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Existing vehicle-to-grid (V2G) applications are aimed at the power grid and the
government. It is difficult for charging stations (CSs) to execute the schedules in
real time. To figure out the multiple-layer energy management from the
perspective of CS, the dispatch potential assessment model is constructed
based on the EV users’ charging demand and Minkowski summation. And the
optimal energy management schedule model of CS with ESS is proposed
considering peak shaving and valley filling under the time-in-use tariff. Besides,
the real-time charging controlmodel of EVs in CS is designed under the premise of
meeting the charging needs. The simulation results show that the proposed
strategy can promote CS operation revenues and track the scheduling plan of
CS. The arbitrage of tariffs and peak shaving ancillary services are realizedwhile the
charging loads of CSs are smoothed by the charging/discharging of ESS. The
proposed strategy is applicable for the CS aggregators and can help the grid
operators for dispatch schedules.
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1 Introduction

Electric vehicles (EVs) have been developed rapidly, but their charging load will burden
the power grid. However, EVs can store power, and the charging behavior can be guided and
controlled (Ahmadian et al., 2020). In recent research, there have been many papers that
focus on vehicle-to-grid (V2G) applications (Ke et al., 2022) and policies to support EV
owners and charging station (CS) aggregators (Mao et al., 2018).

V2G strategies involve many factors, such as EV ownership, charging characteristics
(Yang et al., 2017), user charging habits, CS configuration, distribution network capacity,
multi-level charging management (Heilmann and Friedl, 2021), grid network planning, and
macro policies (Wu et al., 2020). There have been many studies on V2G applications. In
Mozafar et al. (2018), the power exchange for V2G is calculated using the constant power
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method to discharge the energy at the workplace. In Ke et al. (2023),
a model predictive control strategy is designed for the charging
station, and CS is reconfigured as a virtual synchronous generator.
In Raoofat et al. (2017), wind power is smoothed by the hierarchical
controller for the demand response of EVs. The exact approach for
charging EVs is proposed to promote the stability of microgrids
(Shams et al., 2019). These researchers have paid attention to the
V2G control strategies for the promotion of power grid stability
(Nikam and Kalkhambkar, 2021). Moreover, the V2G services are
implemented through EV owners, CSs, and aggregators. All of these
entities are sensitive to profits and costs.

Therefore, strong and stable targets accompanied by purchase
price incentives and flexible benefits are needed to promote EVs and
CS participation in the ancillary services. In addition, more attention
should be paid to raising EV consumers’ awareness aboutV2G (Kester
et al., 2018), and the development of energy storage in CSs will unlock
new possibilities for V2G services (Shaukat et al., 2018). The profits of
CS aggregators, grid operators, and EV users are coordinated in Zhou
and Sun (2020) with multi-objective optimization. A favorable
charging strategy for each grid-connected EV is designed in Tiwari
et al. (2020) to satisfy both load profile smoothening and the economic
and social interests of EV owners. These optimization models and
energy management strategies are in terms of the grid or multiple
entities, including EV owners, the government, power grid operators,
and CS aggregators. Since the cost of retrofitting charging piles and
charging control are borne by CS aggregators, CS aggregators are the
protagonists of EV real-time charging control. Using charging tariff
compensation and maximizing the benefits of CSs is the only way to
maximize charging load shifting in practice.

Furthermore, energy storage can be equipped inCSs to copewith the
time-sharing tariff (Nikam and Kalkhambkar, 2021; W et al., 2018). In
Liu et al. (2023), energy management is integrated with photovoltaics
and the energy storage system (ESS). Charging prices are clarified with
the types of EVs. In ZHANG and GU (2017), the designed energy
management system of CS with photovoltaics and ESS can deal with
both off-grid and grid-connected operations to improve the economy
and stability of the grid. When the charging load of CS has reached and
even exceeded the planning capacity, CS tends to configure ESS to
escalate the regulation capacity of CSs and satisfy the increasing charging
demand of EVs (Koolman et al., 2021). In Rehman et al. (2021), the
optimizationmodel of an extremely fast CS is proposed to size ESS. How
to realize the peak shaving auxiliary service of CSs and the real-time
charging control of EVs by taking into account the randomly arriving
and charging demands of EVs and the ESS configured in CSs still needs
further research.

The current operation efficiency of CSs is low, and the profitability
is poor (Wu et al., 2019), which does notmatch the trend of large-scale
development of EVs and the dynamic electricity market price. The
charging management and pricing strategy of CS based on the mean-
field game theory is designed (Lin et al., 2023). In order to design the
energy management system for CSs, Shafie-Khah et al. (2018)
proposed the innovative two-level model, the first of which models
EVs’ characteristics, including EV owners’ uncertainties. The second
layer allows these CS aggregators to participate in energy reservation
and regulation distribution markets by optimally managing their EVs.
However, the flexible electricity price and the randomness of EVusers’
arrival and charging demand make it impossible to apply the energy
management system exactly to CS. The coordination with ESS is also

complicated with the peak shaving, valley filling, and the power supply
in CS. In order to promote EVs to participate in the transaction of
electricity market, the decentralized transactive energy mechanisms
for EVs and distributed energy resources (DERs) have been
researched, such as bilateral trading and the auctioning mechanism
between aggregators and EVs (Qi et al., 2023), decentralized
mechanism for transactive energy control (Pan et al., 2020), and
peer to peer (P2P) electricity trading (Yang et al., 2022; Lyu et al.,
2021). However, the aforementioned studies are carried out from the
perspective of the EV scheduling strategy and transactionmechanism,
taking into account the blockchain, privacy security, and other factors
in the decentralized transaction. Moreover, these studies do not take
into account the impact of the randomness of EV users on the
proposed scheduling plan in the process of real-time scheduling
control. In other words, the actual charging process of EVs is
difficult to be carried out in full accordance with the transaction
mechanism and obtained optimal dispatch schedule.

Therefore, CS aggregators need to develop a daily energy
management system in multiple layers considering the equipped
ESS. On one hand, CSs need to act as loads to purchase power from
the grid to meet the charging requirements of EVs. On the other
hand, they can also act as a controllable source of power to the grid
to provide auxiliary services for peak shaving and valley filling. ESS
in CS can assist in tracking the scheduling plan. Moreover, it can also
carry out peak and valley arbitrage. It is necessary to construct a
comprehensive energy management strategy from the perspective of
the CS aggregator to cope with the stochasticity of user charging and
ancillary services from the grid. Thus, the support ability and
profitability for charging demand and CS operation can be
guaranteed. The main contributions of this paper are as follows:

(1) The dispatch potential assessment model is designed based on
the EV users’ charging demand and Minkowski summation.
The dispatchability of the EV group in CS is estimated to serve
as the model basis for subsequent dispatch planning and
charging control models.

(2) The optimal energy management strategy of CS with ESS
considers the peak shaving and valley filling under the time-
in-use tariff. The ESS in CS assists in tracking dispatch schedules
and is also controlled for arbitrage. The dispatch schedules are
generated to maximize the profits of CS. The CS aggregator
makes the capacity declaration in the ancillary service market
with the generated dispatch schedule.

(3) The real-time charging control model of EVs in CS is proposed.
Under the premise of meeting the charging needs of EV users,
the charging power and duration of EVs in CS are appropriately
regulated to promote the operating revenues of CS. Therefore,
market clearing is achieved, and the real-time regulation of CS is
aligned with the optimized schedules for energy management.

The remaining chapters of this paper are organized as follows: in
Section 2, the dispatch potential assessment model of EV users is
presented. In Section 3, the optimal energy management strategy
of CS with ESS considering peak shaving and valley filling is
proposed under the time-in-use tariff. The real-time charging
control model of EVs in CS is constructed in Section 4. Section 5
presents the simulation results and discussion. The conclusions are
summarized in Section 6.
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2 Dispatch potential estimation model
of EV users

To participate in the electricity ancillary service market, the
dispatchable capacity needs to be defined for CSs, including
regulated power and regulated capacity. Thus, a computational
model of the dispatchable capacity of EV clusters within a CS is
developed as follows.

2.1 Minkowski summation

In the Minkowski sum theory, the variable space is considered
an Euclidean space, where each variable is a vector with a dimension
equal to that of the variable space. By combining these vectors
linearly, a new vector can be obtained, whose length represents the
overall contribution of all variables. The Minkowski sum is a
summation method applied to the Euclidean space to find the
space expansion set of multiple variables with the same definition
domain (Lee et al., 1998; Lien, 2008), and its basic expression is
shown in Eq. 1.

A ⊕ B � a + b|a ∈ A, b ∈ B{ }, (1)
whereA ⊕ B is denoted as the Minkowski sum of the variable spaces
A and B. a and b are the elements in the variable spaces A and B,
respectively.

The premise of the Minkowski summation is that the two
variable spaces, A and B, have the same definition domain, and
their physical nature is the expansion set of multiple spaces (Yan and
Chirikjian, 2015). As shown in Figure 1, after Minkowski’s
summation of the two variable spaces a and b, the envelope of
the variable sums A and B can be obtained. This idea can be used to
aggregate clusters of flexible resources, such as EVs, into a
generalized energy storage device.

2.2 CS dispatchability estimation method

Although different EVs are connected to the grid at different
periods, the Boolean variables can extend the EV’s grid-connection
decision-making behavior to the same time-defined domain. Thus,
EVs in CS can be equated to the controllable load with the help of the

Minkowski sum. When using the Minkowski sum to aggregate the
charging demand parameters and schedulable capacity of EVs, it can
maintain the EV users’ own constraints.

For EV users’ travel, the uncertainty is described by the
following parameters: initial SoC, upper and lower limits of
expected SoC, and expected arrival and departure time (Ke et al.,
2022). In this way, the maximum power of the charging pile and the
battery capacity of the EVs are fixed. At first, the mathematical
model of a single EV is as follows:

0≤pc
v,t ≤pc

vXv,t,∀v ∈ NEV,∀t ∈ T, (2)
sv,t � Xv,t sv,t−1 + ηcpc

v,tΔt( ), (3)
sv Xv,t ≤ sv,t ≤ svXv,t,∀v ∈ NEV,∀t ∈ T, (4)

Xv,t � 0,∀t ∉ Tarrival
v , Tleave

v[ ],
1,∀t ∈ Tarrival

v , Tleave
v[ ],{ (5)

where the subscript v is the EV number and Xv,t denotes the state of
EV v in period t. When the value is 1, it means that EV is in CS;
otherwise, the EV has not arrived or left. Tv

arrival and Tv
leave denote

the period when EV arrives and leaves CS, respectively. pv,t
c denotes

the charging power of EV, and pc
v is the upper limit. T denotes the

whole scheduling cycle. NEV denotes the collection of EVs in CS. sv,t
denotes the state of the EV battery capacity, the upper and lower
safety boundaries of which are sv and sv , respectively. ηc denotes the
charging efficiency, and Δt is the scheduling interval.

The characteristics of the EV arrival time, leaving time, and the
period staying in the CS are taken into account, and the envelope
space is obtained using the Minkowski additive processing equation
as follows:

0≤∑
v∈NEVp

c
v,t ≤∑

v∈NEVp
c
vXv,t,∀t ∈ T, (6)

∑
v∈NEVsv,t � ∑

v∈NEVsv,t−1 + ηcΔt∑
v∈NEVp

c
v,t

+∑
v∈NEV sv,arrivalXv,t Xv,t −Xv,t−1( )( )

−∑
v∈NEV sv,leaveXv,t−1 Xv,t−1 −Xv,t( )( ),∀t ∈ T,

(7)

∑
v∈NEV sv Xv,t ≤∑

v∈NEVsv,t ≤∑
v∈NEVsvXv,t,∀t ∈ T, (8)

where sv,arrival, and sv,leave denote the initial charge of EV and the
charge when it leaves CS, respectively.

Definition.

Pc
t � ∑

v∈NEVp
c
v,t, (9)

St � ∑
v∈NEVsv,t, (10)

Pc
t � ∑

v∈NEVp
c
vXv,t, (11)

St � ∑
v∈NEV sv Xv,t, (12)

St � ∑
v∈NEVsvXv,t, (13)

ΔSt � ∑
v∈NEV sv,arrivalXv,t Xv,t −Xv,t−1( )( )

−∑
v∈NEV sv,leaveXv,t−1 Xv,t−1 −Xv,t( )( ), (14)

where Pc
t , St, P

c
t , St , and St denote the upper and lower safety

boundaries of charging power, charge power, the upper limit of
charging power, and the charge power of the EV cluster, respectively.
ΔSt indicates the capacity of change in EV cluster power due to the
entry and exit of EVs to and from CS.

FIGURE 1
Schematic representation of Minkowski summation.
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The Minkowski summation is essentially projecting the variable
space of an individual EV into a hypercube space, while preserving
the constraints between the variables reduces the dimensionality of
the model by compressing an EV into a generalized energy storage
device. The hypercube space contains all feasible charging and
dispatchability decisions for the EV cluster, and the parameters
of the generalized storage device Pc

t ,ΔSt, St , St{ } determine the
potential of the EV cluster to act as a flexible load storage
resource. Pc

t ,ΔSt, St , St{ } are therefore considered the
dispatchable capacity of CS. The CS dispatchability schematic
representation is shown in Figure 2. The charging power can be
regulated down or up to participate in the dispatch of CS. This
modeling of CS dispatchability is a criterion and discriminator for
assessing whether CSs and aggregators meet the threshold for
participation in ancillary services.

3 Optimal schedule model of CS
with ESS

There is a high degree of stochasticity in the charging behavior of
EVs at CSs. When CSs are equipped with ESS, CS aggregators need
to develop a daily dispatch plan in conjunction with the grid and
ESS. On one hand, CSs purchase power from the grid to meet the
charging demand of EVs. On the other hand, they can also act as a
controllable source of power to the grid to provide auxiliary services
for peak and valley shaving. ESS equipped in CS can assist the CS to
track the optimal scheduling plan. Moreover, it can also carry out
peak and valley arbitrage. Under the premise of meeting the
charging needs of EV users, the charging power and duration of
EVs in CS can also be appropriately adjusted to promote the
operating revenues of CS. Therefore, an optimization model
study is carried out to obtain the optimal charging scheduling
model of CS. The dispatch schedule is optimized and further
declared to the higher grid and the electricity market.

3.1 CS operation revenue objectives

By analyzing the access conditions and requirements for CSs to
participate in the power purchase market, the profitability and
optimization allocation methods of the energy management
system are obtained with the equipped ESS. The operation
revenues of CSs are promoted when the CS meets the threshold
for participation in ancillary services. The optimal dispatch schedule
includes the schedule profiles of CS, the charging and discharging

schedules of ESS for peak and valley shaving, and the power supply
for CS and arbitrage.

The charging dispatchable capacity of the CS’s EV user clusters,
i.e., the adjustable boundary, as well as the configuration scheme of
chargers and ESS in CS, are determined. Based on this, the total
charging power of CS needs to be constrained within the adjustable
boundary to establish an intraday dispatch model. In other words,
CS operators need to satisfy the constraints on the power scheduling
plan, charging piles, and ESS in CS when formulating the power
scheduling plan. The maximum revenue of CS is taken as the
objective of the optimal scheduling strategy, and the specifics of
the intraday charging scheduling model are constructed as follows:

CS operation revenue objective functionW is modeled in Eq. 15.

minW � W1 +W2 −W3 −W4 −W5, (15)
whereW1 is the ESS maintenance cost,W2 is the cost of purchasing
electricity for CSs, W3 is the ESS arbitrage benefits, W4 is the
ancillary service capacity compensation benefits, and W5 is the
EV charging benefits.

In detail, the expressions of W1–W5 are as follows:

1) ESS maintenance cost W1:

W1 � ∑
t∈T

closs ηcstoP
c
t,stoΔt + Pd,in

t,sto + Pd,arb
t,sto + Pd,+

t,sto/ηdsto( )Δt( ), (16)

where closs is the loss cost of charging and discharging unit power of
ESS, RMB/MWh; ηsto

c and ηsto
d are the efficiencies of charging and

discharging of ESS, and Pt,sto
c is the part of electricity purchased by

CS for charging energy storage, i.e., the charging power of ESS.
Pt,sto

d,in, Pt,sto
d,arb, and Pt,sto

d,+ are the charging power of ESS used for
charging EVs in CS, the discharging power of ESS used for energy
arbitrage, and the discharging power of ESS used for auxiliary service
of peak shaving in the time period, respectively.

2) Cost of purchasing electricity for CSs W2:

W2 � ∑
t∈T

pe
t Pb

t,CS + Pb,−
t,CS( )Δt, (17)

where pt
e is the commercial and industrial tariff for the time period;

Pt,CS
b is the power purchased by CS during the non-auxiliary service

time period; and Pt,CS
b,- is the amount of electricity used by CS to

participate in the valley filling auxiliary service during the time
period t.

3) Benefits of ESS arbitrage W3:

W3 � ∑
t∈T

pe
t Pd,arb

t,sto + Pd,+
t,sto( )Δt, (18)

where Pt,sto
d,arb and Pt,sto

d,+ are the discharging power of ESS used for
energy arbitrage and the discharging power of ESS used for auxiliary
service of peak shaving in the time period t, respectively.

4) Ancillary services capacity compensation benefit W4:

W4 � δ+t P
b,+
t,CS + δ−t P

b,−
t,CS, (19)

where δt
+ and δt

- are the compensatory prices for peak shaving
auxiliary services and valley filling auxiliary services at time period t,
respectively. Pt,CS

b,+ and Pt,CS
b,- are the power capacity of CS in peak

shaving and valley filling auxiliary services.

FIGURE 2
CS dispatchable power schematic representation.
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5) EV charging benefit W5:

W5 � ∑
t∈T

pt,fpPt,fp + pt,spPt,sp, (20)

where pt,fp and pt,sp are the EV charging price of fast chargers and
slow chargers, respectively. Pt,fp and Pt,sp are the total charging power
capacity of fast chargers and slow chargers in the time period t,
respectively.

Therefore, the optimal schedule plan is obtained for CS
aggregators, considering the ESS arbitrage and peak and valley
shaving, as well as the charging load. Capacity declaration refers
to the situation where the aggregator participating in the power
market transaction needs to predict and declare the trading capacity
on the previous day. The revenues of the CS operation are promoted,
and the obtained optimal dispatch schedule of CSs can be used for
the declaration of capacity in the electricity market.

3.2 Charger constraints

To catch the optimal dispatch schedule, the chargers and ESS in
CS are constrained by the configurations and dispatchability. The
constraints are as follows:

1) Dispatchability boundary of charging load constraints:

Dt
min ≤ ηcfpPt,fp+ηcspPt,sp ≤Dt

max,∀t ∈ T, (21)

where Dt
min and Dt

max are the down boundary and upper boundary
of the dispatchable charging load in CS, respectively. ηfp

c and ηsp
c are

the charging efficiency of fast chargers and slow chargers in CS,
respectively. Pt,fp and Pt,sp are the total charging power capacity of
fast chargers and slow chargers in the time period t, respectively.

2) Charging power constraints of fast chargers and slow chargers:

0≤Pt,fp ≤Pfp
maxnfp,∀t ∈ T, (22)

0≤Pt,sp ≤Psp
maxnsp,∀t ∈ T, (23)

where Pfp
max and Psp

max are the maximum charging power of fast
chargers and slow chargers, respectively. nfp and nsp are the
configured number of fast chargers and slow chargers, respectively.

3) Baseline load constraints:

∑
t∈T

ηcfpPt,fp + ηcspPt,sp( ) � ∑
t∈T

Dt, (24)

where Dt is the baseline load of CS in time period t.

4) Power balance constraints in CS:

Pb
t,CS + Pb,−

t,CS + Pd,in
t,sto � Pt,fp + Pt,sp + Pc

t,sto,∀t ∈ T, (25)
where Pb

t,CS is the purchased power of CS in the non-ancillary
services period t and Pb,-

t,CS is the power capacity of CS in valley
filling. Pt,sto

d,in is the discharging power of ESS for the EV charging
load in CS. Pt,sto

c is the charging power of ESS in time period t.
Therefore, the summation of the power purchased by CS during the
non-ancillary service time, the power participating in the valley
filling ancillary services, and the power discharged from ESS used for
charging EVs in CS is equal to the summation of the total charging

power of the fast chargers, the total charging power of the slow
chargers, and the charging power of ESS in CS.

3.3 ESS constraints

3.3.1 ESS charging power capacity constraints
The maximum power of ESS is proportional to the capacity, and

α is the proportional coefficient. The constraint is given in Eq. 26.

0≤Pc
t,sto ≤ αSsto, (26)

where Pt,
c
sto is part of the power purchased by CS during the period t to

charge ESS, α is the power-to-capacity ratio of ESS, i.e., it is assumed that
the charging and discharging power of ESS is directly proportional to the
capacity, and Ssto is the capacity of ESS configured in CS.

3.3.2 ESS discharging power constraints

0≤Pd,in
t,sto + Pd,arb

t,sto + Pd,+
t,sto ≤ αSsto, (27)

where Pt,sto
d,in, Pt,sto

d,arb, and Pt,sto
d,+ are the charging power of ESS

used for charging EVs in CS, the discharging power of ESS used for
energy arbitrage, and the discharging power of ESS used for auxiliary
service of peak shaving in period t, respectively.

3.3.3 ESS power transfer balance constraints

Et+1,sto � Et,sto + ηcstoP
c
t,stoΔt −

1
ηdsto

Pd,in
t,sto + Pd,arb

t,sto + Pd,+
t,sto( )Δt, (28)

E0,sto � βSsto, (29)
where Et,sto is the charge of ESS in period t. ηsto

c and ηsto
d are the

charging and discharging efficiencies, respectively. E0,sto is the initial
state of charge (SoC) when the dispatch begins. β is the ratio between
the initial SoC and the capacity of ESS.

3.3.4 ESS state of charge safety constraints
To maintain the SoC of the ESS in a steady and safe operation

state, SoC is supposed to stay in the ideal interval to increase the
recycling life and reduce the operation and maintenance costs.

γ−stoSsto ≤Et,sto≤ γ+stoSsto, (30)
where γsto

- and γsto
+ are the safety lower boundary and safety upper

boundary of ESS, respectively.

3.3.5 ESS state logic constraints

0≤ Pc
t,sto ≤MΚt,sto, (31)

0≤Pb
t,CS + Pb,−

t,CS ≤MΚt, (32)
0≤Pd,in

t,sto + Pd,arb
t,sto + Pd,+

t,sto ≤M 1 − κt,sto( ), (33)
0≤Pd,arb

t,sto + Pd,+
t,sto ≤M 1 − κt( ), (34)

κt,sto ∈ 0, 1{ }, κt ∈ 0, 1{ }, (35)
where Eqs 31, 32 are used for avoidance of simultaneous charging
and discharging of ESS. Eqs 33, 34 are used to avoid a situation
where a CS operator purchases power from the grid, while ESS
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discharges to the grid.M is a sufficiently large positive real number.
κt,sto and κt are Boolean variables.

3.4 Peak and valley shaving constraints

3.4.1 Regulated power/capacity access constraints
for CS participation in the ancillary services market

Dt − Pt,fp + Pt,sp( ) + αSsto − P ≥M κ+t − 1( ),∀t ∈ T+, (36)
∑

i∈T Dt,i − Pt,i,fp + Pt,i,sp( )[ ] + Ssto − S ≥M κ+t − 1( ),∀t ∈ T+,

(37)
where P and S are the regulated power and capacity demands for
CSs to participate in the peak shaving ancillary services market,
respectively. T is the amount of the regulated CSs. T+ is the set of
peak shaving ancillary service periods, and κt

+ is the corresponding
Boolean variable. Eqs 36, 37 enable the configured capacity of ESS to
meet the regulated power and capacity access criteria for CSs to
participate in the ancillary service market.

Pt,fp + Pt,sp + αSsto − P ≥M κ−t − 1( ),∀t ∈ T−, (38)
Pt,fp + Pt,sp + Ssto − S ≥M κ−t − 1( ),∀t ∈ T−, (39)

where T- is the set of valleys filling ancillary service periods and κt
− is

the corresponding Boolean variable.
Eqs 38, 39 enable the configured ESS capacity to meet the

regulated power and regulated capacity access conditions for CS
participation in the valley filling ancillary services market.

3.4.2 Peak shaving constraints of CS

0≤Pb,+
t,CS ≤Mκ+t ,∀t ∈ T+, (40)

0≤Pc
t,sto ≤M 1 − κ+t( ),∀t ∈ T+, (41)

Pκ+t ≤Pb,+
t,CS ≤Dt − Pt,fp + Pt,sp( ) + Pd,+

t,sto,∀t ∈ T+, (42)
κ+t ∈ 0, 1{ },∀t ∈ T+, (43)

where Eqs 40, 41 are used to avoid a situation where a CS purchases
power from the grid to charge ESS while participating in peak shaving
ancillary services. Eq. 42 constrains CS’s participation in peak shaving
ancillary services to the sum of charging load reductions and ESS
discharges. κt

+ represents the corresponding Boolean variables.

3.4.3 Valley filling constraints of CS

0≤Pb,−
t,CS ≤Mκ−t ,∀t ∈ T−, (44)

0≤Pd,arb
t,sto ≤M 1 − κ−t( ),∀t ∈ T−, (45)

Pκ−t ≤Pb,−
t,CS ≤Pt,fp + Pt,sp + Pc

t,sto,∀t ∈ T−, (46)
κ−t ∈ 0, 1{ },∀t ∈ T−, (47)

where Eqs 44, 45 are used to avoid a situation where a CS sells power to
the grid by discharging ESS while participating in valley filling ancillary
services. Eq. 46 constrains CS’s participation in valley filling ancillary
services to the incremental amount of power purchased from the grid by
CS. κt

- represents the corresponding Boolean variables.

The dispatch framework of CS aggregators to participate in the
ancillary services is shown in Figure 3. When CS participates in peak
shaving and valley filling, the guiding signal is the corresponding
time–tariff peak–valley price declared by the dispatching center. The
constraints considered in the strategy proposed in this paper are
mainly related to constraints such as the status of the EVs and the
dispatch schedule of CS. Therefore, the energy management of CS
equipped with ESS can be modeled, and the optimal schedule plan of
CS is obtained by solving the optimization model. EV users will sign
the charging service agreements with the aggregator, and the
aggregator will declare the dispatchability capacity to the dispatch
center. Then, the dispatch center will allocate the dispatch
commands to the energy management system of CS. Meanwhile,
the aggregator platform will help the energy management system of
CS to cope with the optimal dispatch schedule and real-time control.

4 Real-time charging control model of
EVs in CS

When the CS operates to track the optimal dispatch schedule,
inaccuracies may occur because of the randomness of the EV users’
charging behaviors. Therefore, in order to promote the accuracy of
schedule tracking and maximize the operating revenues of CS, it is
necessary to design a corresponding real-time charging control model
for EVs in the CS. The arrival/leaving time, charging demand of EVs,
information on the electricity price, and charging and discharging status
of ESS in the CS are taken into account in the control model. Under the
premise of meeting the charging demand of EV users, the appropriate
adjustment of the charging power and duration of the EVs is required in
the actual operation of CS. Moreover, it can provide CS with the
regulation margin to participate in the ancillary service, such as
shaving the peaks and filling up the valleys.

Therefore, the real-time charging control model for EVs in the
CS is established. The minimization of the operation cost of CS is the
control objective. The dispatch scheduling tracking errors, states of
the chargers, ESS, and EV charging demand satisfaction are taken as
the constraints of the control model.

4.1 Energy management constraints

The CS operation revenue objectives are similar to the objectives
in Section 3 A. However, the variables Pt,sto

c, Pt,CS
b, and Pt,CS

b−;
Pt,CS

b,+, Pt,sto
d,in, and Pt,sto

d,arb; and Pt,sto
d,+, Pt,fp, and Pt,sp are the real-

time values. The values are determined by the number of incoming
EVs in CS and their charging demands. During the charging control,
the chargers and the power balance constraints are explained in the
following section.

4.1.1 Fast charger power constraint

0≤Pt,fch
≤ nfpPfp

max, (48)

where Pt,f_ch is the total charging power of fast chargers in period t,
nfp is the number of fast chargers configured in CS, and Pfp

max is the
maximum charging power of fast chargers.
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4.1.2 Slow charger power constraint

0≤Pt,sch ≤ nspPsp
max, (49)

where Pt,s_ch is the total charging power of slow chargers in period t,
nsp is the number of slow chargers configured in CS, and Psp

max is the
maximum charging power of slow chargers.

4.1.3 EV chargers’ power balance constraints

∑Nev

i�1 P
i
t,cha � Pt,s ch + Pt,f ch, (50)

where Pi
t,cha is the charging power of the ith EV in period t.

The ESS constraints are similar to Section 3 C. The only
difference is the variables, which are real-time values instead of
schedule values.

4.1.4 CS power purchase and sale balance
constraints

Bt + Bt,ad2 + St,dis1 � Pt,s ch + Pt,f ch + St,cha, (51)

where Bt is the purchased power of the CS charging load, Bt,ad2 is the
purchased power of CS for valley filling, St,dis1 is the discharging
power of ESS for EVs’ charging, and St,cha is the charging power of
ESS for arbitrage and valley filling.

4.1.5 CS dispatch plan following constraints

LB Pcs
t,load ≤Pt,sch + Pt,fch

+ St,cha ≤UBP
cs
t,load, (52)

where St,cha is the charging power of ESS, and LB_Pt,load
cs and UB_

Pt,load
cs are the lower and upper boundaries of the schedule plan

curve of the CS, respectively.

4.2 EV users’ charging demand constraints

4.2.1 SoC of the EV transformation constraint

SoCt+1,EVi � SoCt,EVi + Δtηc Pt,EVi( )
EEV

, (53)

where EEV is the battery capacity of EV, Δt is the dispatch time
interval, SoCt,EVi is the SoC of the ith EV in CS at period t, and Pt,EVi
is the real-time charging power of the ith EV.

4.2.2 Charging power of the EV constraint by
chargers

Pt,s ch + Pt,f ch � ∑Nt

i�1Pt,EVi, (54)

where Nt is the amount of parking EVs in CS at period t. The
charging power of all EVs is equal to the power of chargers.

FIGURE 3
Dispatch framework of CS aggregators to participate in the ancillary services.
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4.2.3 SoC expectation constraint

SoCi
tout ≥ SoC

i
e, (55)

where tout is the period when ith EV leaves CS, SoCtout
i is the SoC of

ith EV when it leaves, and SoCe
i is the expected SoC of ith EV.

4.3 Flowchart of CS optimal energy
management

Therefore, as shown in Figure 4, the optimal energy
management for CS is realized in the following procedure.
The energy management consists of two parts. The first part
is the optimal schedule, and the second is the real-time charging
control.

In the optimal schedule, the configuration of CS is determined,
including the capacity of ESS and the number of fast chargers and
slow chargers. Next, the EV typical parameters are sampled, and the
dispatch potential of CS is estimated. Thus, CS can be judged
whether to participate in the ancillary services. When CS reaches
the threshold of ancillary services, the solution of CS daily schedule
plan optimization can be obtained by business solvers, such as
Gurobi and Cplex. In the real-time charging control, the EV
random parameters, including the EV battery states and expected
charging behaviors, are collected from the EV users to analyze the
random EV charging demands, and the real-time intraday dispatch
is supposed to approach the optimal schedule plan. Thus, the real-
time charging control model is solved for optimal energy
management schedule obtention, and EVs can be charged to
their expected SoC while the revenues of CS can be optimized.

5 Simulation results and discussions

5.1 Simulation scenarios and parameters

In this section, the parameters of the CS model are obtained by
the normal distributions. The parameters of EVs and CS are shown
in Table 1. The dispatchability of CS is estimated first. Then, the
optimal schedule plan of CS with ESS is obtained by the proposed
method. The configuration of CS is shown in Table 2, and p is the
basic EP. Finally, the model parameters of real-time charging control
are shown in Table 3, including the incoming EVs and ESS. The real-
time dispatch and control are realized to follow the schedule plan
and promote the revenues of the CS aggregators. In all simulation
scenarios, the time interval is 15 min.

5.2 Simulation results and discussions

5.2.1 CS modeling
It is assumed that 100 EVs enter and exit CS throughout the

day. The real-time energy boundaries and maximum power of
CS are obtained, and the results are shown in Figures 5, 6.
Δt∑N

i�1(P max − Pcha
i,k ) means the energy boundary that EVs are

charged to the expected SoCemax with the available power and
then maintain SoC.∑N

i�1P
cha
i,k are the dispatchable charging power

FIGURE 4
Flowchart of CS optimal energy management.

TABLE 1 EV and CS parameters for dispatchability estimation.

Name Value

Charger power maximum Pmax 20 kW

Initial SoCin N (0.4, 0.1)

Expected SoCemin N (0.5, 0.1)

Expected SoCemax N (0.7, 0.2)

Arrival time Tin N (12, 2)

Leaving time Tout N (18, 2)

EV battery capacity CEV 60 kWh

TABLE 2 CS configuration parameters.

Name Value

Fast charger maximum power 120 kW

Slow charger maximum power 11 kW

ESS capacity 5 MW

Power–capacity ratio 0.8

ESS SoC safety lower boundary 15%

ESS SoC safety upper boundary 90%

Initial ESS SoC 40%

Charging/discharging efficiency 95%

Fast charging price 1.2*p

Slow charging price 1.1*p
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of CS at each time interval, according to the dispatch potential
estimation method. When the estimated dispatchability capacity
is larger than the thresholds of the ancillary services, the
dispatch schedule of CS is optimized by the proposed energy
management strategy.

5.2.2 Optimal dispatch schedule
According to the basic EP, peak, and valley shaving

compensation EP shown in Figure 7, the optimal schedule model
of the CS is solved by Gurobi to develop an intraday dispatch plan,
the results of which are shown in Figures 8–11.

Based on the power purchase tariffs, and the upper and lower
bounds under the baseline load, the daily load dispatch curves for CS
are obtained in Figure 8. The optimal schedule curve is between the
upper and lower bounds of the baseline load. Furthermore, a power
purchase and sale plan for CS and a charging and discharging plan
for ESS are developed to enable charging scheduling at CS, as shown
in Figures 9, 10. The corresponding SoC of the equipped ESS is

shown in Figure 11. ESS can realize the arbitrage, peak–valley
shaving, and charging power supply of CS.

5.2.3 Real-time control
Using the real-time control model, CS can realize the tracking of

dispatch scheduling, the charging and discharging plan of ESS in CS,
as well as the charging of the EV users in CS. However, the premise
that the charging process of EV users is fully controllable is difficult
to achieve. Therefore, real-time charging control is designed to track
the CS scheduling plan and optimize the operation and energy
management of CS when EV users are partially controllable. The
charging and discharging control of equipped ESS is controlled by
coordinating with the EV’s charging load. Furthermore, ESS is also
controlled for arbitrage, peak shaving, and valley filling ancillary
services.

TABLE 3 EV parameters for real-time control.

Name Value

Incoming EV number 30

EV battery capacity 120 kWh

EV SoC safety lower boundary 20%

EV SoC safety upper boundary 95%

Arrival time Tin N (10, 2)

Leaving time Tout N (18, 2)

Initial SoCin N (0.3, 0.2)

Expected SoCe 0.9 + N (0.1, 0.1)

FIGURE 5
Real-time dispatchable energy boundary of CS.

FIGURE 6
Real-time dispatchable power boundary of CS.

FIGURE 7
Electricity price.
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The optimal schedule plan is fundamental to real-time control
during intraday dispatch. The proposed model is solved with the
parameters in Table 3 to obtain the real-time charging control

results of EV in CS, as shown in Figures 12–17. In Figure 12, the
real-time dispatch of CS includes the non-valley filling power
purchase, which is the power for ESS charging and EV charging.
The peak shaving power sale is the discharging power of ESS to the
grid. The valley shaving power purchase is the charging power of
ESS and the chargers from the grid. Thus, the real-time states and
power of ESS are shown in Figure 13.

As shown in Figure 14, the real-time scheduling curves of the
purchase and sale of electricity in CS are determined by the given CS
load curves, as well as the corresponding real-time charging and
discharging curves of ESS and real-time power curves of ESS. The
control models satisfy the power demand of CS and provide the
peak-peaking filling auxiliary services. Furthermore, based on the
arrival and departure time of each EV and the SoC-related
parameters, the charging power versus SoC variation curve is
obtained, as shown in Figures 15, 16. The charging process of EV
is precisely controlled to cope with the dispatch demands of CS EMS
and the charging demands of EV.

All the simulations are carried out by the Gurobi solver via a
desktop with 11th Gen Intel (R) Core (TM) i5-1135G7 at 2.40 GHz,
16 GB, Windows 10 operation system plus MATLAB R2021a. The
algorithm calculation time is 4.822 s when solving the optimal

FIGURE 8
Day scheduled load curves of CS.

FIGURE 9
CS power purchase schedule.

FIGURE 10
ESS charging–discharging schedule.

FIGURE 11
SoC of the ESS schedule curve.

FIGURE 12
Real-time dispatch of CS.
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scheduling plan model. The optimization algorithm calculation time
in the real-time charging control of EVs and ESS in CS is 129.235 s
considering the changes in the number of EVs entering and leaving

CS, as well as the consistency of the scheduling time interval. In the
optimal dispatch schedule and real-time control model, the
algorithm calculation time is much less than 15 min, and the
computational burden is affordable for the energy management
strategy.

5.2.4 Result verification
For CS equipped with ESS, the capacity of ESS is also an important

factor affecting the operation strategy. To further check out the
effectiveness and accuracy of the proposed energy management
strategy, the impact of the ESS capacity change on the
implementation of scheduling strategies and control algorithms is
also shown in Table 4. The results show that not all the EVs’
charging demands are satisfied. The real-time control can chase the
schedules and still generate similar profits. In the optimization model of
the CS dispatch schedule, peak shaving and valley filling income,
arbitrage income, and power purchase cost are all related to energy
storage and charging load. When the number of EVs and related
parameters remain unchanged, the charging income is almost not
affected by the ESS capacity. As for the entire CS operation, the total
revenue will increase when the ESS capacity increases.

FIGURE 13
Real-time state and power curves of ESS.

FIGURE 14
Real-time CS dispatch curve following.

FIGURE 15
Real-time fast/slow charger power.

FIGURE 16
Real-time EV SoC.

FIGURE 17
Real-time EV charging power.
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The errors between EV real-time SoC and expectations are
calculated in Figure 18. The control error of the expected SoC of
EVs in CS can be controlled within 20% under the current charging

dispatch capacity constraints of CS. Because the objective of the
charging control model is aimed at the maximum profits of the CS
aggregators, not including the penalty term regarding the charging

TABLE 4 Optimal objective values and comparisons with different ESS capacities.

ESS capacity Layers W1 W2 W3 W4 W5 Total

3 MWh Schedules 4,501.6 10,239.4 7,739.5 13,962.3 3,995.1 10,957.9

3 MWh Real-time control 4,458.6 10,140.4 7,639.5 13,596.3 4,005.1 10,642.9

4 MWh Schedules 5,977.3 12,774.2 10,557.5 18,389.6 3,995.1 14,191.7

4 MWh Real-time control 5,934.3 12,799.2 10,581.5 18,023.6 4,005.1 13,876.7

5 MWh Schedules 7,388.3 15,425.3 13,499.2 22,681.8 3,995.2 17,362.6

5 MWh Real-time control 7,338.3 15,448.9 13,522.9 22,299.3 4,005.1 17,040.1

10 MWh Schedules 14,338.9 28,868.5 28,404.3 44,019.4 3,995.1 33,163.2

10 MWh Real-time control 14,331.9 28,683.5 28,231.3 43,622.4 4,005.1 32,833.2

15 MWh Schedules 21,388.4 42,114.7 43,113.4 65,357.2 3,995.1 48,963.8

15 MWh Real-time control 21,331.2 42,136.5 43,136.4 64,959.3 4,005.1 48,641.5

The bold values means better profit.

FIGURE 18
Errors between EV real-time SoC and expectations.

FIGURE 19
Errors of CS dispatch curve following.

FIGURE 20
Peak and valley shaving revenues of CS.

FIGURE 21
Real-time load curves and boundaries.
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SoC expectations. When the power is applied to the ancillary
services, the profits will increase, and the schedule plan of CS
can be better followed, which brings advantages for the power
balance of the grid.

In Figure 19, the dispatch curve following the error of CS
is constrained within 10%. The benefit indicator of peak
shaving and valley filling can be derived from Figure 20,
and the all-day peak shaving and valley filling benefit of the
charging station is ¥14,540 under the current parameter settings.
As for the scheduling capacity and charging demand in CS, the
error is also controlled within 20%, and the results are shown in
Figure 21.

Therefore, the proposed energy management can estimate the
dispatchability capacity of CS and then produce the optimal
schedule plans for CS and equipped ESS. Finally, real-time
control can also be realized by the charging and discharging of
ESS, as well as the charging process control of the incoming EVs.
The profits of the CS aggregators are optimized.

6 Conclusion

This paper proposes an optimal energy management strategy for
CS operations considering peak and valley shaving. The dispatch
potential assessment model is designed based on the EV users’
charging demand and stochastics. The dispatchability of the EV
group in the CS is estimated for the dispatch planning and
charging control model. The dispatch schedule is generated to
maximize the profits of CS. The real-time charging control model
of EVs in CS is exerted under the premise of meeting the charging
needs of EV users. Therefore, the market clearing is realized, and the
real-time regulation within CS is optimized for energy management.
The proposed strategy can help the CS aggregator fulfill the
interactions between the grid and EV users. The ancillary service
requirements, charging needs of EV users, and improved energy
management are negotiated to increase the CS aggregator’s
revenues. It assists in improving the reliability and economics of
grid dispatch operations. In the future, it is possible to guide users’
charging behavior by adjusting the service charge for EV users’
charging power. The peak and valley tariffs and the charging
service charge are implemented as tariff price signals to guide
users’ charging behavior. Therefore, the schedule can be executed
and the controlling process of users’ charging is achieved using the
real-time charging control model. The revenues of the CS aggregators
are improved. The larger scale of CS cluster aggregation and related
network constraints will be considered in the follow-up study to
establish a higher-level energy management system.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

BQ: conceptualization, investigation, writing–original draft,
and writing–review and editing. MS: conceptualization and
writing–original draft. SK: conceptualization, supervision,
writing–original draft, and writing–review and editing. FZ: data
curation and writing–original draft. BL: investigation and
writing–original draft. JW: writing–original draft. JT:
writing–original draft. JY: conceptualization and writing–original draft.

Funding

The authors declare financial support was received for the
research, authorship, and/or publication of this article. This
research was funded by Science and Technology Program of
China Southern Power Grid Co., Ltd. (No.031200KK52222008).

Conflict of interest

Authors BQ, FZ, JW, and JT were employed by China Southern
Power Grid Co., Ltd. Authors MS and BL were employed by
Zhaoqing Power Supply Bureau of Guangdong Power Grid Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from China
Southern Power Grid Co., Ltd. The funder had the following
involvement in the study: Conceptualization, Investigation, Data
curation.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Ahmadian, A., Mohammadi-Ivatloo, B., and Elkamel, A. (2020). A Review on Plug-in
Electric Vehicles: introduction, current status, and load modeling techniques. J. Mod.
Power Syst. Clean Energy 8 (3), 412–425. doi:10.35833/MPCE.2018.000802

Heilmann, C., and Friedl, G. (2021). Factors influencing the economic success of grid-
to-vehicle and vehicle-to-grid applications—a review and meta-analysis. Renew.
Sustain. Energy Rev. 145, 111115. doi:10.1016/j.rser.2021.111115

Ke, S., Chen, L., Yang, J., Li, G.,Wu, F., Ye, L., et al. (2022). Vehicle to everything in the
power grid (V2eG): a review on the participation of electric vehicles in power grid
economic dispatch. Energy Convers. Econ. 3, 259–286. doi:10.1049/enc2.12070

Ke, S., Yang, J., Chen, L., Member, S., Fan, P., Shi, X., et al. (2023). A frequency control
strategy for EV stations based on MPC-VSG in islanded microgrids. IEEE Trans. Ind.
Inf., 1–12. doi:10.1109/TII.2023.3281658

Kester, J., Noel, L., Zarazua de Rubens, G., and Sovacool, B. K. (2018). Policy
mechanisms to accelerate electric vehicle adoption: a qualitative review from the
Nordic region. Renew. Sustain. Energy Rev. 94, 719–731. doi:10.1016/j.rser.2018.
05.067

Koolman, G., Stecca, M., and Bauer, P. (2021). “Optimal battery energy storage system
sizing for demand charge management in EV fast charging stations,” in Proceedings of

Frontiers in Energy Research frontiersin.org13

Qian et al. 10.3389/fenrg.2023.1278480

https://doi.org/10.35833/MPCE.2018.000802
https://doi.org/10.1016/j.rser.2021.111115
https://doi.org/10.1049/enc2.12070
https://doi.org/10.1109/TII.2023.3281658
https://doi.org/10.1016/j.rser.2018.05.067
https://doi.org/10.1016/j.rser.2018.05.067
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1278480


the IEEE Transp. Electrif. Conf. Expo, ITEC, Chicago, IL, USA, June, 2021, 588–594.
doi:10.1109/ITEC51675.2021.9490138

Lee, I. K., Kim, M. S., and Elber, G. (1998). Polynomial/rational approximation of
Minkowski sum boundary curves. Graph. Model. Image process. 60 (2), 136–165.
doi:10.1006/gmip.1998.0464

Lien, J. M. (2008). Covering Minkowski sum boundary using points with
applications. Comput. Aided Geom. Des. 25 (8), 652–666. doi:10.1016/j.cagd.2008.
06.006

Lin, R., Chu, H., Gao, J., and Chen, H. (2023). Charging management and pricing
strategy of electric vehicle charging station based on mean field game theory. Asian
J. Control, 1–11. doi:10.1002/asjc.3173

Liu, Y., Jian, L., and Jia, Y. (2023). Energy management of green charging
station integrated with photovoltaics and energy storage system based on
electric vehicles classification. Energy Rep. 9, 1961–1973. doi:10.1016/j.egyr.
2023.04.099

Lyu, C., Jia, Y., and Xu, Z. (2021). Fully decentralized peer-to-peer energy sharing
framework for smart buildings with local battery system and aggregated electric
vehicles. Appl. Energy 299, 117243. doi:10.1016/j.apenergy.2021.117243

Mao, T., Lau, W. H., Shum, C., Chung, H. S. H., Tsang, K. F., and Tse, N. C. F. (2018).
A regulation policy of EV discharging price for demand scheduling. IEEE Trans. Power
Syst. 33 (2), 1275–1288. doi:10.1109/TPWRS.2017.2727323

Mozafar, M. R., Amini, M. H., and Moradi, M. H. (2018). Innovative appraisement of
smart grid operation considering large-scale integration of electric vehicles enabling
V2G and G2V systems. Electr. Power Syst. Res. 154, 245–256. doi:10.1016/j.epsr.2017.
08.024

Nikam, V., and Kalkhambkar, V. (2021). A review on control strategies for
microgrids with distributed energy resources, energy storage systems, and
electric vehicles. Int. Trans. Electr. Energy Syst. 31 (1), 1–26. doi:10.1002/2050-
7038.12607

Pan, Z., Yu, T., Li, J., Qu, K., Chen, L., Yang, B., et al. (2020). Stochastic transactive
control for electric vehicle aggregators coordination: a decentralized approximate
dynamic programming approach. IEEE Trans. Smart Grid 11 (5), 4261–4277.
doi:10.1109/TSG.2020.2992863

Qi, C., Liu, C. C., Lu, X., Yu, L., and Degner, M. W. (2023). Transactive energy for EV
owners and aggregators: mechanism and algorithms. IEEE Trans. Sustain. Energy 14 (3),
1849–1865. doi:10.1109/TSTE.2023.3253162

Raoofat, M., Saad, M., Lefebvre, S., Asber, D., Mehrjedri, H., and Lenoir, L. (2017).
Wind power smoothing using demand response of electric vehicles. Int. J. Electr. Power
Energy Syst. 99, 164–174. doi:10.1016/j.ijepes.2017.12.017

Rehman, W. U., Bo, R., Mehdipourpicha, H., and Kimball, J. (2021). Sizing energy
storage system for energy arbitrage in extreme fast charging station. IEEE Power Energy
Soc. Gen. Meet. 2021, 1–5. doi:10.1109/PESGM46819.2021.9638078

Shafie-Khah, M., Siano, P., Fitiwi, D. Z., Mahmoudi, N., and Catalão, J. P. S. (2018).
An innovative two-level model for electric vehicle parking lots in distribution systems
with renewable energy. IEEE Trans. Smart Grid 9 (2), 1506–1520. doi:10.1109/TSG.
2017.2715259

Shams, H., Sadeghfam, A., Rostami, N., and Tohidi, S. (2019). Exact approach for
charging of PEVs with V2G capability to improve micro-grid reliability. IET Gener.
Transm. Distrib. 13 (16), 3690–3695. doi:10.1049/iet-gtd.2018.6752

Shaukat, N., Khan, B., Ali, S., Mehmood, C., Khan, J., Farid, U., et al. (2018). A survey
on electric vehicle transportation within smart grid system. Renew. Sustain. Energy Rev.
81, 1329–1349. doi:10.1016/j.rser.2017.05.092

Tiwari, D., Sheikh, M. A. A., Moyalan, J., Sawant, M., Solanki, S. K., and Solanki, J.
(2020). Vehicle-to-Grid integration for enhancement of grid: a distributed resource
allocation approach. IEEE Access 8, 175948–175957. doi:10.1109/ACCESS.2020.
3025170

Wu, J., Martin, L. J., Northington, F. J., and Zhang, J. (2019). Oscillating-gradient
diffusion magnetic resonance imaging detects acute subcellular structural changes in the
mouse forebrain after neonatal hypoxia-ischemia. Zhongguo Jixie Gongcheng/China
Mech. Eng. 30 (11), 1336–1348. doi:10.1177/0271678X18759859

Wu, X., Xu, Y., He, J., Wang, X., Vasquez, J. C., and Guerrero, J. M. (2020).
Pinning-based hierarchical and distributed cooperative control for AC microgrid
clusters. IEEE Trans. Power Electron. 35 (9), 9865–9885. doi:10.1109/TPEL.2020.
2972321

Wu, Y., Ravey, A., Chrenko, D., and Miraoui, A. (2018). “A real time energy
management for EV charging station integrated with local generations and energy
storage system,” in Proceedings of the IEEE Transp. Electrif. Conf. Expo, ITEC, Long
Beach, CA, USA, June, 2018, 977–984. doi:10.1109/ITEC.2018.8450235

Yan, Y., and Chirikjian, G. S. (2015). Closed-form characterization of the Minkowski
sum and difference of two ellipsoids. Geom. Dedicata 177 (1), 103–128. doi:10.1007/
s10711-014-9981-3

Yang, J., Wiedmann, T., Luo, F., Yan, G.,Wen, F., and Broadbent, G. H. (2022). A fully
decentralized hierarchical transactive energy framework for charging EVs with local
DERs in power distribution systems. IEEE Trans. Transp. Electrif. 8 (3), 3041–3055.
doi:10.1109/TTE.2022.3168979

Yang, T., Xu, X., Guo, Q., Zhang, L., and Sun, H. (2017). EV charging behaviour
analysis and modelling based on mobile crowdsensing data. IET Gener. Transm. Distrib.
11 (7), 1683–1691. doi:10.1049/iet-gtd.2016.1200

Zhang, X.-Y., and Gu, S.-X. (2017). Research on energy management strategy of
connecting and off-grid charging station with photovoltaic and storage system.
Annu. Int. Conf. Electron. Electr. Eng. Inf. Sci. 131, 208–216. doi:10.2991/eeeis-17.
2017.29

Zhou, T., and Sun, W. (2020). Research on multi-objective optimisation coordination
for large-scale V2G. IET Renew. Power Gener. 14 (3), 445–453. doi:10.1049/iet-rpg.2019.
0173

Frontiers in Energy Research frontiersin.org14

Qian et al. 10.3389/fenrg.2023.1278480

https://doi.org/10.1109/ITEC51675.2021.9490138
https://doi.org/10.1006/gmip.1998.0464
https://doi.org/10.1016/j.cagd.2008.06.006
https://doi.org/10.1016/j.cagd.2008.06.006
https://doi.org/10.1002/asjc.3173
https://doi.org/10.1016/j.egyr.2023.04.099
https://doi.org/10.1016/j.egyr.2023.04.099
https://doi.org/10.1016/j.apenergy.2021.117243
https://doi.org/10.1109/TPWRS.2017.2727323
https://doi.org/10.1016/j.epsr.2017.08.024
https://doi.org/10.1016/j.epsr.2017.08.024
https://doi.org/10.1002/2050-7038.12607
https://doi.org/10.1002/2050-7038.12607
https://doi.org/10.1109/TSG.2020.2992863
https://doi.org/10.1109/TSTE.2023.3253162
https://doi.org/10.1016/j.ijepes.2017.12.017
https://doi.org/10.1109/PESGM46819.2021.9638078
https://doi.org/10.1109/TSG.2017.2715259
https://doi.org/10.1109/TSG.2017.2715259
https://doi.org/10.1049/iet-gtd.2018.6752
https://doi.org/10.1016/j.rser.2017.05.092
https://doi.org/10.1109/ACCESS.2020.3025170
https://doi.org/10.1109/ACCESS.2020.3025170
https://doi.org/10.1177/0271678X18759859
https://doi.org/10.1109/TPEL.2020.2972321
https://doi.org/10.1109/TPEL.2020.2972321
https://doi.org/10.1109/ITEC.2018.8450235
https://doi.org/10.1007/s10711-014-9981-3
https://doi.org/10.1007/s10711-014-9981-3
https://doi.org/10.1109/TTE.2022.3168979
https://doi.org/10.1049/iet-gtd.2016.1200
https://doi.org/10.2991/eeeis-17.2017.29
https://doi.org/10.2991/eeeis-17.2017.29
https://doi.org/10.1049/iet-rpg.2019.0173
https://doi.org/10.1049/iet-rpg.2019.0173
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1278480

	Multiple-layer energy management strategy for charging station optimal operation considering peak and valley shaving
	1 Introduction
	2 Dispatch potential estimation model of EV users
	2.1 Minkowski summation
	2.2 CS dispatchability estimation method

	3 Optimal schedule model of CS with ESS
	3.1 CS operation revenue objectives
	3.2 Charger constraints
	3.3 ESS constraints
	3.3.1 ESS charging power capacity constraints
	3.3.2 ESS discharging power constraints
	3.3.3 ESS power transfer balance constraints
	3.3.4 ESS state of charge safety constraints
	3.3.5 ESS state logic constraints

	3.4 Peak and valley shaving constraints
	3.4.1 Regulated power/capacity access constraints for CS participation in the ancillary services market
	3.4.2 Peak shaving constraints of CS
	3.4.3 Valley filling constraints of CS


	4 Real-time charging control model of EVs in CS
	4.1 Energy management constraints
	4.1.1 Fast charger power constraint
	4.1.2 Slow charger power constraint
	4.1.3 EV chargers’ power balance constraints
	4.1.4 CS power purchase and sale balance constraints
	4.1.5 CS dispatch plan following constraints

	4.2 EV users’ charging demand constraints
	4.2.1 SoC of the EV transformation constraint
	4.2.2 Charging power of the EV constraint by chargers
	4.2.3 SoC expectation constraint

	4.3 Flowchart of CS optimal energy management

	5 Simulation results and discussions
	5.1 Simulation scenarios and parameters
	5.2 Simulation results and discussions
	5.2.1 CS modeling
	5.2.2 Optimal dispatch schedule
	5.2.3 Real-time control
	5.2.4 Result verification


	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


