modes.

The integration of a high proportion of renewable energy has
become an inevitable trend in power grid development (Leng and
Zhang, 2023). Meanwhile, the intermittency and volatility of
renewable energy sources will become crucial factors affecting the
peak-to-valley difference in the power system (Yang et al., 2023). In
addition, the output adjustment range and speed of traditional
energy sources such as conventional thermal power and
cogeneration are limited and cannot meet the peak load
regulation requirements of future power systems. Therefore, the
insufficient peak load regulation capacity of the power system has
become increasingly prominent under the existing energy structure.
In contrast, ESSs possess strong flexibility and rapid adjustment
characteristics, enabling them to effectively address the peak-
shaving challenges arising from both renewable and conventional
energy sources. According to the peak shaving market rules, as a
third-party independent entity, ESSs are required to strictly follow
the day-ahead generation schedule for their output (Nan et al.,
2022). When the load curve exceeds the peak-shaving line, the ESS
discharges electricity, and when the load curve falls below the valley-
filling line, the ESS charges. Based on the dual-peak mode, ESSs
manifest two typical discharge periods during the early and late
peaks. During the daytime early peak, the load curve is relatively
stable, requiring energy-type ESSs to participate in peak regulation.
During the nighttime late peak, the load curve has a steep slope,
requiring power-type ESSs to participate in peak regulation. Given
the extensive and diverse operational indicators of individual ESSs,
their disparate geographic distribution, and their differing
capabilities to bolster the power grid, it is a formidable challenge
to consolidate individual ESSs into effective regulatory resources.
Nevertheless, clusters of ESSs can provide a scientific basis for
decision-making in power system operational scheduling by
proficiently managing these ESSs. Consequently, with the
objective of ensuring the comprehensive participation of ESSs in

system peak shaving, it becomes imperative to undertake a detailed
evaluation of the grid-support potential of numerous ESSs and to
develop a robust model that encapsulates the capability inherent
within these ESS clusters. Figure 1 shows the illustration of the
problem background.

To comprehensively consider the peak regulation requirements
of the power grid and the operational characteristics of ESSs, this
paper proposes a grid-support capability evaluation and aggregation
model for energy storage clusters, based on the dual-peak mode of
the power grid. This model not only optimizes computational
resource utilization but also accommodates varying regulation
requirements at different times, to a certain extent, improving
the capability of energy storage clusters to participate in peak
shaving. The illustration of the proposed evaluating and
aggregating model is shown in Figure 2.

In the first stage, a grid-support capability evaluation model
for energy storage clusters is established. To begin with, a
multilevel indicator system for ESSs is built, and based on
this, a grid-support capability matrix is created using the
combination weighting method to evaluate the compatibility
between the ESSs and the grid demand scenarios. Next, we
identify ESSs with strong peak-shaving support capabilities to
form the selected cluster. In addition, using the power, capacity,
and ramp rate as characteristic indicators, the K-means
clustering algorithm is employed to conduct the second step
evaluation for power-type and energy-type ESSs.

In the second stage, based on the grid-support capability
evaluation model, a grid-support capability approximate model
for individual ESS is established utilizing the revised Chino
polytope. This model accurately characterizes the feasible region
of energy storage participating in grid peak regulation at different
times by solving the weight correction factor during peak regulation
periods. Leveraging this approximate model, the grid-support
capability of all ESSs is aggregated using the Minkowski sum,
thereby obtaining the feasible region of the entire energy storage
cluster. To visually compare the approximate effect of the existing
model on the original feasible domain, this paper projects the high-
dimensional results onto a two-dimensional plane. Moreover, the
effectiveness of the proposed model is validated through peak-
shaving verification involving the participation of an energy
storage cluster.

FIGURE 1
The illustration of the problem background.
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3 Grid-support capability evaluation of
energy storage clusters

3.1 Grid-support capability matrix based on
combination weighting method

To evaluate the grid-support capability of various individual
ESSs under different demand scenarios, we adopt a combination of
analytic hierarchy process (AHP) and entropy weighting method to
refine the technical indicators of ESSs. This results in the
establishment of a hybrid subjective-objective matrix for
evaluating the support capability between ESSs and grid
demands. Compared to the conventional single-weighting
method, the combination weighting method weakens the weights
of larger indicators and strengthens the weights of smaller

indicators, thus avoiding the problem of some indicators
becoming ineffective due to large differences in weights.

Considering the perspectives of security, flexibility, and
economy, a multilevel indicator system for the ESSs is
constructed. The specific primary and secondary indicators are
shown in Figure 3.

Subsequently, following the establishment of a multilevel
indicator system, we construct a grid-support capability matrix
based on the combined subjective and objective weighting
method which is realized through the following distinctive steps:

Step 1: The indicators of the energy storage systems are normalized
and standardized. The judgment matrices for various primary
indicators under different grid demand scenarios are constructed,
focusing mainly on peak shaving, frequency regulation, and

FIGURE 2
The illustration of the proposed evaluating and aggregating model.

FIGURE 3
Multilevel indicator system for ESSs.
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emergency power support as the typical application scenarios in this
study.

Step 2: The maximum eigenvalue of the corresponding matrix is
deduced from the judgment matrices with a consistency test
performed thereafter. If the test fails, return to step 1 to
reconstruct the judgment matrices. If the test passes, proceed to
the next step.

Step 3: Calculate the weights of the primary indicators for various
demand scenarios. Mirroring this process, obtain the weights of the
secondary indicators.

Step 4: Based on the historical data of the multilevel indicators
corresponding to different grid demands of each ESS, the entropy
weight method is employed to acquire the weights of the technical
indicators for different demand scenarios.

Step 5: Integration of the Analytic Hierarchy Process (AHP) and
entropy weight method facilitates the establishment of a model for
harmonizing subjective and objective weighted attribute values,
consequently deriving the combined weights of the indicators.
The proposed model for harmonizing subjective and objective
weighted attribute values is solved using mathematical
programming, ensuring the consistency between the two types of
attribute values and avoiding the problem of one weight dominating
over the other. The model is represented as follows:

minH �∑m
j�1
∑n
i�1

α1w
1
i xij − α2w

2
i xij( )2

s.t α1α2P0, α1 + α2 � 1

⎧⎪⎪⎨⎪⎪⎩ (1)

where xij represents the standardized value of indicator j for ESS i. m
is the number of energy storage power stations and n is the number
of indicators. wi

1 and wi
2 are the subjective weights determined by

the AHP and the objective weights determined by the entropy
weight method, respectively. α1 and α2 are the allocation
coefficients for the subjective and objective weights, respectively.
H represents the deviation of the combined subjective and objective
attribute values.

Step 6: The grid demand scenarios and the indicators of the ESSs
are restored, and the processed indicators are multiplied by the
weights of the indicators under different grid demand scenarios,
resulting in the grid-support capability matrix between the ESSs and
the power grid demand scenarios. Consequently, the support
capability matrix is shown as follows:

AS �
a11 a21 / am1

a12 a22 / am2

/ / / /
a1k a2k / amk

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where AS represents the grid-support capability matrix, and amk

represents the grid-support capability of ESSm under the power grid
demand scenario k.

By establishing the aforementioned grid-support capability
matrix, we can evaluate the grid-support capability of various
large-scale energy storage systems under different power grid
scenarios. Then, select energy storage systems with grid-support

capability exceeding 0.5 for peak shaving requirements and
categorize them as peak shaving energy storage.

3.2 Clustering evaluation considering
different types of ESSs

The first step evaluation has successfully identified energy
storage systems that possess strong peak shaving support.
Following this, the second step is primarily focused on further
evaluating the selected peak-shaving energy storage through
clustering algorithms based on the dual-peak pattern, thus
establishing the groundwork for subsequent aggregation.

Specifically, due to the obvious dual-peak pattern of the power
grid load, the peak shaving period can be divided into two distinct
periods: the morning peak period, which requires sustained
discharge at a relatively low power level, and the evening peak
period, which demands high-power short-duration discharge. In
this approach, the ratio of power-to-energy for each ESS is
computed and subsequently sorted based on a numerical value.
Standardization is then applied, further ranking these ratios.
Simultaneously, the deviations between the load curve and the
peak-shaving line during both the early and late peak periods are
calculated and sorted using the same methodology. It is crucial to
note that when a certain rank exhibits a higher number of deviations
corresponding to the early peak, the ESSs within this rank are
categorized as energy-type. Conversely, if a rank presents a
predominant number of deviations associated with the late peak,
the ESSs within this rank are classified as power-type. Therefore, the
peak shaving energy storage systems are further classified into
power-type and energy-type based on their energy-to-power
ratio, which sets the foundation for peak shaving during the
dual-peak pattern of the power grid. Subsequently, to facilitate
the scheduling of the energy storage clusters, clustering analysis
is performed separately on the power-type and energy-type peak-
shaving energy storage clusters. The clustering analysis considers the
maximum ramping rate, maximum charging and discharging
power, and capacity of the energy storage as feature states and
utilizes the K-means clustering algorithm for the second stage
evaluation.

The specific steps of this method are as follows:

1) Standardize the feature states of each energy storage system,
including the maximum ramping rate, maximum charging and
discharging power, and capacity.

2) Randomly select K energy storage systems as initial cluster
centers, denoted as yk.

3) Calculate the Euclidean distance between each energy storage
system and the K cluster centers, and assign them to the cluster
with the shortest distance.

4) Calculate the average feature states of each cluster’s energy
storage systems and update them as the new cluster centers.

5) Check if the clustering results have converged, if not, go back to
step 3).

The illustration of the proposed clustering evaluation method is
shown in Figure 4. The proposed evaluation model can provide a
comprehensive evaluation of energy storage systems in the cluster,
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facilitating their effective deployment and utilization in supporting
the power grid demand. Furthermore, this aims to enhance the
efficiency of subsequent energy storage cluster aggregation.

4 Grid-support capability aggregation
based on revised chino polytope

The impact of time-domain coupled energy constraints on
energy storage, coupled with a burgeoning increase of the feasible
boundary plane description with the rise of dimension and addition
of parameter operation sets, presents a considerable challenge.
Computationally, the aggregation of the grid-support capability
in energy storage clusters involves computing the Minkowski
sum of multiple high-dimensional polytopes, and direct solving
leads to the curse of dimensionality. Therefore, to enhance the
rationality and efficiency of the solution, this study utilizes the Chino
polytope approximation method to characterize the feasible region
of individual energy storage systems based on the previous grid-
support capability evaluation results. The Chino polytope differs
from the convex polytope of the original feasible domain in a
geometric shape. To address this issue, this paper proposes a
feasible domain weighting adjustment strategy based on the
Chino polytope model that considers the difference in load
demand at different periods and prioritizes retaining the
flexibility part with higher peak shaving demands to improve the
peak shaving capability of the energy storage clusters. In summary,
the aggregating model considering the peak regulation requirements
is the revision and improvement of the Chino polytope model.

4.1 Chino polytope model

The overall overview of the core ideas and key steps of the Chino
polytope model are as follows. Firstly, considering the power,
energy, and ramping constraints, the original flexibility of energy
storage systems is obtained. Secondly, by constructing the matrix of
the running constraints, the in-Chino polytope approximation
model is established. Finally, the model is solved by transforming
it into an optimization problem with original and approximate
flexibility of normal vector direction.

For different types of ESSs, when considering a finite and
discrete scheduling decision period with N scheduling points,
where each segment has a time interval of ts, the output of the

energy storage stations within the scheduling interval is represented
by p(t), thus describing the feasible domain based on convex
polytopes with the following constraints.

a)Power constraints

If the power is assumed to be pk constant in a certain scheduling
period, the power constraints can be expressed as follows:

pk,min#pk#pk,max

k � 0,/, N − 1
(3)

b) Energy constraints

The energy state of ESSmay change with the change of its power,
and the relationship between the discrete energy state sk and the
power variable pk is as follows:

sk+1,min#sk + cpk#sk+1,max

k � 0,/, N − 1
(4)

c) Ramp rate constraints

The ramp rate constraint represents the rate of change of power,
expressed in discrete form as follows:

rk,min#pk − pk−1#rk,max

k � 1,/, N − 1
(5)

Taking into account the aforementioned constraints, the
operationally feasible region of a single ESS P is described as a
convex polytope characterized by a set of inequality constraints.

P � p ∈ RN Ap≤ b
∣∣∣∣{ } (6)

where p represents the power of energy storage in the decision-
making period of N periods. A and b are the coefficients after
expressing all inequality constraints of the feasible domain in matrix
form. Therefore, the operational grid-support capability of ESS can
be abbreviated as P(A, b).

To establish a Chino polytope model, the grid-support capability
of a single ESS is utilized by the following expression:

Z :� p ∈ RN | p � c + Gβ{ } (7)
where p ∈ RN denotes the output flexibility of a single ESS within a
decision cycle considering N periods, and c ∈ RN represents the

FIGURE 4
The illustration of the proposed clustering evaluation method.
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center of a chino polytope. G: � [g1,/, gNg] ∈ RN×Ng stands for
construction matrix, and gi represents the i-th construction vector.
β � [β1,/, βNg

]T represents the scaling factors corresponding to
each construction vector, which determines the extension distance
of each construction vector. Ng indicates the number of construction
vectors.

The shape characterization parameters of the Chino polytope
include construction matrix G, polytope center c, and shrinkage
coefficient β. In this paper, G is regarded as a known quantity, and c
and β are both decision variables of the optimization problem.
Firstly, a construction matrix is constructed which can effectively
represent all power, energy, and ramp rate constraints.

gpower k( ) � 0,/, 0, 1
k+1

, 0,/, 0[ ] ∈ RN

genergy k( ) � 0,/, 0,−1/ �2√
k+1

, 1/ �2√
k+2

, 0,/, 0[ ] ∈ RN

gramp k( ) � 0,/, 0, 1/ �2√
k+1

, 1/ �2√
k+2

, 0,/, 0[ ] ∈ RN

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(8)

where gpower(k), genergy(k) and gramp(k) represent construction
vectors corresponding to power, energy, and ramp rate
constraints at k � 0, 1,/,N − 1 period, and the construction
matrix can generate hyperplanes parallel to the corresponding
constraints. Taking t1 and t2 as two adjacent moments, the
construction vector matrix diagram is shown in Figure 5.

Considering the power, ramp rate, and capacity constraints of
the ESSs, the original matrix parameters of a single ESS are obtained.

A1 �
1 0 / 0
0 1 / 0
..
. ..

.
1 ..

.

0 0 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

(9)

A3 �
1 0 / 0
1 1 / 0
..
. ..

.
1 ..

.

1 1 / 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×N

(10)

A2 �
−1 1 0 / 0
0 −1 1 / 0
..
. ..

.
1 1 ..

.

0 0 / −1 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N−1( )×N

(11)

A � A1 − A1A2
⊤ − A2

⊤A3
⊤ − A3

⊤[ ]⊤ (12)
b � pmax − pminrmaxrminemax − emin[ ]⊤ (13)

where pmax and pmin represent the upper and lower limits of the ESS
power respectively. rmax and rmin represent the upper and lower
limits of the ESS ramp rate respectively. emax and emin represent the
upper and lower limits of ESS capacity respectively.

To facilitate a more concise and coherent depiction of the
similarity between the Chino polytope and the original polytope,
this study randomly selects a sufficient number of polytope
normal vectors. The similarity is then characterized by
calculating the ratio of their diameters on the normal vectors.
Therefore, the similarity between the Chino polytope and the
original polytope is as follows:

Λs � dZ
s /dP

s (14)

where dZs and dPs represent the diameters of the Chino polytope Z
and the original polytope P along the normal vector direction αs

respectively. S represents the number of normal vectors. The closer
the Λs ∈ [0, 1] value is to 1, the higher the similarity between dZs
and dPs .

If a certain normal vector αs is known, the optimization problem
of finding the tangent point of a convex polytope and calculating its
diameter can be expressed as follows:

dP
s � max αsp − ε( ) −min αsp − ε( )∣∣∣∣ ∣∣∣∣/ αs‖ ‖2

s.t.Ap#b
(15)

where ε represents a sufficiently large constant.
Furthermore, the diameter of the Chino polytope in the

direction represented by the normal vector αs is as follows:

dZ
s � 2 αsG| |β (16)

4.2 Aggregating model considering the peak
regulation requirements

Under different peak shaving demands in different periods of
the power grid, the output of the energy storage cluster varies. To
enhance the peak shaving capability of the energy storage cluster
in power grid integration, it is advisable to improve the
approximation accuracy of the flexible feasible domain during
peak shaving periods. In response to this issue, this paper
primarily adopts two measures to adjust the grid-support
capability of the energy storage cluster. The first measure
involves establishing a correction factor for peak load periods
based on the difference among the peak shaving line, valley filling
line, and load curves. The second measure involves considering
the influence of uncertain factors such as temperature on energy
storage and characterizing its dynamic probability distribution
during peak load periods.

To begin with, based on the typical daily dual-peak load curve of
the power grid, the peak shaving line, valley filling line, and the
absolute difference between the load curve are normalized. This
process determines the peak shaving weight for each time interval,
thereby obtaining the weight correction factor. The specific
calculation formula is shown as follows:

FIGURE 5
Construction vector matrix diagram.
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ΔPt � Pload,t − Pline,t

∣∣∣∣ ∣∣∣∣
μt �

ΔPt − ΔP min

ΔP max − ΔP min

wi � μ1, μ2,/, μN[ ]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(17)

where Pload,t represents the load curve at time t. Pline,t represents the
peak shaving and valley filling line at time t. Pmin and Pmax represent
the minimum and themaximum value of the load curve respectively.
wi is the weight correction vector for the i-th ESS, and N is the
number of scheduling periods.

The approximate degree of the grid-support capability in the
normal vector direction can be modified according to the weight
correction factor.

ΛS′ � ΛS w αs( )( 2) � ΛS ∑N
i�1
wix

2
i

⎛⎝ ⎞⎠ (18)

where αs � (x1, x2,/, xN).
Moreover, the output of energy storage is subject to

uncertainties caused by factors such as temperature and state
of health (SOH). To characterize this characteristic, the
dynamic probability distribution of energy storage output
during peak load periods is obtained based on historical
energy storage output data using non-parametric kernel
density estimation theory. Based on this, a certain confidence
level is selected to dynamically represent the uncertainty
of energy storage output during peak load periods. By
considering its probabilistic characteristics in the process of
aggregation, general chance constraints can be formulated as
follows:

P a⊤e + b⊤x ≤ c{ }≥ 1 − α (19)
where x represents the decision variable, i.e., the energy storage
output. e represents the prediction error vector. a, b, and c are
constants and 1 − α represents the confidence level.

The joint probability function of the prediction error e for a
Gaussian Mixture Model (GMM) can be approximated by a
linear combination of several Gaussian functions (Goel et al.,
2023). Then, the quantiles of the random variable a⊤e at a
confidence level 1 − α can be calculated using the following
equation, thereby transforming chance constraints into
deterministic constraints.

c − b⊤x ≥Quant 1 − α | a⊤e( ) (20)
where Quant(1 − α | a⊤e) represents the quantile of the random
variable a⊤e at the 1 − α confidence level.

After considering output uncertainty, the original feasible
domain model for the energy storage cluster is as follows:

p � p ∈ RN
∣∣∣∣A′p≤ b′{ }

A′ � A1 −A1 A2
⊤ −A2

⊤ b⊤[ ]⊤
b′ � pmax −pmin rmax rmin q[ ]⊤
q � c −Quant 1 − α | a⊤~e( ), α � 0, 0.1,/, 1.0.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (21)

After solving dPs for the flexible feasible solutions in S directions,
the feasible domain of the Chino polytope can be determined
through the following optimization problem.

max
c,βmax

1
S
∑S
s�1
ΛS′

s.t.A′c + A′G
∣∣∣∣ ∣∣∣∣β≤ b′

p � c + Gβ

(22)

The expression for aggregating the construction matrix G,
polytope center c, and construction scaling coefficient matrix β to
obtain the aggregated grid-support capability of the energy storage
cluster based on the revised Chino polytope is as follows:

GM � U G1,/,Gm[ ]( )
cM � ∑

j∈M
cj

βM � ∑
j∈M

βj

pM � cM + GMβM

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(23)

where U( ) is a unique operator that returns all the distinct columns
in [G1,/,Gm]. pM is the grid-support capability of the energy
storage clusters.

5 Case study

The case study is carried out on IEEE 39-bus system. The
MATLAB R2021b software with the YALMIP toolbox and
GUROBI solver is used to solve the optimization problems.

5.1 Grid-support capability evaluation and
analysis

Initially, based on the multilevel technical indicator data of
various ESSs in the three application scenarios of peak shaving,
frequency regulation, and emergency power support, the secondary
indicators are standardized and positively transformed.
Subsequently, the combination weighting method is employed to
determine the weights of each indicator. Based on the calculated
results of subjective and objective weights, the allocation coefficients
for subjective weight and objective weight can be obtained by solving

TABLE 1 Calculation results of weighting for ESSs multilevel indicator.

Indicator Sub-weight Obj-weight Com-weight

C1 0.114 0.147 0.132

C2 0.087 0.186 0.140

C3 0.132 0.267 0.204

C4 0.090 0.059 0.019

C5 0.084 0.083 0.023

C6 0.133 0.064 0.035

C7 0.073 0.055 0.010

C8 0.087 0.034 0.010

C9 0.105 0.042 0.017

C10 0.096 0.062 0.010
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Eq. 1, and the results are α1 = 0.5342 and α2 = 0.4658 respectively.
Ultimately, the combined weight can be calculated by appropriately
weighting these coefficients. The results of the weight calculation
based on peak shaving are shown in Table 1.

According to the calculation results in Table 2, it can be observed
that among the various indicators of the ESSs applied for peak
shaving scenarios, the weight of the non-planned outage coefficient
indicator is 0.204, which has the highest proportion. The next
significant indicators include dispatch success response rate and
planned outage coefficient, which play a crucial role in the
participation of ESSs in power grid peak shaving. Moreover,
based on the weight calculation results, compared to the single
weighting method, the combination weighting method combining
subjective and objective weights weakens the influence of indicators
with higher weights and strengthens the influence of indicators with
smaller weights, which avoids potential issues of some indicators
becoming ineffective due to large differences between them.

Randomly generated massive ESSs with indicators following a
normal distribution, and calculate their support level in peak
shaving scenarios. Proceeding with the supportiveness results, a
value of 0.5 is chosen as the threshold to select ESSs demonstrating
strong peak-shaving capabilities. As a result, a total of 70 ESSs that
fulfill the requirements for peak shaving are selected.

To facilitate the subsequent grid-support capability aggregation
of energy storage clusters, the maximum ramp rate, maximum
charging and discharging power, and capacity are taken as
characteristic states. After standardizing the indicators, the
K-means clustering algorithm is adopted to conduct a second
stage evaluation and analysis on the selected peak shaving energy

storage clusters. The clustering evaluation results are shown in
Figure 6.

5.2 Grid-support capability aggregation and
analysis

Themanuscript under consideration adopts a bottom-up approach
to aggregate grid-support capabilities, whereby the feasibility domain
pertaining to individual ESS is preliminarily delineated in accordance
with a case study analysis. Considering a decision cycle T = 24 h and a
time interval t = 1 h, with S = 100 normal vectors, the flexibility of
15 ESSs in cluster 1 is modeled using the approximate Chino polytope
method. To demonstrate the derived outcomes in a succinct manner,
four ESSs have been selectively extracted from this cluster and their
results are tabulated in Table 2.

The incorporation of adjustable margins at any given time is
paramount in ensuring the stability and efficiency of the ESS. As a
result, in the study presented, the State of Charge (SoC) of the ESS is
fixed between 0.2 and 0.8, providing a certain level of adjustability. It can
be seen from the results that for the four different parameters of energy
storage systems, the similarity index of the feasible region obtained by
the Chino polytope and its original flexibility feasible region is more
than 70%, indicating that the proposed method in this paper
successfully reduces the conservatism typically inherent in feasible
region, thus resulting in a larger scope for grid-support capability.

The existing evaluation methods generally involve the problem
of not being able to directly draw high-dimensional spatial graphics.
To visually compare the approximate effect of existingmodels on the
original feasible domain, this paper projects the high-dimensional
results onto a two-dimensional plane, which displays the feasible
domains of two adjacent time points. Taking the power projection of
t = 1 and t = 2 as an example, with θ varying from 0 to 2π, and by

TABLE 2 The parameters and calculation results of ESSs.

ESS 1 2 3 4

Power/MW 17.2 50 14 37.4

Energy/(MW·h) 100 210 27 222

Ramp rate/MW·h (−1) 8.6 25 7 18.7

Initial SoC [0.2,0.8] [0.2,0.8] [0.2,0.8] [0.2,0.8]

Similarity index 0.7529 0.7474 0.7751 0.7535

FIGURE 6
The clustering evaluation results.

FIGURE 7
The comparison of original and approximate projected feasible
region for different ESSs: (A) ESS-1; (B) ESS-2; (C) ESS-3; (D) ESS-4.
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computing the following series of optimization problems, the
projection contour can be obtained point by point.

max p1 sin θ + p2 cos θ

s.t.
p � c + Gβ
Ap≤ b

θ ∈ 0, 2π( )
(24)

The projection of the original feasible domain of single energy storage
and the feasible domain of the polytope Chino is shown in Figure 7.

Furthermore, considering the peak shaving demand of the power
grid in different time periods, the similarity is further adjusted.
According to the typical daily dual-peak load curve of the region,
the absolute value of the difference between the peak cutting line and the
valley filling line and the load curve is normalized. In addition, due
regard is attributed to the probability distribution of energy storage
output during peak load periods, facilitating the determination of each
moment’s peak load weight. The correction result for t = 4 and t = 5 is
shown in Figure 8.

Based on the daily load curve, it is known that the peak shaving
demand of the power grid is high during the t = 4 and t = 5 periods.
Therefore, in the approximation model of a single energy storage
polytope, the weight for this period is set to a higher value. The result
shows that the revised polytope approximation accuracy for this
period is much higher than the unmodified approximate polytope.
This result demonstrates the feasibility of the revised model.

In this paper, the selected 15 ESSs are regarded as a peak shaving
cluster. The time scale is T = 24 h, and the time interval is t = 1 h.
Considering the constraints on ramp rate, power, and energy for
ESSs, the grid-support capability aggregation of the energy storage
cluster is performed using the Minkowski sum method. The power,
energy, and ramping limits of the cluster are shown in Figure 9. It is
verified in the case study that compared with the direct Minkowski
sum of the original feasible region, the method based on the revised
Chino polytope proposed in this paper has the potential to
significantly conserve computational resources.

The power limits of the energy storage cluster indicate that this
method can obtain the maximum output power range of the cluster.
Under the constraints of these limits, the energy storage cluster forms a
feasible domain. As a result, the operational range of the 15 energy
storage clusters within one scheduling cycle is obtained, which facilitates

their participation as a whole in peak shaving in the power system and
reduces the computational burden on the dispatch center.

5.3 Analysis of energy storage clusters in
peak regulation

To demonstrate that the proposed grid-support capability
aggregation method based on the revised Chino polytope can
improve the ability of energy storage clusters to participate in grid
peak regulation, this paper takes the IEEE 39-bus system as an example.

The power grid consists of 39 busbars, including 10 generator
busbars and 19 load busbars. In addition to these, one wind turbine
and 15 ESSs are incorporated, with the collective ESSs treated as a
singular unit for purposes of grid peak regulation. In the peak
regulation model, we assume that the configured energy storage
capacity is sufficient. In addition, since the load prediction is more
accurate, it is assumed that the forecast value of day and day load is
the same curve. The peak regulation model posits the minimum
peaking cost of each unit as the objective function. It employs the
power upper and lower limits, together with the power balance of
each unit, as the constraint conditions. Consequently, a peak
regulation strategy for the energy storage cluster is devised on a
time scale of 1 hour. The comparison graph of the peak shaving
correction amount between the revised and original model at
different time intervals is shown in Figure 10.

Among them, T = 22 represents the energy storage cluster
participating in the peak regulation strategy at time t = 2, and T =
21 represents the energy storage cluster participating in peak regulation
at time t = 3. It can be seen from the results that, compared with the
original model, the revised model based on the Chino polytope
proposed in this paper makes the adjustment amount of the energy
storage cluster at the later moment smaller in the process of
participating in the peak regulation of the power grid, that is, the
ability of the energy storage cluster to participate in the peak regulation
of the power grid is improved.

FIGURE 8
The comparison of projected feasible region for three types of
models.

FIGURE 9
The upper and lower operation bounds of the aggregated ESSs:
(A) power bounds, (B) energy bounds, (C) ramp bounds.
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6 Conclusion

This paper presents a model for evaluating and aggregating the
grid support capability of energy storage clusters by considering
the peak regulation requirements. The model’s effectiveness is
demonstrated based on the IEEE 39-bus system, and several
conclusions have been drawn. Primarily, the combined subjective
and objective weighting method proposed in this paper circumvents
issues arising from significant weight discrepancies across different
indices, a problem often encountered with traditional single-
weighting methods. Furthermore, grid-support capability
aggregation based on evaluation increases the efficiency and
rationality of massive ESSs aggregation analysis. Notably, the
aggregation model based on the revised Chino polytope not
only saves computing resources but also improves the ability
of energy storage clusters to participate in power grid peak
regulation. The method considers both aggregation precision
and computing efficiency to some extent. Future work will look
into constraints such as power flow within the power grid for the

energy storage clusters to depict the grid-support capability of
energy storage clusters more accurately.
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