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Introduction: The emerging “net-zero carbon” police will accelerate the large-
scale penetration of renewable energies in the power grid, which would bring
strong random disturbances due to the unpredictable power output. It would
affect the coordinated control performance of the distributed grids.

Method: From the quadratic frequency modulation perspective, this paper
proposes a fast Q-learning-based automatic generation control (AGC)
algorithm, which combines full sampling with full expectation for multi-area
coordination. A parameter σ is used to balance the state between the full
sampling update and only the expectation update so as to improve the
convergence accuracy. Meanwhile, fast Q-learning is incorporated by replacing
the historical estimation function with the current state estimation function to
accelerate the convergence speed.

Results: Simulations on the IEEE two-region load frequency control model and
Hubei power grid model in China have been performed to validate that the
proposed algorithm can achieve optimal multi-area coordination and improve
the control performance of frequency deviations caused by the strong random
disturbances.

Discussion: The proposed Q-learning-based AGC method outperforms the
convergence accuracy, speed, and control performance compared with other
reinforcement learning algorithms.
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1 Introduction

With the rapid development of renewable resources (Xu et al., 2023), distributed
energies (Patel et al., 2019; Chen et al., 2022) are being integrated into power grids in
large scale. However, their intermittency, randomness, and unpredictability would
severely jeopardize the stability and safety of the power systems. The conventional
centralized automatic generation control (AGC) (Yu et al., 2011; Wang et al., 2014; Li
et al., 2021a; Li et al., 2021b; Xie et al., 2022) aimed to only minimize the area control
error (ACE) to output the total regulation power demands, which cannot achieve fast
inter-area coordination in such a new type of power systems. Hence, centralized AGC
cannot deal with the continuous declination in the control performance standards
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(CPS), such as system frequency and ACE, due to strong random
disturbances. Distributed AGC with multi-area coordination is,
thus, developed to regulate the output of the renewable grid.

In recent years, many scholars have aimed at the research on
distributed AGC control methods and proposed a series of
distributed AGC algorithms by introducing numerical computing
methods, reinforcement learning (Yin et al., 2017), deep learning (Li
et al., 2023), and neural network (Bhongade et al., 2010). Among
them, numerical computation methods have been intensively
studied by scholars due to their well-established deployment
models. Based on the distributed model prediction algorithm,
Yang et al. (2023) proposes a load frequency control (LFC)
strategy suitable for the LFC system of new energy with high
permeability. Huang (2023) proposed a synovial disturbance
observer applied to a flexible LFC system and showed that this
scheme has evident advantages in dealing with delayed attacks.
However, numerical methods require in-depth analysis and
optimization of the model, which is not conducive for
applications in complex dynamical systems. Therefore, control
algorithms based on heterogeneous multi-agent reinforcement
learning are widely applicable in distributed AGC modalities,
which have strong advantages in decision making, self-learning,
and self-optimization.

Heterogeneous multi-agent reinforcement learning is capable of
continuously interacting with the environment, accumulating
experience, analyzing, and obtaining the optimal strategies during
exploration, which has more advantages in distributed AGC. Li et al.
(2022) pointed out the deficiencies of single-agent reinforcement
learning in the optimization space and used multi-agent
reinforcement learning to improve the adaptability of the AGC
system. Zhang et al. (2016) introduced the wolf pack algorithm with
competitive strategies among the agents in different areas to obtain
the optimal solution, thereby achieving fast convergence to the Nash
equilibrium. Xi et al. (2015) proposed an intelligent generation
control method for the microgrids based on multi-agent
correlated equilibrium reinforcement learning, which can
effectively enhance the adaptability of islanded microgrids. In
order to remove the lookup table method of traditional
Q-learning, Tang et al. (2017) used the neural network (Fu et al.,
2023) to approximate the value function. Simulation results
confirmed that it can obtain accurate AGC generation commands
under renewable energy disturbances. Furthermore, Xi et al. (2020)
proposed a decentralized multi-agent algorithm to solve the time
credence allocation problem caused by the large time delays of the
units, i.e., thermal power plants.

However, the aforementioned reinforcement learning methods
are derived from traditional Q-learning, i.e., off-policy
reinforcement learning. They generally suffer from strategic bias
because their learning goals are inconsistent with the sampling
behavior strategies, such that these methods cannot quickly
restore the stability under severe random disturbances. On-policy
reinforcement learning that applies the unified policy can learn
online in different environments and gradually improve, but it is
easy to remain in a local optimal policy, and the learning process is
relatively slow. Combined with the advantages of off-policy and on-
policy, Wang et al. (2014) proposed the Q(σ) algorithm to balance
full sampling and only the expectation update to address the bias
and local optimal problems. However, the convergence speed of this

proposed algorithm hardly meets the requirements of the AGC real-
time control.

As for the convergence speed of reinforcement learning, Leed
and Powell (2012) proposed a bias-corrected Q-learning algorithm
based on the bias correction policy, but it can only be applied when
the number of the action values is large. Kamanchi et al. (2019)
introduced the relaxation factor ω to target when the agent falls into
self-cycling such scenarios. Zhang and Liu (2008) proposed a
proving Q-learning algorithm based on the idea of a taboo
search which can balance the relationship between exploration
and exploitation so as to improve the convergence speed.
However, the method requires resetting the length of the taboo
table and the aspiration criterion in different environments, which
limits its applicability. Furthermore, Azar et al. (2011) proposed
speedy Q-learning (SQL), which can replace the historical
estimation function with the current function so as to accelerate
the convergence. It can be perfectly combined with Q(σ) to improve
its convergence speed.

Hence, this paper proposes a novel and efficient multi-agent
coordinated AGC algorithm, called SQ(σ), with the combination of
Q(σ) and SQL. The proposed algorithm not only has a fast
convergence but also solves the local optimality and strategic bias
problems by balanced full sampling. Therefore, the AGC controller
based on SQ(σ) can meet the real-time control requirements of AGC
and has strong robustness in the face of a strong random load
disturbance. Simulation experiments on the improved IEEE two-
region load-frequency control model and the multi-area
interconnected Hubei power grid model in China are used to
validate the effectiveness of the proposed algorithm.

The remainder of the paper is organized as follows: the SQ(σ)
algorithm is described in Section II. Section III presents the
proposed AGC system based on SQ(σ) in detail. Simulation
experiments on the improved IEEE two-area load frequency
control model and the four-region model of the Hubei power
grid are performed from various aspects with comparison
analysis in Section IV. Conclusion is provided in Section V.

2 SQ(σ) algorithm

The proposed multi-agent coordinated algorithm SQ(σ) based
on Q(σ) and SQL is discussed in detail.

2.1 Q(σ)

Q(σ) combines the on-policy state-action-reward-state-action
(SARSA) (Richard, 1988) based on temporal difference (TD) (Engel
et al., 2005) and the off-policy Expected SARSA (Van Seijen et al.,
2009) by introducing a parameter σ as the sampling step. When σ is
1, it becomes SARSA (full sampling), and when σ is 0, it becomes
Expected SARSA (only-expectation). Hence, the parameter σ is used
to balance between the full sampling and only-expectation updates
to improve the convergence accuracy.

SARSA is a basic on-policy TD algorithm where the action
function is used to replace the state function as the estimated value.
The characteristic of the on-policy methods is to estimate the
optimal Q-value based on the current behavior policy and the all
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state-action estimates. The update of the on-policy TD algorithm is
written as follows:

Qk+1 sk, ak( ) � Qk sk, ak( ) + αδsk, (1)
δsk � Rk + γQk sk+1, ak+1( ) − Qk sk, ak( ), (2)

where α is the learning rate of the agent, γ is the reward discount
factor, and kS is TD of SARSA.

Although formally similar to SARSA, Expected SARSA is an off-
policy learning algorithmwhose target update is the expectedQ-value.
It can generalize Q-learning to arbitrary target policies via the next
state-action values to estimate the expected Q-values as follows:

Qk+1 sk, ak( ) � Qk sk, ak( ) + αδ″k, (3)
δESk � Rk + γ∑

a∈A
π sk+1, ak+1( )Qk sk+1, ak+1( ) − Qk sk, ak( ), (4)

where kES is TD of Expected SARSA. Although Expected SARSA is
more computationally complex than that of SARSA, it can eliminate
the variance caused by next action selection with higher
performance under the same exploration experience.

Q(σ) can perform a linear weighting between the full sampling
and only-expectation updates via the mixed sampling parameter σ,
updated as follows:

Qk+1 sk, ak( ) � Qk sk, ak( ) + αδ°k, (5)
δσk � Rk + γ σQk sk+1, ak+1( ) + 1 − σ( )∑

a∈A
π sk+1, a( )Qk sk+1, a( )⎡⎣ ⎤⎦ − Qk sk , ak( ).

(6)

2.2 The proposed SQ(σ) algorithm

As a derived algorithm of Q-learning, the update criteria with
greater exploration weights are applied in SQL, thereby improving
the convergence speed of the agent. The Q-table update policy
utilizes the estimation function of the previous Q-values to replace
the current Q-value estimation function so as to accelerate the
convergence of Q-learning. The Q-matrix update is as follows:

Qk+1 s, a( ) � 1 − α( )Qk s, a( ) + α Rk + γMk−1 s′, a′( )( )
+ 1 − α( )γ Mk s′, a′( ) −Mk−1 s′, a′( )( ), (7)

whereMk (s’, a’) = maxa’ Qk (s’, a’) andMk-1 (s’, a’) is the maximum
Q-value when the action state (s, a) is transformed to the (s’, a’) state.

With the obtained σ, SQ(σ) can be rewritten as follows:

Qk+1 s, a( ) � 1 − α( )Qk s, a( ) + αγMk s, a( ) + αRk+1, (8)
Mk s, a( ) � Qk−1 s, a( ) + αδak−1. (9)

3 SQ(σ)-based AGC design

3.1 SQ(σ)-based control framework

The interconnected AGC system can fully perceive the operating
information on each regional grid and achieve information sharing,
that is, when the operating status of one region changes, it will also
cause dynamic changes in other regions. This paper adopts CPS

(Jaleeli and VanSlyck, 1999) [CPS include CPS1 and
CPS2 indicators, and the specific formula can be found in Jaleeli
and VanSlyck (1999)] proposed by the North American Electric
Reliability Corporation, ACE, and the system frequency deviation
(Δf) to evaluate the control performance of the SQ(σ) controller.
Without loss of generality, SQ(σ) controllers are designed to
incorporate the key elements of reinforcement learning: state,
reward (shown in Section 2.2), and action. In keeping with the
traditional PI controller design, this paper considers ACE as the
state, and the state set S has 13 intervals, S = [|ACE|<1 MW, 1 MW <
ACE≤10 MW, 10 MW < ACE≤20 MW, 20 MW < ACE≤30 MW,
30 MW < ACE≤40MW, 40 MW < ACE≤50 MW,
ACE>50 MW, −10 MW < ACE ≤ −1 MW, −20 MW <
ACE ≤ −10 MW, −30 MW < ACE ≤ −20 MW, −40 MW <
ACE ≤ −30MW, −50 MW < ACE ≤ −40 MW, and
ACE < −50 MW]. We consider regulating power as action,
power is limited to [-50 and 50] MW, and the action set A =
[−50, −40, −30, −20, −10, 0, 10, 20, 30, 40, and 50] MW.

The agents within each region can perceive ACE and Δf in real-
time, while the historical data can be stored and shared among the
agents in different regions for online learning. Thus, the state values of
the “real-time monitoring system and long-term historical database”
can be used as the inputs to SQ(σ) controllers to calculate the reward
values. Meanwhile, the next optimal control strategy can be executed by

FIGURE 1
Flowchart of the SQ(s) algorithm.

TABLE 1 Parameter in the algorithm.

Parameter Value

Learning rate α 0.1

Discount factor γ 0.9

Hybrid sampling parameter σ 0.5
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the controllers with the shared information, eventually obtaining the
optimal total regulation power demand ΔPord-k.

The flowchart of the SQ(σ)-based AGC system is shown in
Figure 1.

3.2 Reward function (objective function)

The power balance is the foundation tomaintain stable and reliable
grid operation. Thus, frequency deviationΔf is the indicator of whether
the power is in balance via the control of “power difference.” In pursuit
of optimal solution, the reward function is designed to stabilize the
output power and maximize the long-term benefits of CPS. Therefore,
this paper considers Δf and ACE as the comprehensive target rewards
of the SQ(σ) controller. It not only considers the smooth output power
but also focuses on the long-term benefits of CPS, thus maximizing the
overall performance of the system. In order to deal with the different
dimensions of ACE and Δf, the two indexes in reward function are
normalized and linearly weighted. Here, the reward function of each
regional grid is formed as

Ri � −η Δf i( )∣∣∣∣ ∣∣∣∣2 − 1 − η( ) ACE i( )[ ]2/1000, (10)

where |Δf(i)| and ACE(i) are the instantaneous absolute value of the
Δf and ACE value at imoment, respectively; 1-η and η are the weight
factors of Δf and ACE, respectively. Here, η is set as 0.5.

3.3 Constraints

1) Regulation capacity constraint: The regulation power input of
each regulation resource should be limited within its lower and
upper bounds as

ΔPi
min ≤ΔPin

i k( )≤ΔPi
max , i � 1, 2, . . . , n, (11)

where ΔPiin(k)denotes the regulation power input of the ith AGC
unit at the kth control interval. ΔPimin and ΔPimax are the minimum
and maximum regulation capacities of the ith AGC unit,
respectively.

2) GRC: The regulation power output of each AGC unit should
satisfy GRC as

−ΔPrate
i ≤

ΔPout
i k( ) − ΔPout

i k − 1( )
ΔT ≤ΔPrate

i , (12)

where ΔPirate is the maximum ramp rate of the ith AGC unit; ΔT is
the time cycle of the AGC dispatch; ΔPiout (k) is the regulation power
output of the ith AGC unit at the kth control interval.

3) Regulation direction constraint: To avoid reverse power
regulation, the regulation direction of each regulation resource
should be consistent with that of the total power regulation
command as

ΔPin
i k( ) · ΔPC k( )≥ 0, i � 1, 2, . . . , n, (13)

where ΔPC is the total power regulation command.

3.4 Parameter setting

During the design of the SQ(σ)-based AGC controller, three
parameters α, γ, and σ of SQ(σ) should be set carefully to follow the
following principles so as to obtain better control performance.

1) The learning factor α (0<α < 1) is used to determine the trust
rank in SQ(σ) for the iterative updates. When α is close to 1, it

FIGURE 2
Improved IEEE two-area LFC model.
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will speed up the convergence, while a smaller α would enhance
the convergence stability.

2) The discount factor γ (0<γ < 1) is used to measure the
importance of future rewards and immediate rewards. When
γ is close to 1, the agent cares more about the long-term rewards,
and when γ approaches 0, the agent cares more about the instant
rewards. Hence, γ should be taken a value close to 1 for the long-
term rewards.

3) The hybrid sampling parameter σ (0≤σ ≤ 1) is used to
combine the on-policy and off-policy. Different values of σ
lead to different linear weights between the full sampling
SARSA algorithm (σ = 1) updates and the Expected SARSA
algorithm (σ = 0) updates. The smaller the σ, the more biased
toward full sampling in the policy optimization process and
vice versa.

Through extensive simulation experiments, the involved
parameters are selected and listed in Table 1.

4 Simulation experiments and result
analysis

4.1 LFCmodel of the improved IEEE standard
two-area interconnected system

In order to simulate the random disturbances caused by the
integration of wind, solar, and other renewable energy sources into
the interconnected power grid, small hydro, wind power (Fu and
Zhou, 2023), electric vehicles (Shen et al., 2021), photovoltaics (Fu,
2022), biomass energy, and flywheel energy storage are incorporated
into Area A of the IEEE standard two-area load frequency control
model. The established two-area integrated LFC energy system
model is shown in Figure 2. In this model, Tg is the time
constant of the generator unit, Tt is the time constant of the
turbine unit, and Kp/(1+sTp) represents the time constant of the
AC frequency response, and Tg = 0.08 s, Tt = 0.3 s, T12 = 3.42 s, Tp =
0.08 s, and Kp = 0.00012 Hz.

FIGURE 3
Pre-learning of SQ(s) in areas A and B. (A)Controller output in the
two areas. (B) ACE values in the two areas. (C) Frequency variation
curves in the two areas.

FIGURE 4
Control performance of the six algorithms under continuous step
load perturbation. (A) CPS1 with different control algorithms. (B) ACEs
with different control algorithms. (C) Frequency variation curves with
different control algorithms.
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4.1.1 Pre-learning
A large amount of pre-learning is required to obtain the optimal

decision-making strategy before the AGC controller is formally put into
practice. A sinusoidal load disturbance (period 1,200 s, amplitude
1,000MW, duration 10,000 s) is used to pre-train SQ(σ) and make it
converge to the optimal strategy. Figure 3 shows the various control
indicators of the SQ(σ) controller during the pre-learning phase under
load disturbances. Figure 3A shows the outputs of areas A and B can
track the load disturbance curves in a short period of time. Figure 3B
shows the variation curves of the average ACE in areas A and B during
the learning process. During the initial stage, when the algorithm control
has not fully converged, ACE has a downward fluctuation, but it can
gradually converge and remain within a stable range after complete

autonomous learning. Figure 3C shows the frequency variation curves
during pre-learning, and the |Δfmax| (maximum frequency deviation)
values of the two areas are 0.073 and 0.069 Hz, far lower than the
practical engineering requirement of 0.2 Hz, indicating that the
controller shows higher control performance. Therefore, the SQ(σ)
controller can be put into operation after pre-learning.

4.1.2 The continuous step disturbance and random
square wave disturbance

During the online operation, continuous step load perturbations
(amplitude of 500, 1,000, and 1,500 MW) are introduced into the two-
area system to simulate the sudden increase in the loads. Using a load
disturbance with a duration of 10,000 s as an evaluation period, the
performance of SQ(σ), DDQN-AD (Tang et al., 2017), PDWOLF-PHC
(Xi et al., 2018), Q(σ), SQL, and Q controllers is analyzed. The control
performance indicators of various algorithms in Area A are shown in
Figure 4. Figure 4A shows that under each load increase situation, the
CPS1 values of the SQ(σ) controller change more smoothly. Although
DDQN-AD performs better in CPS1 under a load mutation at 4,000 s,
it exhibits larger fluctuations in the later stages, making SQ(σ)
possessing the overall superiority. Figure 4B demonstrates that the
SQ(σ) controller has smaller ACE values after being disturbed.
Figure 4C shows the frequency response curves under the control of
the six algorithms, with the maximum frequency deviations of SQ(σ),
DDQN-AD, PDWOLF-PHC, Q(σ), SQL, and Q controllers being
0.019, 0.021, 0.025, 0.030, 0.051, and 0.076 Hz, respectively. Thus, it
can be seen that after continuous step load perturbations, SQ(σ) exhibits
better recovery capability and dynamic control performance, reduced
frequency deviation, and improved system stability.

To further verify the control performance of the proposed algorithm
under more realistic operating conditions, random square wave
perturbations (with an amplitude not exceeding 1,000MW) are
introduced to simulate the random load disturbances caused by the
integration of unknown distributed renewable energy sources. The
control performance of the six controllers is tested and shown in
Figure 5. Compared to the other five algorithms, SQ(σ) can reduce
ACE values by 16.38%–63.59%, increase CPS1 by 0.03%–0.72%, and

FIGURE 5
Control performance of the six algorithms under square wave perturbation.

FIGURE 6
Diagram of the Hubei power grid interconnection regional
architecture.
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decrease |Δf| by 9.62%–60.72%under random square wave perturbations
with stronger robustness and dynamic optimization capabilities.

4.2 Four-region model of the Hubei power
grid

Based on the interconnected network structure diagram of the
Hubei power grid shown in Figure 6 (Xi et al., 2022), a four-region

AGC model of the Hubei interconnected power grid is configured
with the integration of wind, solar, and other distributed energy
sources to verify the practical engineering application of SQ(σ). The
configured four-region AGC model is shown in Figure 7, including
thermal power plants, hydropower plants, and pumped storage
power plants, as well as wind and photovoltaic power generation.
In this model, ΔPg represents the output of the prime motor, and
Tp = 20 s, T12,23,34,42 = 15.9, 7.96, 15.9, 7.96 s, and Kp = 0.0029 HZ.
The distributed energy sources, such as wind power, photovoltaic

FIGURE 7
Four-regional interconnection Hubei power grid model.

FIGURE 8
SQ(s) control performance under white noise disturbance.
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power, and electric vehicles, are considered the disturbance loads
with their typical daily output power, which do not participate
in LFC.

In order to simulate the regular sudden increase and decrease of
load in a strong stochastic environment and the uncertainty of the
power system under the strong random disturbance, the random
square waves and random white noise disturbances are introduced
into the four-region AGCmodel through the designed experiments to
evaluate the control performance of Q(σ), DDQN-AD, PDWOLF-
PHC, Q(σ), Q, and SQL algorithms.

The control performance of the SQ(σ) controller under white
noise disturbances is shown in Figure 8. It can be observed that
under irregular load variations, the proposed controller can always
track the load disturbances well, and the relevant control
performance indicators remain within the accepted range.

Compared to the other algorithms, it can be seen from Table 2 that
|Δf| is reduced by 3.70%–44.68%, ACE by 9.85%–42.04%, and CPS1 is
increased by 0.11%–0.71% via the SQ(σ) algorithmunder random square
wave perturbations. |Δf| andACE can be reduced by 44.44%–66.67% and
by 38.65% via SQ (σ) under random white noise disturbances.

5 Conclusion

To target the increasingly strong random disturbances due to the
large-scale integration of renewable energy sources in the power grid,
this paper proposes an SQ(σ) algorithm with the combination of full
sampling and full expectation updates from the perspective of
distributed AGC. A parameter σ is introduced to balance the full
sampling and expectation updates to deal with the issues of
convergence difficulty and low convergence accuracy in the off-
policy algorithms. Simulation experiments have been performed
under various operating conditions, identifying that the proposed
algorithm can achieve multi-region optimal and rapid coordination
with higher convergence accuracy, faster convergence speed, and
lower ACE and frequency deviation. Further on-going research

would focus on the application of RL with imitation learning to
facilitate the transition from off-line pre-learning to on-line learning.
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TABLE 2 Control performance with different algorithms.

Disturbance type Method/Index |Δf|/Hz |ACE|/MW CPS1/%

Random square wave perturbation SQ(σ) 0.0104 11.709 199.512

DDQN-AD 0.0108 16.411 199.286

PDWOLF-PHC 0.0131 18.926 198.859

Q(σ) 0.0157 12.989 198.562

SQL 0.0174 20.203 198.263

Q 0.0188 18.691 198.107

Random white noise SQ(σ) 0.0025 2.536 199.971

DDQN-AD 0.0045 4.247 199.769

PDWOLF-PHC 0.0056 5.132 199.504

Q(σ) 0.0064 5.997 199.040

SQL 0.0073 6.228 198.838

Q 0.0075 9.766 197.083
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