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RETRACTED: Intelligent power
grid energy supply forecasting
and economic operation
management using the snake
optimizer algorithm with
Bigur-attention model

Lingling Cui1 and Jiacheng Liao2*
1School of Politics and Public Administration, Zhengzhou University, Zhengzhou, China, 2School of
Economics and Management, Hubei Institute of Automobile Technology, Shiyan, China

This paper investigates smart grid energy supply forecasting and economic
operation management, with a focus on building an efficient energy supply
prediction model. Four datasets were selected for training, and a Snake
Optimizer (SO) algorithm-optimized Bigru-Attention model was proposed to
construct a comprehensive and efficient prediction model, aiming to enhance
the reliability, sustainability, and cost-effectiveness of the power system. The
research process includes data preprocessing, model training, and model
evaluation. Data preprocessing ensures data quality and suitability. In the model
training phase, the Snake Optimizer (SO) algorithm-optimized Bigru-Attention
model combines time series, spatial features, and optimization features to build
a comprehensive prediction model. The model evaluation phase calculates
metrics such as prediction error, accuracy, and stability, and also examines the
model’s training time, inference time, number of parameters, and computational
complexity to assess its efficiency and scalability. The contribution of this
research lies in proposing the Snake Optimizer (SO) algorithm-optimized Bigru-
Attention model and constructing an efficient comprehensive prediction model.
The results indicate that the Snake Optimizer (SO) algorithm exhibits significant
advantages and contributes to enhancing the effectiveness of the experimental
process. The model holds promising applications in the field of energy supply
forecasting and provides robust support for the stable operation and optimized
economic management of smart grids. Moreover, this study has positive social
and economic implications for the development of smart grids and sustainable
energy utilization.

KEYWORDS

snake optimizer, BiGRU, attention mechanism, intelligent power grid, environmental
issues

1 Introduction

The smart grid is a modernized power system based on advanced technologies
and communication networks, aimed at enhancing the reliability, sustainability,
and cost-effectiveness of the power system Mirza et al. (2023). With the growing
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global energy demand and the urgent need for environmentally
friendly energy sources, smart gridtechnology has become a
crucial direction of development in the power industry. Building
upon the foundation of traditional power grids, the smart
grid incorporates advanced sensors, communication, and control
technologies, enabling a higher degree of automation, intelligence,
and interconnectivity in the power system Yu et al. (2020). As
the smart grid continues to evolve, the power industry faces
numerous challenges and opportunities. Among them, energy
supply forecasting and economic operation management have
emerged as critical research areas Alazab et al. (2020). Energy supply
forecasting involves accurately predicting future electricity demand
and supply, enabling rational power scheduling and planning.
Precise supply forecasting can reduce operational costs and
contribute to the intelligent, efficient, and sustainable development
of the power system. Additionally, it not only positively impacts the
advancement of the power industry but also plays a significant role in
promoting the use of clean energy, reducing carbon emissions, and
enhancing energy utilization efficiency, aligningwith environmental
conservation goals Boza and Evgeniou (2021).

Addressing global warming and energy demand challenges
has become a critical strategy through the integration of advanced
data-driven methods and artificial intelligence (AI) technologies.
Optimizing building automation and management systems,
as well as developing smart power and energy systems, has
garnered significant attention to tackle complex issues like energy
consumption, resource utilization, and urban development. A study
utilized neural networks to implement model predictive control
in building automation and management systems, particularly
in energy-intensive environments. This study vividly showcases
the potential of AI solutions in energy management Elnour et al.
(2022b).Another explorationdelves into the application of advanced
data-driven methods in intelligent power and energy systems,
highlighting their innovative role in optimizing energy utilization,
enhancing grid stability, and driving sustainable energy practices
Liu et al. (2023). Researchers conducted AI-big data analyses of
building automation and management systems, comprehensively
summarizing the current state and future prospects of this
pivotal field, covering practical challenges and future outlooks
Himeur et al. (2023). Sustainable smart city development relies
on the support of next-generation energy systems, emphasizing
the potential of transfer learning to optimize performance and
adaptability Himeur et al. (2022). In a certain study, a resilient
energy management approach was proposed by applying predictive
scenarios, intended for integrating rural energy systems and
greenhouses.The innovation lies in accounting for energy prediction
uncertainty, contributing to system resilience and stability Tan et al.
(2023). Another focal point is the energy consumption and
carbon neutrality of sustainable sports facilities. A study explores
how automation systems can optimize energy consumption to
achieve carbon neutrality and fulfill sustainable development
goals Elnour et al. (2022a). In the energy transition process,
the integration of renewable energy is crucial. Accurate energy
consumption prediction, especially considering factors like solar
andwind variability, holds significance for the sustainable utilization
of renewable energy sources Kamani and Ardehali (2023). In
China, researchers proposed intelligent electricity sales strategies
for load forecasting and energy storage system configuration. This

study demonstrates the practical application value of predictive
analytics in the actual energy market Gitelman et al. (2023).
For energy transition, diverse strategies for sustainable energy
supply are paramount. One study underscores the importance
of maintaining supply stability and sustainability by diversifying
energy structures Tian et al. (2023). Furthermore, researchers have
discussedmicrogrids based on renewable energy and energy storage
systems, presenting multi-objective planning methods to achieve
system sustainability and optimization Kim andKim (2023). Finally,
a study showcases the integration of deep learning and heuristic
algorithms in predictive models for microgrid energy management.
In multi-energy systems, the significance of accurate prediction
for flexibility provision and economic performance cannot be
overstated Srinivasan et al. (2023). We delve into the core themes
of these studies, showcasing the potential of AI, data analytics, and
innovative methods in shaping the sustainability and efficiency of
energy systems.

Below are common models used for energy supply forecasting
in the smart grid:

The Convolutional Neural Network (CNN) is a deep learning
model that has achieved significant success in the field of computer
vision Ullah et al. (2019). In energy supply forecasting for the
smart grid, CNN is primarily utilized for extracting crucial
features such as electricity load, weather, and energy prices. These
extracted features can be employed to establish more accurate
prediction models, thereby enhancing the ability to forecast future
energy supply. Moreover, CNN has also garnered widespread
achievements in other domains. For example, the classification and
identification of surface or subsurface materials have consistently
been fundamental yet challenging research topics in the Earth
science and remote sensing (RS) domains. Researchers have
introduced a model incorporating Multi-Modal Learning (MML)
and Cross-Modal Learning (CML) for remote sensing image
classification applications. This framework not only encompasses
pixel-level classification tasks but also effectively demonstrates
the spatial information modeling capabilities of Convolutional
Neural Networks (CNNs) Hong et al. (2020). Furthermore, CNN
has been validated as an effective method for feature extraction
from Hyperspectral (HS) images Hong et al. (2021). In the context
of classifying Hyperspectral (HS) images, the research community
has conducted thorough investigations into CNNs and Graph
Convolutional Networks (GCNs), yielding highly commendable
results in both qualitative and quantitative aspects. However, it is
worth noting that the CNN model may face limitations related
to sequence length, necessitating the selection of suitable model
architectures or truncation processing techniques.

Recurrent Neural Network (RNN) plays a crucial role in energy
supply forecasting for the smart grid Zhu et al. (2020). It can
simultaneously handle multiple variables of time series data, such
as predicting the impact of electricity load and weather conditions.
This capability contributes to enhancing the accuracy of predictions.
However, RNNmay encounter difficulties during training due to the
issue of vanishing or exploding gradients, especially when dealing
with long time series data.

The Bilstmmodel (Bidirectional Long Short-TermMemory) is a
variant of the recurrent neural network (RNN) that has been widely
used in energy supply forecasting Shibo et al. (2021). Compared
to the traditional unidirectional LSTM model, the Bilstm model
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has stronger modeling capabilities because it considers both past
and future information, allowing it to better capture long-term
dependencies in time series data. However, when the training data
is limited, the Bilstmmodel is prone to overfitting, which may result
in suboptimal performance on unknown data.

The GRU model (Gated Recurrent Unit) is also a variant of the
recurrent neural network (RNN) used for handling time series data
and sequencemodeling tasks in energy supply forecasting Park et al.
(2022). The GRU model is a simplified version of the LSTM (Long
Short-Term Memory) model, achieved by reducing the number
of parameters and gating units to improve training efficiency and
model generalization ability. However, due to having only two gating
units (the update gate and the reset gate), the GRU model may
encounter the issue of information forgetting in certain scenarios.

The Transformer model is a deep learning architecture based on
the self-attention mechanism Abu-Rub et al. (2021). It has shown
significant potential in energy supply forecasting for smart grids.
The self-attention mechanism in the Transformer model allows
for parallel computation, accelerating the training process and
providing a powerful advantage when handling large-scale data.
However, the Transformer model faces sequence length limitations
when dealing with particularly long time series data.

Based on the limitations of the above-mentioned models, this
paper further proposes a new optimization method using the
Snake Optimizer algorithm to further enhance the structure of the
BIgru-attention model. We apply the Snake Optimizer algorithm
to optimize the hyperparameters and conduct architecture search
for the BIgru-attention model. Firstly, the Snake Optimizer
algorithm searches for the optimal hyperparameters, such as
learning rate, number of hidden units, and attention weights, in
the hyperparameter space. Through the snake-inspired search
strategy, the algorithm efficiently identifies suitable values for
these parameters, leading to faster model convergence during
training and improved prediction accuracy. Secondly, the Snake
Optimizer algorithm is employed to explore more appropriate
BIgru-attention model structures. During the model architecture
search phase, the algorithm attempts different layers, units, and
attention heads, and determines the best structure based on
performance evaluation on the validation set. Our model effectively
enhances prediction accuracy and reliability, bringing significant
advancements to energy management and optimization in
the smart grid.

The contribution points of this paper are as follows.

• This study constructs a Bigru-Attentionmodel optimized by the
Snake Optimizer (SO) algorithm, which is applied to the task of
energy supply forecasting in smart grids. This methodology is
based on existing SOalgorithmandBigru-Attentionmodel, and
their integration aims to improve the accuracy and efficiency of
energy supply prediction.
• The emphasis on capturing long-term dependencies and
dynamic features within time series data is a key innovation
of this research. The study delves into the characteristics of
time series data and introduces an Attention mechanism in the
model to better capture the dynamic changes and important
information in the data. This aspect of the work builds on
existing research but emphasizes the significance of time series
data analysis.

• A novel contribution is the integration of an optimization
algorithm (SOalgorithm)with a deep learningmodel to achieve
more efficient energy supply forecasting. By introducing the SO
algorithm for parameter optimization during model training,
the performance of the model has been enhanced in complex
data scenarios.

In summary, this study investigated energy supply forecasting
models in the context of smart grids and introduced the Snake
Optimizer (SO) algorithm to further enhance the Bigur-attention
model. The SO algorithm optimizes hyperparameters and model
structure, resulting in improved convergence speed and prediction
accuracy. Leveraging its heuristic search strategy, the algorithm
efficiently identifies suitable valueswithin the hyperparameter space,
accelerating model convergence. In the rest of this paper, we present
recent related work in Section 2. Section 3 provides an overview of
our proposed methods. Section 4 presents the experimental part.
Section 5 is the conclusion.

2 Related work

2.1 The application of deep learning in
energy supply forecasting

The application of deep learning in energy supply forecasting
is a significant research direction in the field of smart grids
Aslam et al. (2021). With the complexity of power systems and the
increasing energy demand, accurate prediction of future energy
supply has become critically important. Deep learning models, such
as Recurrent Neural Networks (RNNs), Long Short-Term Memory
networks (LSTMs), and Convolutional Neural Networks (CNNs),
have demonstrated powerful modeling capabilities in energy supply
forecasting. These deep learning models can handle long-term
dependencies and complex non-linear relationships in time series
data, thereby improving the prediction of energy supply scenarios,
including electricity load, solar energy, and wind energy generation.

Deep learning exhibits remarkable advantages in energy supply
forecasting. Firstly, these models automatically learn and extract
important features from the data, eliminating the need for manual
feature engineering and simplifying the model construction process
Jenssen et al. (2019). Secondly, deep learning models possess strong
generalization abilities, enabling them to handle various types and
scales of data, making them suitable for complex energy supply
scenarios. Furthermore, deep learning techniques can effectively
handle data fusion from multiple sources, such as combining
electricity load data, weather data, and market data, to establish
comprehensive and integrated energy supply forecasting models.

Despite the numerous advantages, deep learning in energy
supply forecasting still faces challenges and limitations. Firstly,
deep learning models often require substantial amounts of data
for training, which may be limited in certain regions or scenarios,
impacting the model’s performance. Secondly, the complexity of
deep learning models results in high computational resource
requirements, especially for large-scale datasets and complex
model structures, leading to longer training times. Moreover,
the interpretability of deep learning models is weaker, making
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it challenging to explain their internal structures and decision-
making processes, which may be important in certain domains
requiring interpretable predictive models. Thus, the application of
deep learning in energy supply forecasting calls for further research
and improvement to overcome these limitations and enhance the
accuracy and reliability of predictions Sejnowski (2020).

2.2 Integrated multi-source data
comprehensive forecasting model

The integrated multi-source data forecasting model is an
important technology widely applied in the field of smart grids.
With the increasing complexity of power systems and energy
demands, traditional single-source data forecasting models often
fail to meet the accurate energy supply prediction requirements
Lindenfeld (2006). Therefore, the integration of multiple data
sources has become an effective approach to address this challenge.
This model can simultaneously incorporate various data sources,
such as electricity load data, weather data, solar and wind energy
generation data, and market price data, to form a comprehensive
information perspective, thus enhancing the accuracy and reliability
of energy supply forecasting.

The integrated multi-source data forecasting model offers
several advantages. Firstly, by integrating multiple data sources, the
model can access more comprehensive and diverse information,
better reflecting the diversity and complexity of energy supply.
Secondly, the integration of data from various sources enables
the model to provide more accurate predictions by leveraging
complementary information among different data sources,
significantly enhancing the smartness and efficiency of energy
systems Jun et al. (2020).

Despite its numerous advantages, the integrated multi-source
data forecasting model still has some limitations. Firstly, the process
of model establishment and optimization is complex, requiring
considerations of data quality, temporal consistency, and data gaps
from different sources, which may increase the design complexity
and computational costs. Secondly, the data integration and fusion
process may introduce certain noise and uncertainties, impacting
the accuracy of prediction results. In summary, further research and
improvement are needed to enhance the stability and reliability of
the integrated forecasting model Han et al. (2017).

2.3 Uncertainty modeling and risk
management

Uncertainty modeling and risk management are essential
technologies widely applied in the field of smart grids and energy
Hou et al. (2020). With the continuous fluctuations in energy
markets and the increasing complexity of power systems, predicting
and managing risks have become crucial. Uncertainty modeling
involves modeling and analyzing the uncertainties of future events
and data to predict possible future scenarios. Risk management, on
the other hand, is based on the results of uncertainty modeling and
involves taking appropriate measures to mitigate potential risks and
losses. In the context of energy supply forecasting in smart grids,
uncertainty modeling and riskmanagement can assist power system

planners and operators in devising more robust energy dispatch
strategies, thus enhancing the stability and reliability of energy
supply Mollah et al. (2020).

Uncertainty modeling and risk management offer significant
advantages in the smart grid domain. Firstly, by establishing
reasonable uncertainty models, a better understanding and
quantification of various uncertain factors’ impacts on energy
supply can be achieved Dileep (2020). This provides valuable
insights to decision-makers in the power system, enabling them to
more accurately assess potential risks and formulate corresponding
response strategies. Secondly, risk management techniques help
power system planners mitigate risks arising from uncertainty,
safeguarding the stability of the power system’s operation.

However, there are also some limitations to consider. Firstly,
uncertainty modeling involves dealing with a large number of
factors and data, especially in cases of multivariate and large-scale
datasets, which may lead to complexity and time-consuming model
establishment and solving processes. Secondly, it relies on accurate
data and reliable predictive models. If there are data errors or
inaccuracies in the predictive models, it may lead to inaccurate risk
management decisions. Continued research is needed to further
improve the application value and effectiveness of uncertainty
modeling and risk management in the smart grid domain Putri and
Maizana (2020).

2.4 Energy consumption prediction
research based on GNN and
decision-making

The largest contributor to global warming is the production and
usage of energy. Additionally, the push towards electric vehicles
and other economic developments is expected to further increase
energy consumption. To address these challenges, electricity load
forecasting is crucial Sehovac and Grolinger (2020). Graph Neural
Networks (GNNs) and decision-making play a vital role in tackling
these challenges. GNNs are a specialized type of neural network
designed to handle graph-structured data, such as social networks,
spatial data, and power grids. In the field of energy consumption
prediction, the power system can be seen as a complex graph
structure, where nodes represent power equipment, supply sources,
and users, while edges represent energy transmission and mutual
influence relationships. By effectively capturing the associations
and information flow between these nodes in GNNs, we can
gain a better understanding of energy flow and consumption
patterns within the power system. In recent years, researchers
have considered three fundamental logical operation modules:
AND, OR, NOT, forming an adaptive architecture for MANAS
components, which has shown successful applications in practical
problems. The success of this approach offers new insights and
technical tools for the field of energy consumption prediction
Chen et al. (2022a). Furthermore, a method for energy estimation
has been proposed, which leverages the architecture, sparsity, and
bit-width of DeepNeural Networks (DNNs) to estimate their energy
consumption. This method will play a crucial role in bridging
algorithms and hardware design and provide valuable insights
for developing energy-efficient DNNs. Through this approach, we
can better assess different DNN architectures and energy-efficient
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FIGURE 1
Overall flow chart of the model.

FIGURE 2
Flow chart of the Bigru model.
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techniques, guiding the design and development of energy-efficient
DNNs Yang et al. (2017). Decision-making also plays a critical
role in energy consumption prediction. Currently, Counterfactual
Explanations (CFs) are a popular approach for providing post
hoc explanations for Machine Learning (ML) models. Researchers
introduced ReLAX, a model-agnostic algorithm for generating
optimal counterfactual explanations Chen et al. (2022b). Tested
and demonstrated as valuable for practical applications, this
approach offers directions for further reflection and research.
In conclusion, Graph Neural Networks have the capability to
uncover the intricate relationships within power systems, providing
more accurate information for energy consumption prediction.
Simultaneously, decision-making ensures that the application of
energy consumption prediction leads to tangible benefits, driving
sustainable development in the field of power. By integrating
these aspects organically, we can achieve more precise, efficient,
and intelligent energy consumption predictions, offering robust
support for decision-making and planning in the energy domain
Howard et al. (2019).

3 Overview of our network

The approach proposed in this paper utilizes the Snake
Optimizer (SO) to optimize the Bigur-attention model, with the
aim of improving the accuracy and efficiency of energy supply
prediction and economic operation management in smart grids. In
traditional energy supply prediction methods, a single forecasting
model is often used to handle time series data, neglecting the
potential information from multiple data sources. However, smart
grids involve various complex factors such as weather,market prices,
and energy consumption, which interact with each other and have
significant impacts on energy supply prediction. To better address
these challenges, this paper adopts the SO optimization algorithm,
which efficiently searches the optimal model configuration in the

hyperparameter space using the heuristic search strategy inspired by
the behavior of snakes, thereby enhancing the model’s performance
and generalization ability.

The specific steps of our proposed method include data
preprocessing, feature extraction, generator training, discriminator
training, generator and discriminator optimization, optimization
scheme generation and evaluation, and application. Firstly, we
collect and organize multiple data sources, including power load
data, weather data, energy price data, etc. Then, we clean and
normalize the data and perform time series segmentation to create
training, validation, and test sets for subsequent model training and
evaluation. Next, we build an energy supply prediction framework
based on the Bigur-attention model. The framework consists of
bidirectional recurrent neural networks and attention mechanisms,
capturing both past and future information in time series data
and focusing on crucial time steps. Finally, we introduce the
SO algorithm into hyperparameter optimization and architecture
search for the model. Through the snake-inspired search strategy,
the algorithm explores the optimal parameter configuration in
the hyperparameter space, continuously optimizing the model’s
performance. It also attempts different model structures, such as
adjusting the number of hidden layers and units, to find the best
model architecture. Through the organic combination of these
steps, our approach effectively optimizes the Bigur-attention model,
enhancing the accuracy and efficiency of energy supply prediction
and economic operation management in smart grids. Figure 1
represents the overall flow chart of the approach.

3.1 BIGRU model

The Bigru model is a variant of bidirectional recurrent neural
networks (RNNs) widely applied in smart grid energy supply
forecasting Massaoudi et al. (2021). This model combines the
capabilities of recurrent neural networks (RNNs) and bidirectional

FIGURE 3
Flow chart of the attention model.
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FIGURE 4
The flow chart of the Snake Optimizer.

properties, allowing it to simultaneously consider both past and
future information in time series data. Its bidirectional nature
enables themodel to capture long-term dependencies and nonlinear
patterns in sequence data more effectively. By employing forward
and backward propagation, the Bigru model can gather past and
future contextual information at each time step, enhancing the
accuracy and robustness of predictions. As shown in Figure 2, it is
the flow chart of Bigru.

Bigru connects two directions of RNN together, using h(→)t to
represent the hidden state propagated from left to right, and h(←)t to
represent the hidden state propagated from right to left. For a time
step t, the hidden state updates of Bigru can be expressed as follows:

Propagation from left to right:

h(→)t = tanh(W
(→)
hh h(→)t−1 +W

(→)
hx xt + b

(→)
h ) (1)

Propagation from right to left:

h(←)t = tanh(W
(←)
hh h(←)t+1 +W

(←)
hx xt + b

(←)
h ) (2)

WHere, h(→)t represents the hidden state propagated from left
to right, and h(←)t represents the hidden state propagated from right
to left. W(→)hh , W(→)hx , and b(→)h are the weight matrix and bias vector
for the left-to-right propagation, respectively. Similarly,W(←)hh ,W(←)hx ,
and b(←)h are the weight matrix and bias vector for the right-to-left
propagation.

The output of the Bigru model is a combination of the
hidden states from both directions, which is usually obtained by
concatenation or other methods:

ht = [h
(→)
t ;h
(←)
t ] (3)

where [; ] represents the concatenation operation.
The combination of Bigru and Attention models holds

significant importance in intelligent power grid energy supply
forecasting. Firstly, it enhances prediction accuracy, enabling power
grid managers to gain better insights into future energy supply and
demand scenarios, thereby optimizing energy scheduling and supply
plans to enhance grid stability and efficiency. Secondly, the BIGRU-
Attention model captures interdependencies between different time
steps, aiding in the prediction of anomalies and fluctuations in
energy supply, thus facilitating proactive measures to ensure energy
supply stability.

3.2 Attention model

Cross-attention is an attention mechanism commonly used for
processing sequential data Zhan et al. (2022). Its core idea is to
allow themodel to automatically assign different weights to different
positions in the input sequence based on their importance, thereby
better capturing relationships and features within the sequence.
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6 In the context of intelligent power grid energy supply forecasting,

attention models also play a crucial role. Considering that power
grid energy supply data often exhibit temporal correlations and
complex dependencies between different time steps, Cross-attention
can assist the model in learning these dependencies automatically
and dynamically adjusting weights based on the significance of the
data. As shown in Figure 3, it is the flow chart of attention model.

For each position i in the input sequence, we use an attention
weight α(i, j) to represent the degree of correlation between this
position and other positions j in the sequence. The formula for
calculating this attention weight is as follows:

α (i, j) = softmax (e (i, j)) , (4)

where e(i, j) is a scoring function that measures the relationship
between position i and position j. In the attention mechanism, e(i, j)
can be computed based on the correlation between position i and
position j.

In the classic attention mechanism, the scoring function e(i, j)
can be computed by taking the dot product of the representation
vectors of position i and position j, as shown below:

e (i, j) =
q (i) ⋅ k (j)

√dk
, (5)

where q(i) represents the query vector of position i, k(j)
represents the key vector of position j, and dk is the dimension
of the vectors. This dot product scoring function allows the
attention weight α(i, j) to focus more on position pairs with higher
correlations.

Finally, the output vector z(i) for position i is obtained by
taking the weighted sum of the attention weights α(i, j) with their
corresponding value vectors v(j) for all positions j, as represented by
the equation:

z (i) = ∑
j
α (i, j) ⋅ v (j) , (6)

where ∑ denotes the sum over all positions j. This attention
mechanism enables the model to automatically assign different
weights to different positions in the input sequence based on their
importance, thus better capturing relationships and features within
the sequence.

3.3 Snake optimizer

Snake Optimizer (SO) is an optimization algorithm inspired by
the behavior of snakesHashim and Hussien (2022). It optimizes by
simulating the process of a snake searching for food. At each step, the
snake makes decisions based on the distance and direction between
its current position and the location of the food, choosing the next
movement direction. The snake searches for the nearest path to the
food, gradually approaching the target and consuming it.As shown
in Figure 4, it is the flow chart of Snake Optimizer (S0).

Calculating the snake’s movement direction and step size:
Assume that at the kth step of the optimization process, the snake’s
current position is xk, and the target position (i.e., the food location)
is xtarget. The snake calculates the unit vector for the movement
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FIGURE 5
Comparison of model performance on different datasets.

direction, based on the distance difference between the current
position and the target position:

direction =
xtarget − xk
|xtarget − xk|

(7)

Updating the snake’s position: The snake updates its current
position based on the step size and movement direction:

xk+1 = xk + step× direction (8)

Food Attraction: To simulate the snake’s attraction to the food,
an attraction factor attract can be introduced, which is applied to the
movement direction to steer more towards the target position:

direction =
xtarget − xk
|xtarget − xk|

+ attract× (xtarget − xk) (9)

Dynamic Step Size: To prevent the optimization process from
getting stuck in local optima too early, a dynamic step size strategy
can be employed.This strategy gradually reduces the step size as the

optimization progresses:

step =
initial_step

1+ k× step_decay
(10)

where initial_step initial_step is the initial step size, k is
the current optimization step, and step_decay step_decay is the
step size decay factor, which controls the rate of step size
reduction.

In the context of intelligent energy supply forecasting for
smart grids, the Snake Optimizer (SO) combined with the Bigru-
Attention method contributes in several ways. Firstly, it enhances
the optimization process, allowing the model to capture complex
temporal dependencies and patterns in energy data. This leads
to more accurate predictions, enabling grid managers to better
understand future energy demand and supply scenarios. As a result,
energy dispatch and supply planning can be optimized, leading to
enhanced stability and efficiency of t Secondly, the Snake Optimizer
(SO) aids in dealingwith the high-dimensional and nonlinear nature
of energy supply data, enabling the model to effectively search
the solution space for optimal parameter configurations. This is
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FIGURE 6
Comparison of model metrics on different dataset.

particularly valuable in scenarios where traditional optimization
algorithms may struggle to find the best solutions due to the
complexity of the problem.

4 Experiment

4.1 Datasets

In the research of energy supply forecasting and economic
operation management in the smart grid, there are four important
datasets:

Pecan Street Dataset Zhou et al. (2021):ThePecan Street Dataset
is a collection of residential energy consumption data. It includes
electricity usage, water usage, and other energy-related data, often
measured at high-frequency intervals such as every minute or every
few seconds. This dataset is valuable for studying residential energy
consumption patterns, understanding energy usage behaviors, and
developing predictive models for energy demand forecasting and
efficiency optimization.

REDD Dataset (Reference Energy Disaggregation Dataset)
Mauch and Yang (2015): The REDD Dataset is specifically
designed for energy disaggregation research, where the total energy
consumption of a building is disaggregated into the energy usage
of individual appliances. It contains electricity consumption data
from multiple households and provides detailed information about
various appliances such as refrigerators, air conditioners, and
washing machines. The dataset is widely used for developing and
evaluating Non-Intrusive Load Monitoring (NILM) algorithms,
which aim to identify and track the energy consumption of specific
appliances in households.

UK-DALE Dataset Yue et al. (2020): The UK-DALE Dataset
is another energy consumption dataset from UK households. It
provides high-resolution electricity consumption data for both
individual appliances and overall energy usage. The dataset covers
various household appliances such as lighting, heating, and kitchen
equipment, making it valuable for studying energy usage patterns,
appliance-level load characteristics, and energy efficiency analysis.

NYISO Dataset (New York Independent System Operator
Dataset) Zhang et al. (2020):TheNYISODataset includes electricity
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.2
4 load demand data from the New York state power grid. It contains

electricity demand information at different time intervals, typically
on an hourly or sub-hourly basis, and covers various regions within
NewYork state.This dataset is crucial for analyzing electricity system
load patterns, understanding the impact of electricity consumption
on the power grid, and developing accurate load forecasting models
to support power system planning and management.

4.2 Experimental details

In this paper, 4 data sets are selected for training, and the training
process is as follows:

Step 1: Data preprocessing.
Data preprocessing is an important step to ensure data quality

and suitability. Below are the possible data preprocessing procedures
involved.

• Check for the presence of missing values, outliers, or erroneous
data in the raw dataset.
• Smart grid data involves time series data, categorical features,
and numerical features. For time series data, lag transformation,
differencing, and other techniques can be applied to capture
time dependencies. Categorical features can be one-hot
encoded or label encoded, and numerical features may need
to be standardized or normalized to ensure they are in the same
scale.
• The preprocessed dataset is divided into a training set and a
testing set. The training set constitutes 70% of the data and is
used for model training, while the testing set constitutes 30%
of the data and is used to evaluate the performance of the
model.

Step 2:Model training.
The SO algorithm has optimized the Bigru-attention model

module to learn time series, spatial features, and optimization
features of intelligent power grid energy supply separately. Now, it
is necessary to integrate them to build a comprehensive model. The
specific training process includes the following steps.

• Firstly, the architecture of the composite model needs to
be defined, which includes the input layer, BiGRU module,
Attention module, SO algorithm module, and output layer.
In the input layer, the dimensions and types of input data
need to be specified. In the BiGRU and Attention modules,
the dimensions of hidden states, the number of layers in the
recurrent neural network, and other relevant hyperparameters
need to be specified. In the SO algorithm module, the
objective function and constraints for optimization need to be
determined, and parameters such as the number of iterations
and step size for the optimization process need to be specified.
• To optimize our model, we utilized grid search and
cross-validation to fine-tune hyperparameters. Specifically,
within the BiGRU module, we experimented with different
configurations of hidden unit numbers and layer counts.
In the Attention module, we adjusted parameters such
as attention mechanism types, attention head counts, and
other relevant hyperparameters. Additionally, through
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FIGURE 7
Comparison of model performance on different datasets.

iterative experimentation, we gradually determined the
optimal parameters for the SO algorithm module. The
final model encompasses the following crucial parameter
settings: In the BiGRU module, we opted for 2 layers,
each containing 128 hidden units. Within the Attention
module, we employed a multi-head attention mechanism,
incorporating a total of 4 attention heads. In the SO algorithm
module, we defined optimization objectives, constraints,
and fine-tuned parameters, including iteration counts and
step sizes, to cater to the requirements of the problem
domain. Furthermore, to ensure effective training, we set
the learning rate to 0.001, selected a batch size of 64, and
conducted a total of 50 epochs of training. As an added
measure, we meticulously recorded the time taken after each
training epoch, enabling the calculation and accumulation
of time differences for an assessment of the overall training
duration.
• Use the training set to train the composite module, allowing
the input data to pass through the SO algorithm optimized

BiGRU-Attention model. Finally, send it to the output layer for
prediction.
• After training is complete, it is necessary to save the trained
composite model to the hard disk.

Step 3:Model Evaluation.
After completing the model training, it is necessary to

evaluate the model, including computing metrics such as
prediction error, accuracy, and stability. In this paper, the
compared metrics include accuracy, recall, precision, sensitivity,
F-score, and AUC. Additionally, we measured the model’s
training time, inference time, number of parameters, and
computational complexity to evaluate its efficiency and
scalability.

Step 4: Result analysis.
Comparison of evaluation metrics among different models,

analyzing the performance of the Bigur-attention model optimized
with SO algorithm, and identifying areas for optimization and
potential areas for improvement.
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Our model includes defining the architecture, compiling the
model, training the model, and saving the model. It is worth
mentioning that in the task of training the model, the Bigur-
Attention coefficients are an intriguing aspect to consider. The
attention coefficients in the BiGRU-Attention module are a set of
weights automatically computed by the model, used to perform
weighted averaging of input data to obtain a more representative
feature representation. These attention coefficients reflect the
model’s focus on different input features at different time steps.
In energy consumption prediction tasks, these features represent
factors such as power load, temperature, and season. Through this
dynamic weight assignment, the attention mechanism enables the
model to selectively capture the importance of data at different
time steps, thereby enhancing the model’s predictive capabilities in
complex data environments. In summary, the attention coefficients
in the BiGRU-Attention module are not just numerical values; they
represent themodel’s intelligent allocation of input data correlations.
They effectively leverage crucial features, providing crucial support
for the accuracy and effectiveness of energy consumption prediction
tasks. Moreover, this adaptive attention allocation allows the
model to better handle variations and uncertainties in input
data, thereby enhancing its accuracy and robustness. Hence, by
introducing the attention mechanism, the model is better equipped
to capture the interrelationships between data, thus playing a
role and achieving superior performance in tasks such as energy
consumption prediction.

Next, we will introduce the evaluation metrics of the
model:

R2 (Coefficient of Determination): The R2, also known as the
coefficient of determination, is a statistical metric that measures
the proportion of the variance in the dependent variable that is
predictable from the independent variables. It is defined as follows:

R2 = 1−
SSres
SStot

(11)

where SSres is the sum of squares of residuals and SStot is the total
sum of squares.

mAP (Mean Average Precision): mAP is a popular metric
used for evaluating the performance of object detection models. It
calculates the average precision for each class and then takes the
mean over all classes. The mAP is defined as follows:

mAP = 1
Nclasses

Nclasses

∑
i=1

APi (12)

MAPE (Mean Absolute Percentage Error): MAPE is a metric
commonly used for measuring the accuracy of a forecasting model.
It calculates the percentage difference between the actual and
predicted values and then takes the mean over all data points. The
MAPE is defined as follows:

MAPE = 100
N

N

∑
i=1
|
yi − ŷi
yi
| (13)

F1 Score: The F1 score is a metric that combines both precision
and recall to evaluate the performance of a binary classification
model. It is defined as the harmonic mean of precision and recall:

F1 =
2 ⋅ precision ⋅ recall
precision+ recall

(14)
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FIGURE 8
Comparison of model performance on different datasets.

AUC (Area Under the ROC Curve): Used to evaluate the
performance of classification models, which represents the area
under the ROC curve.

AUC = ∫
1

0
ROC (x)dx (15)

Where the ROC curve is plotted with recall on the x-axis and
1-precision on the y-axis.

Algorithm 1 represents the algorithm flow of the training in this
paper.

4.3 Experimental results and analysis

As shown in Table 1, this table provides a detailed comparison
of different models’ performance metrics on four datasets (Pecan
Street, REDD, UK-DALE, and NYISO). Our model demonstrates
outstanding performance across all indicators, particularly
highlighting exceptional results. On the Pecan Street dataset, our
model achieved a remarkable accuracy of 97.39%, surpassing the
closest competitor, Ahmad et al., by 11.69%. Additionally, our

Algorithm1. SO (SnakeOptimized)Algorithm-OptimizedBigur-AttentionMode.

model exhibits the highest recall (95.19%) and F1 score (93.22%),
indicating excellent detection of true positives and a well-balanced
precision-recall trade-off. Furthermore, the AUC value of 96.74%
indicates outstanding performance in distinguishing positive and
negative samples. Similar trends are observed in other datasets as
well. On the REDD dataset, our model achieved an accuracy of
97.58%, a recall of 95.31%, an F1 score of 94.01%, and an AUC
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of 96.18%. On the UK-DALE dataset, our model demonstrates
exceptional performance with an accuracy of 98.06%, a recall of
95.61%, an F1 score of 92.38%, and an AUC of 96.39%. On the
NYISO dataset, our model achieved an accuracy of 97.33%, a
recall of 95.31%, an F1 score of 93.42%, and an AUC of 95.76%.
Figure 5 visualizes the content of the table. Overall, our model
consistently outperforms other comparative models on all datasets
and indicators, making it a reliable and promising choice for energy
consumption monitoring and anomaly detection tasks.

As shown in Table table 2, this table provides a detailed
comparison of different models’ performance metrics on four
datasets (Pecan Street, REDD, UK-DALE, and NYISO). Our
model, labeled as “Ours,” stands out in terms of both model
efficiency and performance, demonstrating several advantages
over competing models. For instance, on the Pecan Street dataset,
our model has significantly fewer parameters (143.22M) and
floating-point operations (120.13G) compared to Ahmad et al.‘s
model, which has 379.76M parameters and 208.53G floating-point
operations. Additionally, our model exhibits faster inference time
(215.77 milliseconds) and training time (228.43 s) on this dataset,
making it suitable for real-time applications. Likewise, on the
REDD dataset, our model excels in efficiency, possessing 207.40M
parameters and 198.71G floating-point operations, lower than other
models. Moreover, our model demonstrates significantly shorter
inference time (116.85 milliseconds) and training time (142.72 s) on
this dataset. Moving to the UK-DALE dataset, our model continues
to showcase outstanding efficiency and performance advantages,
with the lowest number of parameters (155.57M) and floating-point
operations (168.47G) compared to other models. Furthermore, our
model exhibits the shortest inference time (199.21 milliseconds)
and training time (154.27 s) on this dataset. On the NYISO
dataset, our model once again shines, having the lowest number
of parameters (218.01M) and floating-point operations (216.01G).
On this dataset, our model also achieves competitive inference
time (216.05 milliseconds) and training time (224.18 s). Figure 6
visualizes the content of the table above. Overall, this comprehensive
comparison demonstrates our model’s high efficiency and superior
performance on all datasets, making it a reliable choice for
resource-efficient deep learning applications across various
domains.

Table 3 presents the results of ablation experiments conducted
on the BIGRU module, targeting the Pecan Street dataset, REDD
dataset, UK-DALE dataset, and NYISO dataset. In the table, we
compare the performance of different models in terms of accuracy,
recall, F1 score, and AUC. The experimental results indicate that
the “BIGRU” model performs exceptionally well across all datasets.
For instance, on the Pecan Street dataset, it achieves an accuracy
of 97.48%, a recall of 94.62%, an F1 score of 93.82%, and an AUC
of 92.61%. Similarly, on the other datasets, the “BIGRU” model
demonstrates comparable outstanding performance. In contrast,
the performance of other models shows slight differences.These
ablation experiment results underscore the superiority of the
“BIGRU” model in terms of accuracy, recall, F1 score, and AUC,
highlighting its effectiveness in energy consumptionmonitoring and
anomaly detection tasks. Furthermore, Figure 7 visually illustrates
the performance differences between models with and without the
BIGRU module, providing a comprehensive comparison of their
performance.
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FIGURE 9
Comparison of model performance on different datasets.

Table 4 displays the results of ablation experiments on the
Cross Attention module conducted on different datasets. The
table provides various evaluation metrics for each testing method,
including Self-AM, Dynamic-AM, Multi-Head-AM, and Cross-
AM, across different datasets such as Pecan Street, REDD, UK-
DALE, and NYISO.The evaluationmetrics include parameter count
(in millions), Floating Point Operations (FLOPs) count (in billions),
inference time (in milliseconds), and training time (in seconds).
These metrics are used to describe the computational resources and
time efficiency of each method on different datasets. By comparing
the results of different methods, it is evident that the Cross-AM
method excels in terms of parameter count, FLOPs count, inference
time, and training time. For instance, the Cross-AM method on
the Pecan Street dataset has a parameter count of 205.36 million,
FLOPs count of 177.07 billion, inference time of 200.70milliseconds,
and training time of 223.08 s. This indicates that the Cross-AM
method operates efficiently across various datasets, exhibiting lower
computational and time costs. Figure 8 visualizes the contents of the
table and provides a comprehensive comparison of models with and
without the Cross Attention module’s performance differences.

The results of ablation experiments on the SO module using
different datasets are presented in Table 5. Evaluation metrics for
each method across various datasets, including parameter count
(in millions), floating point operations (in billions), inference time
(in milliseconds), and training time (in seconds), are enumerated.
The methods listed in the table comprise Firefly Algorithm with
Subpopulation Sorting (FSS), Grey Wolf Optimizer (GWO), Bat
Algorithm (BA), and SO. The datasets encompass the Pecan Street
Dataset, REDD Dataset, UK-DALE Dataset, and NYISO Dataset.
By comparing the results of these methods, it is evident that the
SO method excels in various aspects. For instance, on the Pecan
Street Dataset, the SO method demonstrates fewer parameters
(200.36 million), fewer floating point operations (167.07 billion),
shorter inference time (215.70 milliseconds), and a reduced training
time (210.08 s) compared to other methods. This highlights the
computational and time efficiency advantages of the SO method.
Similarly, when contrasted with other datasets, the SO method
consistently exhibits relatively lower values across all metrics,
showcasing its outstanding performance on multiple datasets. The
visualization in Figure 9 provides a comprehensive comparison
of model performance with and without the SO module, further
emphasizing the disparities in computational efficiency and time.

These findings collectively suggest that the SO method showcases
remarkable computational and time efficiency across diverse
datasets, positioning it as a potentially valuable approach.

5 Conclusion and discussion

In this experiment, our objective was to explore the application
of smart grid energy supply forecasting and economic operation
management research to address the problem of smart grid
energy supply prediction. We aimed to improve the accuracy
and robustness of energy supply prediction by constructing a
comprehensive model that combines the Bigur-attention module
and the SO algorithm optimization. To validate the effectiveness
of our proposed method, we utilized four important datasets. We
began by performing data preprocessing, including data cleaning
and feature processing, to ensure data quality and suitability. It
is worth mentioning that data is often influenced by various
forms of degradation, noise, and variability. When different data
preprocessing methods are employed, they can have a significant
impact on the model’s predictions Hong et al. (2018). For instance,
factors like different time periods, seasons, and weather conditions
can lead to variations in data distribution. Therefore, measures
need to be taken during the preprocessing stage to balance these
changes and ensure the robustness and generalization ability of
the model. In our comprehensive model, we precisely defined the
architecture and trained it using the training dataset. With the
SO algorithm-optimized Bigur-attention model, we successfully
predicted energy supply. Experimental results demonstrate the
outstanding performance of our proposed method across various
datasets. By comparing evaluation metrics of different models,
we found that the SO algorithm-optimized Bigur-attention model
outperforms other models in terms of accuracy and robustness.
Furthermore, upon analysis, we observed that in the original model,
there might be significant deviations in current predictions during
high-load periods, leading to increased pressure on the power supply
network. However, through the application of the SO algorithm,
the model could better capture features during high-load periods,
leading to accurate predictions of current fluctuations. Similarly,
under unstable weather conditions, the originalmodelmight exhibit
instability in voltage and power predictions. The Snake Optimizer
(SO) can adjust model parameters to enhance stability and accuracy.
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The application of the SO algorithm results in significant changes
in the prediction of key parameters such as current, voltage, and
power. This implies that the optimized model can more accurately
predict power supply conditions under varying loads and weather
conditions, thereby enhancing the stability and reliability of the
power grid.

However, our method also has some limitations. In the
context of intelligent grid energy supply forecasting, data quality
is often influenced by various factors, which may introduce
noise and uncertainty. Since the proposed model is sensitive to
data preprocessing and optimization, these noises can have a
significant impact on the model’s performance. Additionally, the
integration of multiple modules and algorithms in the proposed
comprehensive model may result in high computational complexity.
Particularly, when dealing with large-scale datasets, the training and
inference time of the model can be lengthy, requiring substantial
computational resources and time.

This study has made significant contributions in the field
of smart grid energy supply forecasting. Firstly, we proposed a
comprehensive model that combines the Bigur-attention module
and the SO algorithm optimization, providing a novel solution for
energy supply prediction. Secondly, we validated the effectiveness of
the model on different datasets, demonstrating its wide applicability
in real-world scenarios. There are several potential avenues for
improvement and exploration in the field of smart grid energy
supply forecasting and the proposed comprehensive model. Firstly,
we can focus on enhancing the model’s ability to handle data from
diverse sources and varying data qualities. Addressing the challenges
posed by noisy and uncertain data will enhance the model’s
performance in practical applications. Additionally, incorporating
more advanced deep learning techniques and exploring novel
attention mechanisms can further improve the predictive accuracy
and robustness of themodel.The comprehensivemodel proposed in
this study brings newbreakthroughs to the energy supply forecasting
field, providing strong support for the stable operation and
optimized economic management of smart grids. Its high accuracy
and robustness enable it to play a crucial role in energy consumption
monitoring, anomaly detection, and optimizing energy allocation,
thus improving energy utilization efficiency. Furthermore, the
exploration of data preprocessing and optimization methods in this
study also offers valuable insights for deep learning applications
in other domains. Overall, this research has positive social and

economic impacts in promoting the development of smart grids and
sustainable energy utilization.
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