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The volatility and sporadic availability of renewable energy create significant
challenges to the optimal scheduling of integrated electricity and gas systems
(IEGS). This paper develops a nonparametric probabilistic forecasting based
stochastic scheduling approach of IEGS. The quantile at a series of quantile
levels can be generated by direct quantile regression method. Given the set of
predicted quantiles, a set of representative scenarios for wind power uncertainty
can be obtained by using Monte Carlo simulation method and scenario reduction
approach. Based on the implicit finite difference scheme, the original partial
differential equations of the gas network are discretized to establish an
algebraic model, which provide possibility for efficient solution. Then, the
nonconvexity caused by the momentum equation is eliminated by the second-
order core relaxation. Finally, the stochastic optimal scheduling model is
reformulated as a second-order core programming problem. Numerical
simulations are performed to showcase the superiority of the established
stochastic optimal scheduling model.
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1 Introduction

With the rapid development of natural gas power generation and power-to-gas
technology, the power system has established a strong coupling relationship with the gas
system (Chen et al., 2021a). Coordinated optimization of integrated electricity and gas
systems (IEGS) is of great significance for improving energy efficiency. Besides, natural gas-
fired units (NGUs) have the advantage of convenient regulation, which provides a new way
to deal with the volatility and intermittency of renewable energy (Shao et al., 2017).

Recently, both academia and industry have been studying the coordinated optimization
of IEGS. A dynamic optimal power and gas flow model is developed (Fang et al., 2018) to
account for the cushion effects of gas dynamics. By considering the reserve scheduling and
renewable uncertainties, a scheduling model of IEGS is formulated (Liu et al., 2019), which
focus on enhancing the economic and security of IEGS. A unit commitment model of hybrid
power and gas system is proposed (Chen et al., 2019), of which convex envelopes are applied
to relax the nonlinear momentum equation. A non-isothermal optimal power and gas flow
model is presented (Chen et al., 2021b) to reveal the effects of gas thermodynamics on the
power system operation. A model for optimal power and gas flow that takes into account
security constraints is developed in (Correa-Posada and Sánchez-Martın, 2014), where linear
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sensitivity factors are used to conduct a quick calculation of N-1
contingency of gas pipeline. A model considering operation
constraints for unit commitment is put forward in (Liu et al.,
2009), of which the benders decomposition method is employed
to separately solve the optimization problems of hybrid power and
gas systems.

Clean energy, particularly wind power, has made rapid
progress with the transformation of the global energy
landscape. However, the random changes in wind speed result
in strong fluctuations in wind power generation, seriously
threatening the stable operation of IEGS. Reference
(Alabdulwahab et al., 2017) presents a stochastic dispatch
method for hybrid power and gas system that considers the
uncertainty of renewable energy and component contingency. A
robust dispatch model of IEGS is developed in (Yang et al., 2018),
of which a standard gas network method is proposed to consider
gas dynamics. A stochastic optimal scheduling approach for IEGS
is established in (Zhang and Shahidehpour, 2016) considering
hourly electricity demand response. The studies mentioned above
all make the assumption that the forecast error of wind power
generation conforms to a specific distribution.

However, the stochastic dispatch model of IEGS mainly adopted
the point prediction results or the wind power historical data to
obtain wind power probability distribution, making it difficult to
accurately quantify the time-varying non-stationary wind power
prediction uncertainty. Nonparametric probabilistic forecasting can
accurately quantify the wind power uncertainty and does not depend
on a assumptions regarding the distribution of errors in wind power
forecasts, which outperforms parametric probabilistic forecasting
with respect to reliability and accuracy (Wan et al., 2014; Wan et al.,
2020).

To this end, this paper establishes a stochastic optimal
scheduling approach for IEGS, which integrates the advantages of
nonparametric probabilistic forecasting to address the randomness
of wind power. The method of direct quantile regression (DQR) is
applied to generate the quantile at a series of quantile levels. A
combination of Monte Carlo simulation and scenario reduction
approach is employed to provide a set of representative scenarios by
using the predictive quantile. Every representative scenario
represents a conglomerate of numerous analogous scenarios.
Then, the original partial differential equations of the natural
network model are discretized by the implicit finite difference
scheme to establish an algebraic model of the natural gas
network. The proposed implicit finite difference scheme has
second-order accuracy in both space and time, which provides an
accurate approximation of the partial differential equations. The
second-order core relaxation eliminates the nonconvexity of the
momentum equation, allowing the stochastic optimal scheduling
problem to be formulated as a second-order core programming
(SOCP) model. This model can be efficiently solved by well-
established optimization software. Case studies based on a test
system validate the superiority of the developed stochastic
scheduling method.

The remainder is organized as follows. The model of IEGS is
proposed in Section 2. In Section 3, the formulation of the stochastic
scheduling model is presented. The simulation results are shown in
Section 4. The paper concludes in Section 5.

2 Model of IEGS

2.1 Natural gas network model

The flow of natural gas in pipelines is determined by both the
momentum equation and the continuity equation. The momentum
equation is a description of Newton’s second law (Antenucci and
Sansavini, 2018), given as

∂ ρv2( )
∂x

+ ∂ ρv( )
∂t

+ ∂p

∂x
+ εv2

2d
ρ + gρ sin θ � 0 (1)

where v, ρ and p represent the velocity, density, and pressure of the
gas, respectively; ε and d represent the friction factor and the
diameter of the pipeline, respectively.

The continuity equation indicates that the natural gas travels
continuously along the pipeline (Clegg and Mancarella, 2015),
shown as

∂ρ

∂t
+ ∂f

S∂x
� 0 (2)

where f indicates the mass flow rate of pipeline, S represents the
pipeline area.

The state equation expresses the connection between density
and pressure, given as

p � ρc2 (3)
where c is the speed of sound, which is determined by

c2 � ZRT (4)
where Z is the compressibility factor; R refers to the gas constant; T
indicates the gas temperature.

Based on the steady-state condition, the state variables do not
change with time. Thus, the partial differential terms with respect to
time equal to 0 and themomentum Eq. 1 as well as the continuity Eq.
2 become (Correa-Posada and Sanchez-Martin, 2015)

∂ ρv( )
∂t

+ ∂p

∂x
+ εv2

2d
ρ � 0 (5)

∂ρ

∂t
+ ∂f

S∂x
� 0 (6)

However, solving Eqs 5, 6 efficiently is challenging due to the
form of partial differential. Therefore, the implicit finite difference
scheme is introduced to transform the partial differential equations
to algebraic equations. The difference scheme is proposed in
(Kiuchi, 1994), shown as

∂G

∂x
� Gt+1

i+1 − Gt+1
i

Δx + O Δx2( ) (7)

where G represents the state variables (pressure p and mass flow rate
f); Δt and Δx denote the temporal and spatial resolution,
respectively.

The individual term G is approximated by

G � Gt+1
i+1 + Gt+1

i

2
+ O Δx2( ) (8)

By substituting Eqs 7, 8 into Eqs 5, 6, the algebraic equations of
the natural gas network are formulated as
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fi � fj � fp (9)

f2
p −

2S2d
εlTRZ

· p2
i − p2

j( ) � 0 (10)

The flow rate of gas within the pipeline should meet the specified
capacity limits.

fp
min ≤fp,t ≤fp

max (11)
where fp

min and fp
max determine the range of mass flow rate for

pipeline p.
The nodal pressure is constrained by

pi
min ≤pi,t ≤pi

max (12)
where pi

min and pi
max determine the range of pressure of node i.

The output of gas supplier is limited by

fs,min
i ≤fs

i,t ≤f
s,max
i (13)

where fs
i,t is the output of gas supplier i; f

s,min
i and fs,max

i determine
the range of the output for gas supplier i.

Moreover, the gas demand and the gas consumption of NGUs
are satisfied by the gas supplier, given as (Zhang et al., 2018)

∑
t

∑
i

fs
i,t � ∑

t

∑
j

fde
j,t +∑

j

fG
k,t +∑

p

fcon
p,t

⎛⎝ ⎞⎠ (14)

where fde
j,t indicates the gas demand of node j; fG

k,t indicates the gas
consumption for natural gas-fired unit k.

The operational pressure of NGUs has restrictions, shown as

pG,min
i ≤pG

i,t ≤p
G,max
i (15)

where pG
i,t is the pressure of NGU i at time t; pG,min

i and pG,max
i

determine the range of pressure for NGU i.
The proposed natural gas network model contains nonconvex

quadratic constraint (10), which poses challenges to solving the
model. Thus, second-order cone relaxation is employed to convexify
the quadratic constraint (10), given as

f2
p ≤

2S2d
εlTRZ

· p2
i − p2

j( ) (16)

Eq. 20 can be transformed into standard SOC form:

fp

2S2d
εlTRZ · pj

����������
����������2 ≤

2S2d
εlTRZ

· pi (17)

The application of the second-order cone relaxation technique
transforms the proposed natural gas network model into a convex
form, allowing for efficient solutions.

In a natural gas system, a gas compressor is assigned to
compensate for pressure caused by friction loss in the pipeline
(Abbaspour et al., 2005), depicted as

HPcom
p � χpf

com
p

pi

pj
( )]n

− 1[ ] (18)

GHV · fco
p � γpHPcom

p (19)
kp
min ≤

pi

pj
≤ kp

max (20)

fcom,min
p ≤fcom

p ≤fcom,max
p (21)

where HPcom
p is the horsepower of compressor cross pipeline p at

time t; χp and ]n denote the horsepower constants of compressor p;
GHV indicates the gross heating value of natural gas; γp refers to the
energy conversion coefficient of compressor p; kpmin and kpmax

determine the range of compression ratio of compressor p,
respectively; fcom,min

p and fcom,max
p determine the range of mass

flow rate of compressor p, respectively.

2.2 Power system model

The DC power flow model is adopted in this paper to consider
the scheduling of active power, expressed as

Pk,t � Bk φi,t − φj,t( ) (22)

where Pk,t indicates the active power flow of the transmission line k
at time t; Bk indicates the susceptance of transmission line k; φi,t and
φj,t denote the voltage angle of bus i and j, respectively.

In the power system, the power requirements are satisfied by
coal-fired generators (CGs) and NGUs, given as

∑
t

∑
i

PC
i,t +∑

j

PG
j,t

⎛⎝ ⎞⎠ � ∑
t

∑
q

Pde
q,t (23)

where PC
i,t indicates the active power output of CG i; PG

j,t indicates the
active power output ofNGU j;Pde

q,t is the power demand of bus q at time t.
The output of CG should satisfy the capacity limit, shown as

PC,min
i ≤PC

i,t ≤PC,max
i (24)

where PC,min
i and PC,max

i determine the range of active power output
of CG i.

The power output of NGU should also meet the capacity limit,
given as

PG,min
i ≤PG

i,t ≤PG,max
i (25)

where PG,min
i and PG,max

i determine the range of active power output
of NGU i.

The transmission line imposes constraints on the flow of active
power.

Pk
min ≤Pk,t ≤Pk

max (26)
where Pk

min and Pk
max determine the range of active power flow

through transmission line k.
Voltage phase angle is limited by

φi
min ≤φi,t ≤φi

max (27)
where φi

min and φi
max determine the range of voltage phase angle of

bus i.

3 Nonparametric probabilistic
forecasting based stochastic
scheduling of IEGS

3.1 Objective function

The stochastic optimization algorithm takes into account the
probability distribution of uncertain parameters and typically
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utilizes the probability density function to depict their variations
(Qadrdan et al., 2014). Afterwards, various scenarios can be
generated at random through techniques such as Monte Carlo
simulation.

The primary goal of the stochastic scheduling model is to
minimize the anticipated overall operational cost of IEGS,
expressed as

min∑
z

ϕz × ∑
t�1

∑
i�1

ai,tP
C
i,t,z +∑

j�1
bj,tf

s
j,t,z

⎛⎝⎡⎢⎢⎣ ⎤⎥⎥⎦ (28)

where ϕz is the occurrence probability of wind power scenario z; ai,t
and bj,t indicate the cost factors of CG i and gas supplier j,
respectively.

3.2 Nonparametric probabilistic forecasting
method

The volatility and sporadic availability of renewable energy
create significant challenges to the optimal scheduling of IEGS.
The utilization of probabilistic forecasting for wind power can offer
critical insights for scheduling of power system in the presence of a
substantial amount of wind power.

Typically, probabilistic forecasting methods encompass both
parametric and nonparametric approaches. Parametric probabilistic
forecasting relies on assumptions regarding the distribution of errors in
wind power forecasts. Nonparametric probabilistic forecasting,
however, can accurately measure the uncertainty of wind power and
is not reliant on a specific probability distribution of forecasting errors,
resulting in better reliability and accuracy.

In this paper, the DQR method is utilized to quantify the
uncertainty of wind power. The quantile qωt can be defined by

Pr xt ≤ qωt( ) � ω (29)
qωt � Y−1

t ω( ) (30)
where Pr () denotes the probability operator; Yt denotes the
cumulative distribution function of wind power; xt indicates the
random variable of wind pwoer; ω indicates quantile level of the
quantile.

Based on the obtained quantile qωt , a set of predicted quantiles
for wind power can be obtained through the nonparametric
probability prediction method of DQR, expressed as

Ŷt+k|t � q̂ωi
t+k|t

∣∣∣∣∣0≤ω1 <ω2 </<ωn ≤ 1{ } (31)

where q̂ωi
t+k|t is the approximation of real quantile qωt+k|t; Ŷt+k|t

indicates the predicted quantile with proportions within the
range of 0–1, yt indicates the probability density function; Yt

indicates the cumulative distribution function.
The DQR method based on the extreme learning machine can

transform the probabilistic forecasting into a linear programming
model that can be efficiently solved. By introducing the DQR
method, the predictive quantile series with proportions can be
easily obtained. Given a set of predicted quantiles, the scenarios
of wind power output can be obtained by Monte Carlo Simulation.
Nevertheless, the straightforward implementation of a significant
number of uncertainty scenarios would significantly prolong the

computation time. Therefore, the scenario reduction method (Jiang
et al., 2020) is applied to reduce the number of scenarios. As an
effective tool for the scenario reduction, SCENRED provided by the
General Algebraic Modelling System (Zhang et al., 2016) is applied
in this paper.

Moreover, for deterministic method that do not consider the
probabilistic information involved in wind power uncertainty,
spinning reserve should be deployed to address the wind power
uncertainty, given as

SRt � ∑
k

PC,max
k − PC

k,t( )≥ SR min (32)

where SRt denotes the reserve that can be scheduled; SRmin indicates
the minimum reserve of the IEGS.

3.3 Model summary

Figure 1 displays the flowchart of the stochastic scheduling
model for IEGS. First, a set of predicted quantiles can be
obtained by the DQR method. Afterwards, numerous wind
power scenarios are created using the Monte Carlo simulation.
The scenario reduction method clusters the generated scenarios
into several representative scenarios. The nonconvex constraints of
gas network are relaxed based on the SOC relaxation. In conclusion,
the stochastic scheduling model of IEGS can be expressed as a SOCP
model that can be efficiently solved.

4 Case study

4.1 System configuration

The topology of the test system is given in Figures 2, 3. The
testing system is made up of a gas system with 6 nodes and a power

FIGURE 1
The flowchart of the stochastic scheduling model.
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system with 6 buses. The power demands of the test system are
satisfied by 1 wind farm, 1 NGU and 1 CG. The wind farm is situated
on bus 6, while the NGU is positioned on bus 1 in the power system
and node 5 in the natural gas system. The CG is installed at bus 2. All
simulations are performed on CPLEX-MATLAB solver on a PCwith
Inter Core i7 3.60GHz and 32GB RAM. To demonstrate the

effectiveness of the proposed stochastic scheduling model for
IEGS, two cases are considered.

Case 1: Optimal scheduling of IEGS without stochastic
condition.

Case 2: Nonparametric probabilistic forecasting based stochastic
optimal scheduling of IEGS.

Case 1 is a deterministic scenario in which spinning reserve is
necessary to mitigate the uncertainty of the wind power. In Case 2,
the consideration of wind power uncertainty includes the
incorporation of probabilistic information.

4.2 Simulation results

Case 1: The method of single-point wind forecasting can be
used to obtain wind power generation. The scheduling results for
Case 1 are presented in Figure 4. It can be observed that the power
demands are satisfied by the CG, NGU, and wind power
generation. The CG and NGU adjust their output to ensure

FIGURE 2
Topology of the 6-bus power system.

FIGURE 3
Topology of the 6-node natural gas system.

FIGURE 4
The scheduling results of Case 1.

FIGURE 5
Mass flow rate of each pipeline in Case 1.

FIGURE 6
Representative scenarios of wind power generation in Case 2.
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that the wind power can be fully consumed. The natural gas
system and the power system are coupled by the NGUs. Hence,
the power generation of NGUs has an impact on the equilibrium
of the natural gas system. Figure 5 displays the rate of mass flow
within pipeline for Case 1. It can be seen that the incoming gas
equals to the outgoing gas at each node.

Case 2: The security and economy of IEGS face significant
challenges due to the volatility and sporadic availability of
renewable energy. The probabilistic information involved in wind
power generation is considered in Case 2 to address the uncertainty
of renewable energy. Based on the set of predicted quantiles,
3,000 wind power generation scenarios are obtained by Monte
Carlo simulation. To reduce computational burden,

3,000 scenarios are reduced to a total of 7 representatives by the
scenario reduction method. Seven scenarios are capable of
approximating original model.

The obtained 7 representative scenarios of wind power generation
are given in Figure 6. The power output of wind farms differs in every
scenario. Table 1 lists the probability and total costs of IEGS in different
scenario. It can be seen that the total costs of IEGS in scenarios are
different from each other. This is due to the fact that every
representative scenario is comprised of a combination of comparable
scenarios. By utilizing the nonparametric probability forecasting
method, the secure operation of power system with high penetration
of wind power can be can guaranteed.

The comparison of results for different cases is depicted in
Table 2. Due to the different output of wind farm, it can be seen that
the operation costs in scenario S2, S3, and S5 are higher than the
expected total operation cost. Moreover, it can be easily observed
that the expected total operation cost for 7 representative scenarios is
$739,172, which is almost 1% lower that of Case 1, validating the
significance of stochastic method in cost reduction. Given the

TABLE 1 Comparison of results for different scenarios in Case 3.

Scenario S1 S2 S3 S4 S5 S6 S7

Probability 15.6% 14.95% 12.4% 14.05% 14.0% 13.55% 15.45%

Obj (105$) 7.3846 7.4299 7.4673 7.3516 7.4049 7.3602 7.3534

TABLE 2 Comparison of results for different cases.

Case Case 1 Case 2

Obj (105$) 7.4861 7.3917

FIGURE 7
IEEE 118-bus test system.
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probability information of wind power uncertainty, the operation
strategy of IEGS has better economy and security.

4.3 Larger test system

A larger system composed of a gas system with 40 nodes and a
power system with 118 buses is given in Figures 7, 8. Detailed
topology data can be found in (Chen et al., 2021b). The Monte Carlo
simulation method generates 5,000 stochastic scenarios. The
scenario reduction method reduces all stochastic scenarios to
7 representative scenarios.

The probably and total costs of the 7 scenarios are presented in
Table 3. The total operation cost is seen to differ across different
scenarios. The operation costs in scenario S1, S4, S5 and S6 are
higher than the expected total operation cost because the wind
power fluctuations in these scenarios are stronger than other
scenarios.

The total operation cost in various scenarios is provided in
Table 4. The expected total operation cost in Case 2 is $4,935,092,
which is 0.94% lower than that of Case 1. By considering the
stochastic condition, the IEGS can operate more economically.

5 Conclusion

To address the volatility and sporadic availability of wind power,
this paper presents a nonparametric probabilistic forecasting based
stochastic optimal scheduling approach for IEGS. The DQR method is
used to generate predictive quantile series for wind power. Given a set of
predicted quantiles, a combination of Monte Carlo simulation and
scenario reduction approach is employed to provide a set of
representative scenarios. The original partial differential equations of
the natural network model are discretized by the implicit finite
difference scheme to establish an algebraic model of the gas
network. The nonconvexity of the momentum equation is
eliminated by the second-order core relaxationF, and the proposed
stochastic optimal scheduling problem is cast into a SOCP model. The
simulation results validate that the proposed stochastic scheduling
model outperforms the deterministic model, achieving a nearly 1%
reduction in total operation cost. The proposed stochastic scheduling
model offers even greater benefits in large systems, opening up a new

FIGURE 8
40-node natural gas test system.

TABLE 3 Comparison of results for different cases.

Scenario S1 S2 S3 S4 S5 S6 S7

Probability 14.24% 15.05% 13.28% 16.15% 13.72% 14.96% 12.6%

Obj (106$) 4.9399 4.9174 4.9261 4.9408 4.9462 4.9577 4.9136

TABLE 4 Comparison of results for different cases.

Case Case 1 Case 2

Obj (105$) 4.9818 4.9350
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path towards secure and cost-effective operation of a significant
percentage of renewable energy power systems.
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