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Tropical cyclone (TC) track forecasting is critical for wind risk assessment.
This work proposes a novel probabilistic TC track forecasting model based on
mixture density network (MDN) and multitask learning (MTL). The existing NN-
based probabilistic TC track prediction models focus on directly modeling the
distribution of the future TC positions. Multitask learning has been shown to
boost the performance of single tasks when the tasks are relevant. This work
divides the probabilistic track prediction task into two sub-tasks: a deterministic
prediction of the future TC position and a probabilistic prediction of the residual
between the deterministic prediction and the actual TC location. The MDN is
employed to realize the probabilistic prediction task. Since the target values
of the MDN in this work are the residuals, which depend on the prediction
result of the deterministic task, a novel training method is developed to train
the MTL model properly. The proposed model is tested against statistical and
other learning-based models on historical TC data. The results show that the
proposed model outperforms other models in making probabilistic predictions.
This approach advances TC track forecasting by integrating MDN and MTL,
showing promise in enhancing probabilistic predictions and improving disaster
preparedness.
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1 Introduction

Tropical cyclones are among the most destructive natural disasters and often come
with storm surges, high waves, and extreme winds. TCs spawned in the western North
Pacific have massive impacts on the economies and inhabitants of Chinese coastal
areas. For instance, typhoon Lekima in 2019 caused approximately 51.53 billion CNY

Abbreviations: AIC, Akaike’s information criterion; ANN, Artificial neural network; CDF, Cumulative
distribution function; CLIPER, Climatology and persistence; CLIPER5, 5-day climatology and
persistence; CMA, China meteorological administration; CNN, Convolutional neural network; DL, Deep
learning; FC, Fully connected; HAV, Haversine distance error; LASSO, Least absolute shrinkage and
selection operator; MAE, Mean absolute error; MAPE, Mean absolute percentage error; MDN, Mixture
density network; MLP, Multilayer perceptron; MLR, Multiple linear regression; MSE, Mean square error;
MTL, Multitask learning; NHC, National hurricane center; NLL, Negative log-likelihood; PI, Prediction
interval; RMSE, Root mean square error; RNN, Recurrent neural network; SGD, Stochastic gradient
descent; TC, Tropical cyclone.
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losses and affected 14.02 million people across ten provinces in
China (Zhang et al., 2019). Given the severity of TC impacts, it is
necessary to have TC risk assessment tools to inform preemptive
actions that can mitigate economic losses and save lives.

TC track prediction is crucial for assessing TC risks. With
the aid of satellites, precise tracking of TCs across the globe has
become feasible in recent decades. Notably, the accuracy of TC track
forecasting models has significantly improved over the past few
decades. The National Hurricane Center (NHC) reports a decline
in the average 24-h TC track forecast error from ∼130 nmi to ∼30
nmi since 1970 (Cangialosi, 2021).

Numerous efforts have been made to enhance TC track
prediction models, which fall into four primary categories:
statistical, numerical, ensemble, and deep learning (DL) models.
Statistical models, also termed analytical models, were among
the earliest operational guidance systems (Hope and Neumann,
1970). These models leverage historical TC data for statistical
analysis. The 1998 climatology and persistence (CLIPER5) model
(Aberson, 1998), a stepwise regression model, captures the
nonlinear relationship between input predictors and predictands.
The CLIPER5 model’s performance often serves as a benchmark.
Prior to 1990, statistical models typically outperformed numerical
models. Numerical models, complexmathematical models executed
on supercomputers, process atmospheric physics and motion
equations (Cangialosi, 2021). Advances in computing power,
satellite data assimilation, and model physics have bolstered the
accuracy of numerical models. Since approximately 1990, numerical
models have surpassed statistical models in forecasting accuracy.
Ensemble forecasts, which combine multiple predictions, yield
improved outcomes (Leith, 1974; Mullen and Baumhefner, 1994;
Rappaport et al., 2009; Simon et al., 2018). This approach has
been formally integrated into operational TC track forecasting.
Even a basic consensus technique, averaging forecasts from
multiple models, outperforms the best-performing model within
the ensemble (Rappaport et al., 2009). More advanced consensus
methods adaptively weight models based on their historical error
characteristics to mitigate biases (Simon et al., 2018). Presently,
many meteorological agencies worldwide produce official forecasts
using extensive ensemble models. Recently, DL-based TC track
forecasting has shown to be a plausible alternative to the operating
models (Alemany et al., 2019).

TC risk assessment requires substantial track data. Although
numerical and ensemble models are accurate, their computational
demands are high. In risk assessment, lightweight statistical or DL
models are preferred over dynamical or ensemble models.

The early TC risk assessment models used single-site
probabilistic simulation (Russell, 1971; Tryggvason et al., 1976;
Batts et al., 1980). In these models, Site-specific TC traits were
parameterized via statistical distributions, with Monte Carlo
simulations calculating site-specific TC risks. Vickery et al.
developed a risk model based on stepwise multiple linear
regression (MLR) track models (Vickery et al., 2000). They achieve
probabilistic track predictions by adding a random error term
to MLR models. Subsequent work has refined MLR-based track
models (James and Mason, 2005; Hall and Jewson, 2007; Zhang and
Nishijima, 2012; Snaiki andWu, 2020). Another common statistical
approach is using Markov chains (Risi, 2004; Emanuel et al., 2006).
These models link TC position at each step to both the previous TC

parameters and the probability distribution of motion at the current
position and time.

Although the effectiveness of statistical track models is well
appreciated, the simplicity of these models makes it difficult to
capture the dynamic of hurricane movement very well. Recently, DL
has been widely adopted in the energy industry (Fu et al., 2020; Fu,
2022; Fu and Niu, 2022; Fu and Zhou, 2022). DL models has shown
to be a powerful alternative tool in cyclone track forecasting since
they can learn complex relationships between the input features
and the target values. While it may take a long time to train the
DL models, the predictions can be made almost instantly once
the models are properly trained. The existing DL-based TC track
models often take time series (Alemany et al., 2019) or multi-modal
data as input. Recurrent neural networks (RNNs) are shown to be
very effective at learning temporal relationships from time series
data (Alemany et al., 2019; Lian et al., 2020; Bose et al., 2021), while
convolutional neural networks (CNNs) are considered the best tool
for learning spatial relationships from satellite images (Fang et al.,
2022a; Qin et al., 2022).

When integrated with TC genesis, intensity, decay, and wind
field models, the TC track model becomes a valuable tool in TC
risk assessment Snaiki and Wu (2020). In the energy industry,
applications of risk assessment methods using TC track models
encompass assessing annual exceedance probabilities for wind speed
Emanuel et al. (2006), directional design wind speed Snaiki andWu
(2020), and maximum sustained wind speed during specific TC
events at critical locations, such as wind farms Zhao et al. (2021).

DLmodels exhibit superior performance compared to statistical
models (Alemany et al., 2019), but only a few of them are designed
for probabilistic predictions. A common approach is to generate
TC initial conditions randomly and make deterministic predictions
based on these conditions (Fang et al., 2022b), which can be
combined with any deterministic model. However, this method
does not consider uncertainty along the track. Mixture Density
Networks (MDN) are better for modeling TC track uncertainties
as they directly learn the parameter distributions (Dabrowski et al.,
2020; Hao et al., 2021). In this work, we adopt MDN similarly to
MLR-based statistical models, splitting the track prediction into
deterministic and random error tasks, learned by a fully connected
NN and MDN respectively. Multitask learning (MTL) efficiently
trains both tasks simultaneously. Additionally, an improved training
strategy based on uncertainty-based loss weights (Cipolla et al.,
2018) is proposed.

Themain contributions of this paper are summarized as follows:

• A novel stochastic TC track model based on MDN and MTL
is proposed. The multitasking of making deterministic and
probabilistic predictions improves the probabilistic prediction
performance of the model.
• A novel multitask training strategy is developed for the
proposed model to learn the two tasks where the target value
of one task depends on the prediction results of the other task.
• The proposed approach is tested on historical TC data against
statistical models and single-task NN models. The results show
that the proposed model outperforms other models in making
probabilistic TC track predictions. An example risk assessment
system illustrates the model’s application in TC risk assessment
for offshore wind farms.
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The rest of this paper is structured as follows: The data
preprocessing and details of the proposedMTLmodel are presented
in Section 2. Section 3 illustrates the results of the case studies.
Conclusions and future work are highlighted in Section 4.

2 Materials and methods

For TC risk assessment, it is desirable to obtain the probability
density distribution rather than the exact location of the TC track.
This section presents the probabilistic prediction methodology for
TC tracks. Instead of directly predicting the distribution of the future
TC position, this work divides the probabilistic track prediction task
into two sub-tasks: a deterministic prediction of the TC position
and a probabilistic prediction of the residual.The probability density
distribution of the predicted TC position can then be expressed as
the sum of the two predictions.

2.1 Problem formulation

We start by defining the probabilistic TC track prediction
problem:

Definition 2.1: TC Track: A TC track X is composed of a series
of consecutive spatial-temporal points X = {X0,X1,… ,XT}, where X0
is the initial spatial-temporal point. Each spatial-temporal point Xi
contains several parameters that essentially characterize the TC track:
Xi = [λi,ϕi,pci], where λi, ϕi are the latitude and longitude coordinates,
and pci is the central pressure of the TC center.
PROBLEM 2.1: Given a TC track X = {X0 ,X1, …, XT}, the goal is
to predict the distribution of λT+1,ϕT+1, which are the latitude and
longitude coordinates of the TC center in the next time step.

In this work, we only consider one-step-ahead predictions
since only the sets of predictors for one-step-ahead TC predictions
in the Northwest Pacific are verified by existing works. The
predictor sets for different timescale predictions will be different,
and extensive data analysis is required to obtain the best sets of
predictors for different models. Nevertheless, the proposed model
can be easily modified to make multiple-step-ahead predictions by
fitting multiple models to the data with corresponding predictors.
Nonetheless, errors would inevitably accumulate over time for
multiple time steps or extended prediction horizons.

2.2 Data preprocessing

In this study, historical TC track data was employed to
train the proposed prediction model. The primary data source
is the tropical cyclone best track dataset from the China
Meteorological Administration (CMA) (Ying et al., 2014; Lu et al.,
2021), encompassing TCs originating in the Western North Pacific
region since 1949. Figure 1 gives a visualization of all the tracks in
the dataset. The raw dataset provides 6-hourly track and intensity
information. Additionally, for TCs making landfall after 2017,
extra 3-hourly records are available. To ensure consistent TC track
representation, the 3-hourly data were excluded. A data cleaning
process was then performed to remove records containing extreme

FIGURE 1
Visualization of the CMA tropical cyclone best track dataset.

values (λ > 55° N, ϕ > 180° E or V > 30 m/s) and records with
missing data. The translation speed V is calculated utilizing the
haversine formula:

a = sin2(
Δϕ
2
)+ cosϕ1 ⋅ cosϕ2 ⋅ sin

2(Δλ
2
) (1)

hav = 2 ⋅R ⋅ arctan(√ a
1− a
) (2)

V = hav
Δt

(3)

Where R = 6,371 km is the earth radius, Δt = 6 h is the time
difference between two consecutive records, and hav denotes the
haversine distance between the TC centers of two consecutive
records.

To construct the feature space for the track prediction model,
the latitude, longitude, and central pressure of each record were
extracted from the raw data. These values were then used to
calculate the predictors selected by the climatology and persistence
(CLIPER) models (Knaff et al., 2003; Hao et al., 2021). Two sets of
predictors are calculated for the latitude and longitude prediction,
respectively. The predictors are then normalized and split into
training, validation, and test datasets with a ratio of 7:2:1. A more
detailed description of the predictors is given in Table 1. The
problem is solved using two separate models for longitude and
latitude predictions.

2.3 Artificial neural network

The deterministic prediction task can be described as a
regression problem, which can be solved using artificial neural
networks (ANNs or NNs). NNs are layered mathematical models
that mimic the human brain’s way of processing data. The most
basic form of ANN is a multilayer perceptron (MLP), which is a
fully connected (FC) NN with only feed-forward connections. An
MLP consists of an input layer, one or more hidden layers, and an
output layer, as shown in Figure 2. In MLP, each node in one layer
connects to every node in the next layer with associated weight (w)
and bias (b) parameters. An activation function is applied to each
connection after adding up the weighted input and the bias. The
activation functions are responsible for introducing non-linearity to
the NN models.
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TABLE 1 List of predictors used by the proposedmodel.

Model Predictor Description

longitude x1 Initial longitude

x2 Longitude at −6 h

x3 Longitude at −12 h

x4 Longitude at −24 h

x5 Longitude difference in past 12 h

x6 Zonal motion at −12 h

x7 Zonal motion at −24 h

x8 Zonal motion from −24 h to −12 h

latitude x9 Initial latitude

x10 Latitude at −6 h

x11 Latitude at −12 h

x12 Latitude at −24 h

x13 Longitude difference in past 12 h

x14 Longitude difference in past 24 h

x15 Zonal motion at −12 h

x16 Zonal motion at −24 h

x17 Squared zonal motion at −24 h

x18 Meridional motion at −12 h

x19 TC central pressure at −6 h

To train the neural network for regression tasks, themean square
error (MSE) loss between the training target and the predicted value
is minimized:

θ* = argmin
θ

Lθ = argmin
θ

1
N

N

∑
i=1
(yi − ŷi)

2 (4)

where θ is the set of trainable parameters of the NN (including w
and b),N is the number of training data, y is the target value, and ŷ is
the NN prediction output.Theminimization problem can be solved
by gradient-based algorithms, such as stochastic gradient descent
(SGD) (Robbins andMonro, 1951), and the trainable parameters are
updated through back-propagation (Rumelhart et al., 1986).

2.4 Mixture density network

While the basic NN is sufficient for the deterministic prediction
task, it does not fit the probabilistic prediction task very well. MDN
is employed to enable probabilistic predictions with NNs.TheMDN
was first proposed in (Bishop, 1994) in 1994. In MDN, a mixture
model is combined with the NN model to predict a conditional
probability distribution.

The mixture model typically consists of Kmixture components,
with the components belonging to the same parametric distribution
functions but with different parameters. A common choice of
distribution family for the mixture components is the Gaussian
distribution:

N (y|μ,σ) = 1
σ√2π

e−
(y−μ)2

2σ2 (5)

where μ is the mean and σ is the standard deviation of the
distribution. Each component has its associated mixture weights,
which is the probability of choosing this component when sampling
from the mixture distribution. The weights of the components add
up to 1. The Gaussian mixture model can be expressed as:

p (y|x) =
K

∑
i=1

πi (x)Ni (y|μi (x) ,σ
2
i (x)) (6)

K

∑
i=1

πi = 1 (7)

Where π is the weight of themixture component and p (y|x) denotes
the conditional probability distribution of the output y given input x.
To sample from a mixture model, we first sample a value I from the
categorical distribution parametrized by vector π = (π1,π2,… ,πK).
Then, we sample fromGaussian distribution parametrized by μI and
σI to get the result value.

In the MDN, the output of the NN is fed to the mixture model
to determine the parameters of themixturemodel.The negative log-
likelihood (NLL) loss is minimized on the training dataset to obtain
the optimal parameters for the mixture model:

θ*MDN = argmin
θMDN

LθMDN
= argmin

θMDN

N

∑
i=1
−logp(yi|xi) (8)

where θMDN is the set of trainable parameters of theMDN (including
w,b,π,μ and σ), and x,y are from the training set {xi,yi}

N
i=1.

2.5 Multitask learning model

MTL (Caruana, 1997) can improve the prediction performance
of related tasks by learning several tasks at the same time. MTL
is considered a type of transfer learning. The commonality across
related tasks can be used as an inductive bias in MTL, which can
improve the generalization ability of individual tasks.

In contrast to prevalent neural network-based TC track
prediction models that concentrate solely on either deterministic
or probabilistic predictions, our proposed MTL model takes a
pioneering stride. By concurrently mastering both tasks, our model
aims to elevate probabilistic prediction performance. Of particular
note is our approach in the probabilistic prediction task, wherein
we forecast the residuals between deterministic predictions and
true values, as opposed to directly predicting the TC track’s
distribution.This strategy, often simpler andmore potent, effectively
addresses systematic errors inherent in deterministic predictions.
The probabilistic residual model adeptly handles these errors,
enhancing overall predictive reliability.

MTLs are usually achieved by sharing hidden representations
extracted by NN layers among tasks. The basic form of parameter
sharing is called hard parameter sharing, which is achieved by
sharing the low-level hidden layers between all tasks while keeping
task-specific output layers. In this work, the task-specific output
layers for the deterministic and probabilistic prediction tasks are
a fully connected layer and an MDN, respectively. The network
structure of the proposed MTL network is illustrated in Figure 3.
This architectural decision is driven by the desire to extract and
utilize common features that are relevant to both deterministic
and probabilistic predictions. By sharing intermediate features
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FIGURE 2
Illustration of an MLP structure with K hidden layers.

FIGURE 3
Illustration of the proposed MTL model structure.

and concurrently training for both deterministic and probabilistic
predictions, we aim to harness the synergistic benefits of the
MTL framework, leading to a more robust and accurate TC track
prediction model.

The simplest way to train theMTLmodel is to minimize a linear
combination of the individual task losses:

θ*MTL = argmin
θMTL

LθMTL
= argmin

θMTL

T

∑
i=1

αiLi (θMTL) (9)

where θMTL is the set of trainable neural network weights of the
MTL model, T is the number of tasks, and α is the weight of the
task-specific loss.

However, in this work, the target of the probabilistic prediction
is the residual between the deterministic prediction results and the
true values.Therefore the NLL loss given by Eq. 8 cannot be directly
applied. The combined loss of the proposed tasks is calculated by:

LθMTL
= α1LDet + (1− α1)LProb (10)
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LDet =
1
N

N

∑
i=1
(yi − ŷi)

2 (11)

LProb =
N

∑
i=1

logp(yi − ŷi|xi) (12)

Where LDet is the deterministic task loss, LProb is the probabilistic
task loss, ŷ is the output prediction of the deterministic task, α1 is
a hyperparameter that decides the weights of different loss terms,
and x,y are from the training set {xi,yi}

N
i=1. Once the model is

properly trained, the probabilistic prediction of the TC track can
be made by adding up the prediction results of the two sub-
tasks. According to (Cipolla et al., 2018), the weights of different
loss terms should be adjusted based on the uncertainty of the
tasks. Cipolla et al. (2018) suggests that the task uncertainty should
be modeled using Gaussian distribution. However, in our model,
the uncertainty of the deterministic task is already captured by
the probabilistic task using the mixture model. Therefore, in this
work, we simply make α1 a trainable parameter and minimize
the variance of different loss terms to avoid trivial values for α1
(e.g., α1 = 0 or 1):

(θMTL,α1)* = argmin
θMTL,α1

LθMTL,α1 (13)

LθMTL,α1 = α1LDet + (1− α1)LProb

+ (α1LDet −L)
2 + ((1− α1)LProb −L)

2 (14)

L =
α1LDet + (1− α1)LProb

2
(15)

Where L denotes the mean of the loss terms.

3 Case studies

3.1 Case description

To validate the performance of the proposed model, the
following cases are considered in the case studies:

• MLR: a MLR model with a random error term. The random
error term is a logistic distribution that estimates the residual
of the MLR model. The model can be expressed as:

TABLE 2 Longitude prediction evaluation results.

R2 RMSE MAE MAPE NLL AIC

MLR 0.9988 0.4581 0.2956 0.0798 2732.0776 5480.1552

LASSO 0.9988 0.4628 0.3023 0.0822 2839.1962 5694.3924

Ridge 0.9988 0.4580 0.2957 0.0798 2732.2136 5480.4272

Elastic 0.9988 0.4629 0.3024 0.0822 2840.1527 5696.3055

MDN 0.9982 0.5662 0.3176 0.0809 2321.7114 4659.4228

SEQ 0.9988 0.4566 0.3037 0.0811 2135.2454 4286.4909

MTL 0.9988 0.4658 0.2954 0.0789 2057.2546 4130.5092

The bold values indicate that the MTL model achieved the lowest (best) NLL and AIC,
suggesting that the MTL model is the best model in terms of probabilistic longitude/latitude
prediction.

TABLE 3 Latitude prediction evaluation results.

R2 RMSE MAE MAPE NLL AIC

MLR 0.9930 0.6695 0.4746 0.1669 5094.7387 10211.4774

LASSO 0.9930 0.6696 0.4747 0.1671 5095.4763 10212.9526

Ridge 0.9930 0.6696 0.4747 0.1669 5094.9132 10211.8265

Elastic 0.9930 0.6696 0.4747 0.1670 5095.4054 10212.8109

MDN 0.9932 0.6605 0.4733 0.1638 4626.7950 9275.5899

SEQ 0.9927 0.6847 0.5023 0.1730 4624.3890 9270.7780

MTL 0.9934 0.6529 0.4674 0.1661 4499.8203 9021.6406

The bold values indicate that the MTL model achieved the lowest (best) NLL and AIC,
suggesting that the MTL model is the best model in terms of probabilistic longitude/latitude
prediction.

ϕ =
8

∑
i=1

aixi + ϵϕ (16)

λ =
19

∑
i=9

bixi + ϵλ (17)

Where xi are the predictors described in Table 1, ai and bi are
the regression coefficients of the MLR models, and ϵϕ, ϵλ are the
random error terms. The MLR regression coefficients are obtained
by fitting the model to historical data. The random error terms are
obtained by fitting logistic distributions to the difference between

FIGURE 4
Visual comparison of the longitude and latitude model evaluation results.
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the MLR predictions and historical data. This model can make both
deterministic and probabilistic predictions.

• Ridge: a ridge regression model with a random error term. The
random error term is modeled using the same method as the
MLR model.
• LASSO: a least absolute shrinkage and selection operator
(LASSO) model with a random error term. The random error
term is modeled using the same method as the MLR model.
• Elastic: an elastic net model with a random error term. The
random error term is modeled using the same method as the
MLR model.
• MDN: a single-task MDN model with Gaussian mixture
components. The MDN model can make deterministic
predictions by outputting the expected value of the mixture
model.
• SEQ: a sequential model where an MLP model is trained to
predict the latitude/longitude first, and then an MDN model
is trained to model the distribution of the residual of the MLP
model. This model learns the two tasks separately and does not
benefit from learning through the common characteristics of
different tasks as the proposed model does.
• MTL: the proposed multitask model.

The training, validation, and test dataset generation process is
described in Section 2.2. In each case, two models were trained
for latitude and longitude prediction, respectively. In addition, the
latitude and longitude prediction results were combined during
postprocessing to generate track prediction results. For probabilistic
prediction, the probability density function of the track is the
product of the latitude and longitude probability density function:

P (λ,ϕ|x) = P(λ|x1,x2,…,x8) ⋅ P(λ|x9,x10,…,x19) (18)

All the neural networks have the same structure except for the task-
specific output layers. The neural networks are implemented and

TABLE 4 PI-based accuracy of the longitude and latitudemodels.

95% PI-based accuracy

Longitude Latitude

MLR 92.42% 93.09%

LASSO 92.42% 93.09%

Ridge 92.44% 93.10%

Elastic 92.42% 93.10%

MDN 93.95% 94.27%

SEQ 93.80% 94.76%

MTL 94.76% 96.09%

The bold values indicate that the MTL model achieved the highest (best) 95% PI-based
accuracy, suggesting that the MTL model is the best model in terms of probabilistic
longitude/latitude prediction accuracy.

trained using Tensorflow (Abadi et al., 2015) on amachine equipped
with an NVIDIA GeForce RTX 3090 GPU.

3.2 Evaluation metrics

3.2.1 Deterministic prediction metrics
• Coefficient of determination (R2)= 1− ∑

N
i=1(yi−ŷi)

2

∑Ni (yi−yi=1)
2

• Root mean square error (RMSE) = 1
N
√∑Ni=1(yi − ŷi)

2

• Mean absolute error (MAE) = 1
N
∑Ni=1|yi − ŷi|

• Mean absolute percentage error (MAPE) = 1
N
∑Ni=1|

yi−ŷi
yi
|

3.2.2 Probabilistic prediction metrics
• NLL as described in Eq. 8.
• Akaike’s information criterion (AIC) = 2k− 2 ln(L̂), where k
is the number of predictors and L̂ is the likelihood of the
probabilistic model on the test dataset.

FIGURE 5
PIs of the proposed longitude (A) and latitude (B) models on a test typhoon track.
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FIGURE 6
Comparison of the 95% PIs of the MLR model and MTL model for longitude (A) and latitude (B) predictions on a test typhoon track.

• Prediction interval (PI), a common metric to evaluate model
prediction uncertainty with a given probability. PI gives a range
within which the model is reasonably sure that the future
observation lies. The given probability describes the sureness
of the model about a certain PI. In this study, the future
observation is modeled using Gaussian mixture distribution.
Therefore, the PI of a given probability 1− α can be estimated
using the following percentile-based algorithm:

1. For a given typhoon initial condition, get themixture parameters
{πi,μi,σi}

K
i=1 from the proposed MTL model. Construct the

cumulative distribution function (CDF) of the mixture model:

F (x) =
K

∑
i=1

1
σ√2π
∫
x

−∞
exp(−
(t− μ)2

2σ2
)dt (19)

2. Solve F(x) = α/2 and F(x) = (1− α)/2 using Brent’s method
(Brent, 2013) to get the percentile xα/2 and x(1−α)/2, which gives
an 1− α prediction interval of [xα/2,x(1−α)/2].

The most commonly used PI is the 95% PI. In this study, we
also calculate the 70% PI to further analyze the uncertainty of the
models. To evaluate themodel on the test dataset, we denote that the
prediction is correct if the test target value is within 95% PI. Then,
we can calculate the 95% PI-based model “accuracy” by dividing the
number of correct predictions by the total number of records in the
test dataset.

3.2.3 Track prediction metrics
• AIC as described in the probabilistic prediction metrics.
• Mean haversine distance error (HAV). HAV gives the mean
haversine distance from the true location to the predicted
location. The calculation process of the haversine distance is
described in Eqs 1, 2.
• Predict regions. Similar to PI, the prediction region is an ellipse
that covers both the longitude and latitude PIs.

3.3 Test results

3.3.1 Longitude and latitude models
Tables 2, 3 show the numerical results of the longitude and

latitude prediction evaluations, respectively. Figure 4 gives the
stacked evaluation results of both the longitude and latitude models.
For the deterministic predictions, theMTLmodel performance does
not surpass the other models. There is no significant improvement
in R2, RMSE, MAE, or MAPE using the proposed model. However,
the proposed MTL model outperforms the other models in the
probabilistic prediction task. For longitude predictions, the NLL
decreased by about 24%–27% compared to the statistical models,
11.4% to the MDNmodel, and 3.7% to the SEQ model. For latitude
predictions, the test NLL with the proposed model decreased by
about 10% compared to the statistical models and about 2.7% to the
MDN and SEQ models.

The 95% PI-based model accuracy of different models is
given in Table 4. The statistical models perform poorly since the
random error distributions in these models are not conditional.
The conditional probabilistic models generally capture the output

TABLE 5 Combined trackmodels performance.

HAV NLL 95 (%)PI-based accuracy

MLR 66.0329 7826.8163 88.27

LASSO 66.3876 7934.6725 88.30

Ridge 66.0350 7827.1268 88.30

Elastic 66.3897 7935.5582 88.32

MDN 67.7421 6948.5064 89.22

SEQ 69.1980 6759.6345 90.11

MTL 65.3523 6557.0749 90.62

The bold values indicate that the MTL model achieved the lowest (best) haversine
distance/NLL and highest (best) 95% PI-based accuracy, suggesting that the MTL model is
the best model in terms of both deterministic and probabilistic track prediction accuracy.

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1277412
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Jian et al. 10.3389/fenrg.2023.1277412

FIGURE 7
Comparison of the track model evaluation results.

FIGURE 8
Prediction regions of the proposed track model on a test typhoon track.

uncertainty under different input values very well, and the proposed
model performs the best among the conditional probabilistic
models.

Taking a sample full TC track in the test dataset as an example,
the PIs under 95% and 70% probabilities obtained by the proposed
MTL longitude and latitude model are shown in Figure 5. As shown
in Figure 5, the PIs under different probabilities and the real values
of the longitude/latitude have similar fluctuation. Since the 70% PIs
are narrower than the 95% PIs, a small number of real values fall

outside the 70% PI. Overall, the real values are well captured by the
95% and 70% PIs.

We also compare the 95% PIs of the MLR and the
proposed MTL model by plotting the PIs of both models
under the sample TC track in Figure 6. Although both models
are able to capture the real track values within 95% PI, the
interval length of the MTL model is smaller, indicating that
the MTL model can capture the real value with a smaller
uncertainty.
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3.3.2 Track models
Table 5 presents the combined evaluation results for track

prediction, while Figure 7 illustrates the corresponding bar chart.
The results for the latitude and longitude prediction indicate
that although there is not much enhancement in deterministic
predictions, there is a significant improvement in probabilistic
prediction performance. Specifically, compared to statisticalmodels,
the proposed model reduced the test NLL by approximately
16%–17%, 5.6% for the MDN model, and 3.0% for the SEQ model.
In terms of 95% PI-based accuracy, the statistical models performed
poorly, whereas the conditional probabilistic models effectively
captured the output uncertainty. The proposed model exhibited the
best performance in this regard.

Figure 8 shows the combined prediction region under 95% and
70% probabilities obtained by the proposedMTL trackmodel. It can
be seen that a few true values fall outside the 70% prediction regions,
and all but one true values fall within the 95% prediction regions,

which shows that the proposedMTLmodel can capture the dynamic
uncertainties of the TC position under different input values.

The above test results indicate that the proposed MTL
model yields better probabilistic predictions compared to the
statistical model, the single-task MDN model, and the sequential
model. Although the improvements of the proposed MTL model
on PI-based accuracy are rather marginal when compared to
the sequential model, the computational cost of the proposed
model is much lower than the sequential model. The proposed
longitude/latitude MTL models take 170.66s/159.84s to train,
while the sequential models take 190.45s/196.51s. Additionally,
the final value of the loss weight parameter α1 after training
suggests that the weight for the deterministic loss should be
at least 30 times larger than the probabilistic loss weight,
suggesting that the deterministic prediction task performance is the
dominating factor for the overall model performance. Therefore,
by training the deterministic task well first, the sequential model

FIGURE 9
Workflow of the test risk assessment system.

FIGURE 10
Test results of the test wind speed assessment system.
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can perform comparably to the MTL model. However, since the
sequential model requires training two models separately, the
training time will be significantly increased. Overall, the proposed
MTLmodel provides the best performance with reasonable training
time. By employing the deterministic prediction task as an auxiliary
task, the probabilistic prediction performance can be improved.

3.4 Risk assessment

TheproposedTC track predictionmodel can be easily integrated
into TC risk assessment methodologies. An example use case
involves evaluating the maximum sustained wind speeds during
TC events. To illustrate its utility, we integrate the proposed model
with both a statistical intensity forecasting model and a linear wind
field model, forming a comprehensive system for appraising the
maximum sustained wind speed at a wind farm site during TC
occurrences.

When a TC approaches the monitoring site, like a wind
farm, relevant historical TC event data is gathered from publicly
available weather forecasting systems. Subsequently, this previous
TC information serves as input for the proposed TC track model, in
combinationwith the statistical intensitymodel, yielding anticipated
future TC parameters. The wind field model is then employed to
compute wind speeds at the monitoring site, utilizing the output
from the TC track and intensity models. The complete workflow of
the wind risk assessment system is depicted in Figure 9.

In this particular study, the Guishan offshore wind farm situated
at (22.155N, 113.732E) is chosen as the test site, and Typhoon Higos
(2020) is selected as the TC event for testing purposes. The input
TC parameters are sourced from the CMA best track dataset, as
mentioned in Section 2.2, while wind speed data for verification is
obtained from the Guishan offshore wind farm’s records.

Due to the intricate relationship between input TC parameters
and output wind speeds within this system, calculating the PI of
the wind speed using the algorithm outlined in Section 3.2.2 is
unfeasible. Consequently, in this case study, the PIs for wind speeds
are determined empirically.The resulting outcomes are presented in
Figure 10. Analogous to the longitude and latitude predictions, the
actual wind speed aligns favorably with the 95% PIs, although one
value does fall beyond the 70% PI. The test system adeptly captures
the uncertainty inherent in wind speed assessments.

4 Conclusion

In this paper, we proposed a novel probabilistic TC track
prediction model. MDN and MTL are utilized to model the
distribution of TC tracks and improve the model performance.
MDN enables the NN model to make probabilistic predictions. The
probabilistic prediction task performance is enhanced by learning a

deterministic prediction task with shared representation in lower-
level hidden layers using MTL. A training loss that considers both
tasks is proposed for training the MTL model. Extensive evaluation
using historical TC data shows that the proposed approach learns
the probabilistic prediction task with significantly lower NLL than
the statistical and single-task learning models. The results indicate
that MTL is very effective in improving the probabilistic TC track
prediction performance. In future work, we aim to expand our
model to include more TC-related prediction tasks, such as central
pressure or wind speed prediction. Other interesting directions to
improve the framework include introducing time-series data to the
model and automatic tuning of the MTL model structure.
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