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Optimal scheduling for charging
and discharging of electric
vehicles based on deep
reinforcement learning

Dou An*, Feifei Cui and Xun Kang

School of Automation Science and Engineering, Faculty of Electronics and Information Engineering,
Xi'an Jiaotong University, Xi'an, Shaanxi, China

The growing scale of electric vehicles (EVs) brings continuous challenges
to the energy trading market. In the process of grid-connected charging
of EVs, disorderly charging behavior of a large number of EVs will have a
substantial impact on the grid load. Aiming to solve the problem of optimal
scheduling for charging and discharging of EVs, this paper first establishes
a model for the charging and discharging scheduling of EVs involving the
grid, charging equipment, and EVs. Then, the established scheduling model
is described as a partially observable Markov decision process (POMDP) in
the multi-agent environment. This paper proposes an optimization objective
that comprehensively considers various factors such as the cost of charging
and discharging EVs, grid load stability, and user usage requirements. Finally,
this paper introduces the long short-term memory enhanced multi-agent
deep deterministic policy gra dient (LEMADDPG) algorithm to obtain the
optimal scheduling strategy of EVs. Simulation results prove that the proposed
LEMADDPG algorithm can obtain the fastest convergence speed, the smallest
fluctuation and the highest cumulative reward compared with traditional deep
deterministic policy gradient and DQN algorithms.
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electric vehicles (EVs), deep reinforcement learning, partially observable markov
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1 Introduction

Electric vehicles (EVs), with their outstanding advantages of being clean,
environmentally friendly, and low noise, have become the focus of industries around
the world. However, as the scale of EVs continues to expand, their high charging
demand is gradually increasing its proportion within the power system, posing significant
challenges to the stability and safety of the smart grid (Chen et al., 2021; Chen et al.,
2023). The behavior of EV owners directly influences the spatiotemporal distribution
of charging demand, introducing uncertainties in charging time and power for EVs.
These uncertainties could have a significant impact on the normal operation and
precise control of the smart grid (Wen et al., 2015; Liu et al., 2022). Simultaneously, EVs
can act as an excellent mobile energy storage device and can serve as a distributed
power source to supplement the power system when necessary. This capability creates
a source-load complementary intelligent power dispatch strategy (Lu et al., 2020).

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1273820
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1273820&domain=pdf&date_stamp=2023-10-26
mailto:douan2017@xjtu.edu.cn
mailto:douan2017@xjtu.edu.cn
https://doi.org/10.3389/fenrg.2023.1273820
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1273820/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1273820/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1273820/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1273820/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


An et al. 10.3389/fenrg.2023.1273820

Therefore, it is imperative to manage the charging and discharging
of EVs. A rational charging and discharging strategy will not only
effectively mitigate the adverse effects of charging behavior on
the grid load but also play a positive role in peak shaving, load
stabilization, and interaction with the grid (Zhao et al., 2011).

Traditional methods for optimizing the scheduling of EV
charging and discharging are divided into three main categories:
methods based on dynamic programming, methods based on
day-ahead scheduling, and model-based methods (Zhang et al.,
2022). However, the application of traditional algorithms to the
optimization of EV charging scheduling faces two major challenges:
the massive number of EVs results in high-dimensional scheduling
optimization variables, often leading to the 'curse of dimensionality'
(Shi et al., 2019); the fluctuations within the energy system and the
uncertainty of EV user demandmake it difficult to establish accurate
models, limiting the control effectiveness and performance of the
algorithm.

Reinforcement learning methods, which can obtain optimal
solutions to sequential decision-making problems without explicitly
constructing a complete environment model, have been widely
deployed in addressing the charging scheduling problem of EVs.
Deep reinforcement learning-based charging scheduling methods
can be divided into two categories: value-based algorithms and
policy-based algorithms (Xiong et al., 2021). Regarding value-based
algorithms (Liu et al., 2019), developed an incremental update-
based flexible EV charging strategy.This approach considers the user
experience of EV drivers and aims to minimize their charging costs
(Vandael et al., 2015). sought to learn from transitional samples and
proposed a batch reinforcement learning algorithm. This method
ultimately resulted in the optimal charging strategy for reducing
charging costs (Wan et al., 2018). innovatively used a long short-
term memory (LSTM) network to extract electricity price features.
They described the scheduling of EV charging and discharging
as a Markov decision process (MDP) with unknown probabilities,
eliminating the need for any system model information.

Value-based algorithms are suitable only for discrete action
spaces, while policy-based algorithms can handle continuous action
spaces (Nachum et al., 2017; Jin and Xu, 2020) proposed an
intelligent charging algorithm based on actor-critic (AC) learning.
This method successfully reduced the dimensionality of the state
variables for optimization in EVs (Zhao and Hu, 2021). employed
the TD3 algorithm for modeling and introduced random noise into
the state during the training of the intelligent agent. This approach
achieved generalized control capability over the charging behavior
of EVs under various states (Ding et al., 2020). established an MDP
model to characterize uncertain time series, thereby reducing the
system's uncertainty. They subsequently employed a reinforcement
learning technique based on the deep deterministic policy gradient
(DDPG) to solve for a charging and discharging scheduling strategy
that maximizes profits for the distribution network.

Currently, the main challenge facing reinforcement learning
algorithms for optimizing EV charging and discharging is the issue
of algorithm non-convergence caused by the high-dimensional
variable characteristics in the multi-agent environment (Pan et al.,
2020). utilized the approximate dynamic programming (ADP)
method to generalize across similar states and actions, reducing
the need to explore each possible combination exhaustively.
However, the ADP method requires manual design and feature

selection, which is less automated compared to deep reinforcement
learning (DRL) (Long et al., 2019). formulated the EV clusters
charging problem as a bi-level Markov Decision Process, breaking
down complex tasks to enhance convergence and manage high
dimensions. However, its hierarchical structure can hinder end-to-
end learning, potentially leading to suboptimal strategies, unlike
DRL which can map states directly to actions. Therefore, this
paper proposes a reinforcement learning algorithm specifically
for the optimal scheduling of EV charging and discharging. The
algorithm integrates LSTM and MADDPG, where LSTM is utilized
to extract features from historical electricity prices, and MADDPG
is employed to formulate charging and discharging strategies. This
algorithm aims to solve the problem of non-convergence in multi-
agent environments while also fully utilizing historical time-of-use
electricity price data to aid the agent in decision-making.The major
contributions of this paper are as follows.

• This paper establishes a model for optimizing the scheduling
of EV charging and discharging in a multi-agent environment.
The model involves the power grid, charging equipment, and
EVs, and the flow of electricity and information is controlled
by different entities. Besides, the charging control model is
characterized as a partially observable Markov decision process
(POMDP).
• This paper sets the optimization objective of the algorithm
by considering three main factors: the cost of charging and
discharging, the impact of EV charging and discharging on
the grid load, and users' usage requirements. Corresponding
constraint conditions of above objectives are also provided.
• This paper introduces the long short-term memory enhanced
multi-agent deep deterministic policy gradient (LEMADDPG)
algorithm to obtain the optimal scheduling strategy of
EVs. The LSTM network is utilized to extract features
from the TOU electricity price data in order to guide the
EV exploring the optimal charging and discharging action
strategy.
• Complete simulation results prove that the proposed
LEMADDPG algorithm can obtain the fastest convergence
speed, the smallest fluctuation and the highest cumulative
reward compared with the DDPG and deep Q-network (DQN)
algorithms. In addition, results also indicate that the LSTM
network can extract features of time-of-use electricity price
data and make reasonable predictions for future prices.

2 Scheduling model

The electrical usage scenario in this paper is a smart residential
community. This community consists of multiple households
that own electric vehicles. Ample charging devices are installed
throughout the area for EV usage. In the process of charging and
discharging, users can determine the duration themselves. Aside
from purchasing electricity to charge their EVs, users can also use
their vehicles as home energy storage devices to sell excess electricity
back to the grid.

This paper establishes a simple EV charging and discharging
optimization scheduling model, as shown in Figure 1. The model
involves three primary components: the power grid, charging
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FIGURE 1
Diagram of charging and discharging scheduling for EVs.

equipment, and electric vehicles. Specifically, the power grid is
responsible for providing electrical supply and real-time time-of-
use price information. The charging equipment fulfills the role of
purchasing electricity from the grid based on the needs of EVs and
then distributing this electricity to the vehicles. It also transfers price
information to EVs and the current status of the vehicles to the
grid system. Electric vehicles are managed to charge or discharge
based on real-time price information and provide feedback to the
charging equipment about their current state information. The
scheduling process can be divided into three steps: information
collection, real-time decision-making, and command sending. First,
the decision-making unit collects information on electricity prices
provided by the grid, demand information, and the battery status of
the EVs. Next, the decision-making unit inputs the collected status
information into the decision network and outputs the charging
and discharging plans for each EV. Finally, upon receiving the
commands, the grid dispatches the corresponding electricity to
various charging devices, completing the energy scheduling for that
time period.

2.1 Basic assumptions

In the community, there are a total of N EVs. The set of EVs
is designated as B = {1,…, i,…,N}. It is assumed that EVs start
charging and discharging immediately after being connected to the
charging equipment. The scheduling process only considers EVs in
the state of charging and discharging. A scheduling period is set as
24 h, with a scheduling step of 1 h.The set of time slots is designated
as H = {1,…, t,…,24}.

In each scheduling step, EVs are divided into online and offline
states. The set of online time slots for EV i is denoted as Tonline

i =
{Tstart

i ,…, t,…,T
end
i },0 ≤ T

start
i ≤ t ≤ T

end
i ≤ 23. T

start
i is the time slot

when the EV connects to the charging equipment to start charging.
Tend
i is the time slot when the EV finishes charging and leaves.

Assuming that all EVs arrive or leave at the whole hour, the
online time slots should be a continuous set of natural numbers.
In other time slots, if EV i is not connected to the charging
equipment, it is considered as not participating in the current
scheduling.

2.2 Optimization objective

The primary objective of the optimized scheduling for EV
charging and discharging is to minimize the cost associated with
EV charging and discharging. It also takes into account the impact
of the total power of the EV cluster's charging and discharging
activities on the stable operation of the power grid, as well as user
usage requirements. Based on the previous assumptions, this paper
considers the following cost factors.

2.2.1 Cost of charging and discharging C
charge
i,t

Under the time-of-use (TOU)pricing policy, the cost of charging
and discharging Ccharge

i,t depends on the current electricity price and
the amount of charging and discharging.Thus, the cost generated by
charging and discharging behavior can be represented as:

Ccharge
i,t = λt ⋅ li,t (1)
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where λt is the current electricity price during time slot t. li,t is the
total charging and discharging quantity of EV i in time slot t. It can
be specifically expressed as follows:

li,t =
{
{
{

pi,t, t ∈ T
online
i

0, t ∉ T online
i

(2)

where pi,t is the average charging and discharging power of EV i
during time slot t. It is positive during charging and negative during
discharging. T online

i is the set of online time slots.

2.2.2 Cost of state of charge (SOC) CSOC
i,t

The randomness of EV charging behavior mainly manifests as
uncertainty in the start time and duration of charging. Furthermore,
the state of charge at the start of charging is influenced by
the usage and charging habits of the EV user (Kim, 2008).
Considering the user's usage needs for EVs, the state of charge
after charging and discharging should meet the user's upcoming
driving needs. To simplify the model, we make the following
assumptions:

EVs arrive at the charging equipment to charge at any time
within 24 h and leave after several hours of charging. Both the
arrival time and departure time follow a uniform distribution, with
a probability density function of:

f (t) =
{
{
{

1
b− a
, a ≤ t ≤ b

0, other
(3)

where, a = 0,b = 23.
The initial SOC of EVs follows a normal distribution, with a

probability density function of:

fint (SOC) =
1

σ√2π
e
[− (SOC−μ)

2

2σ2
]

(4)

where μ = 0.5,σ = 0.16.
While the usage needs of a single user are difficult to predict,

extensive data shows that user requirements follow a normal
distribution. Thus, the usage requirement SOCideal also follows a
normal distribution, with a probability density function of:

fideal (SOC) =
1

σ√2π
e
[− (SOC−μ)

2

2σ2
]

(5)

where, μ = 0.5,σ = 0.16.
Based on the above description, the cost of state of charge CSOC

i,t
incurred to meet user usage needs can be expressed as:

Csoc
i,t = δ ⋅ [E ⋅ (SOCideal − SOCi,Tend

i +1
)]2 (6)

where SOCideal represents the user's expected SOC for an EV. It
describes the user's usage needs. For example, if the user expects to
travel a long distance after charging, this value is higher. SOCi,Tend

i +1
represents the SOC of EV i when it leaves the equipment after
charging. δ is the coefficient of the SOC cost, 0 ≤ δ ≤ 1. E is the
maximum capacity of the EV battery, determined by the EV model.
According to the above formula, if the SOCafter charging SOCi,Tend

i +1
deviates significantly from the user's expected value SOCideal, it will
result in a higher penalty cost.

2.2.3 Cost of grid load impact C
impact
i,t

During the charging and discharging process, EVs' behaviors
impact the load curve of the power grid (Rawat et al., 2019). Based
on previous discussions, the power grid system is expected to
operate smoothly. This requires certain restrictions on the total
charging and discharging power of the EV cluster. Therefore, this
paper introduces the impact cost of the EV cluster's charging and
discharging behavior on the power grid, which is represented as:

Cimpact
i,t =
{
{
{

μ ⋅ λt ⋅ li,t, lt ≥ lth
0, lt < lth

(7)

where μ denotes the cost coefficient for load impact. λt is the current
electricity price. li,t is the total amount of charging and discharging
for EV i in period t. lt is the total load generated by the EV cluster in
period t, defined as:

lt =
N

∑
i=1

li,t (8)

The cost of grid load impact is incurred only when the total load
of the EV cluster exceeds a certain threshold (Shao et al., 2011). The
threshold lth can be defined as:

lth = kth ⋅ pmax ⋅N (9)

where kth represents the percentage threshold of the charging and
discharging power of the EV cluster in the current grid load. This
threshold limit is set by the power grid system based on recent load
conditions and is released to all EVs participating in charging and
discharging. pmax is the maximum charging power of the EV cluster,
defined as follows:

pmax =max(pi,max) , i ∈ B (10)

Based on the above assumptions, we propose the optimization
objective to minimize the comprehensive cost C generated in the
charging and discharging process. The comprehensive cost C can be
defined as:

minC =
N

∑
i=1
{

24

∑
t=1
[Ccharge

i,t +C
soc
i,t ] +C

impact
i,t }

s.t.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

0 ≤
T

∑
t
Ccharge
i,t ≤ 1, i = 1,2,…,N

0 ≤
T

∑
t
Csoc
i,t ≤ 1, i = 1,2,…,N

0 ≤
T

∑
t
Cimpact
i,t ≤ 1, i = 1,2,…,N

0 ≤ C ≤ 3N

(11)

2.3 Constraint condition

The SOC for EV i should satisfy the constraint:

SOCmin ≤ SOCi,t ≤ SOCmax (12)

Generally, the SOC of an EV is represented as a percentage, with
SOCmin = 0%, SOCmax = 100%.
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The charging and discharging power of EV i during time period
t is subject to the constraint:

|pi,t| ≤ pmax,i,pmax,i =min(ω ⋅ SOCi,t,Pmax) (13)

whereω is the charging power limit coefficient.Pmax is themaximum
charging power of EV i, depending on the specific EV model. The
real-time charging power of EVs is influenced by both the SOC and
themaximum charging power.When the SOC is high, to protect the
battery, the EV does not charge and discharge at full power. Instead,
it operates at a lower power level based on the current SOC.

3 POMDP model

During the charging and discharging process, each EV agent
is unable to acquire a complete observation of the system. They
are unaware of the states and actions of other agents. The agent
must make charging and discharging decisions that can achieve
higher benefits based on their current observations and strategies to
obtain the optimal scheduling strategy (Dai et al., 2021). Therefore,
in contrast to the general Markov decision process model in
reinforcement learning, we describe the charging and discharging
optimization scheduling problem in this multi-agent environment
as a POMDP model (Loisy and Heinonen, 2023).

State Observation:The state information that EV i can observe
at time period t is assumed to be:

oi,t = {λt,ui,t,SOCi,t} (14)

where λt is the current TOU electricity price. ui,t indicates whether
EV i is connected to the charging equipment for charging in period
t, i.e., the online status of EV. Specifically, it can be represented as:

ui,t =
{
{
{

1, t ∈ T online
i

0, t ∉ T online
i

(15)

where SOCi,t is the SOC of EV i in period t.
The system state includes the current state information of all EVs

and the current electricity price information. It can be described as
the combination of the EV cluster and the current time-of-use price
information, which is:

Ot = {o1,t,o2,t,…,oN,t}

= {λt,u1,t,…,uN,t,SOC1,t,…,SOCN,t} (16)

Action: We select the average charging and discharging power
pi,t of EV i in period t as action ai,t of the agent, that is:

ai,t = pi,t (17)

where ai,t is positive when the EV is charging and negative when
discharging.

The agent can charge the EV during low electricity price periods
and sell electricity to the grid through the EV battery during peak
price periods to obtain economic benefits. The joint action taken by
all EV agents in period t is denoted as at = {a1,a2,…,aN}.

Reward: Reward is an important factor in evaluating the quality
of the action strategies adopted by each agent. Based on the above

discussion and the optimization objective of the model, we set the
reward as follows:

ri =
{
{
{

rchi + r
punish
i + rsoci , t = T end

i

rchi + r
punish
i , t ≠ T end

i

(18)

rchi is the reward for the charging and discharging behavior of EV
i, defined as:

rchi = −λtai,t (19)

It indicates that high electricity prices and high charging power
will reduce the rewards obtained by the agent.

rpunisht is the reward for the total impact on the grid load of the
charging and discharging behavior of the EV cluster in time period
t, defined as:

rpunisht =

{{{{{
{{{{{
{

−ρ ⋅ λtai,t,
N

∑
i=1

ai,t ≥ lth

0,
N

∑
i=1

ai,t < lth

(20)

where lth is the threshold limit of the grid for the total charging and
discharging power of the EV cluster. ρ is the load reward conversion
factor.

rSOCi is the reward for EV imeeting the user's usage requirements
at the end of charging, defined as:

rsoci = −υ ⋅C
soc
i,t (21)

where υ is the SOC reward conversion factor. Csoc
i,t is the cost of SOC.

State Transition: After the EV agent cluster executes the joint
action at = {a1,a2,…,aN}, the system state transitions from Ot to
Ot+1. Each agent receives the corresponding rewards and state
observation information for the next stage from the environment.
This transition process can be represented as a function:

Ot+1 = f (Ot,at) (22)

4 LEMADDPG algorithm design

Based on the previous discussion, we modeled the problem of
optimizing the charging and discharging schedule of the EV cluster
as a POMDP in amulti-agent environment. However, reinforcement
learning algorithms in multi-agent environments often face the
challenge of environmental instability (Wu et al., 2020). This is due
to each agent constantly learning and improving their strategy.
From the perspective of a single agent, the environment is in
a dynamic state of change, and the agent cannot adapt to the
changing environment by simply altering its own strategy. To
address this challenge, researchers have begun to focus on multi-
agent reinforcement learning methods, aiming to resolve the issue
of the non-convergence of reinforcement learning algorithms caused
by environmental instability.

Furthermore, extracting discriminative features from raw data
is a key method to improve reinforcement learning algorithms. In
this problem, we expect a good algorithm to fully utilize the trend
information of TOU electricity prices to guide the action selection
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FIGURE 2
LSTM network structure (Wan et al., 2018).

of agents. It should result in an optimal scheduling strategy that
minimizes the overall cost (He et al., 2021; Liao et al., 2021). Since
TOUelectricity prices fluctuate in a quasi-periodicmanner and have
a natural time sequence, it is suitable to use past prices to infer future
price trends.

Therefore, this paper takes the multi-agent deep deterministic
policy gradient (MADDPG) (Lowe et al., 2017) algorithm as the
main body and uses the long short-term memory (LSTM) network
(Shi et al., 2015) to extract features from the input TOU electricity
price data. These feature data are used to guide the EV agent
to explore the optimal charging and discharging action strategy.
Consequently, we propose the long short-term memory enhanced
multi-agent deep deterministic policy gradient (LEMADDPG)
algorithm.

4.1 Electricity price feature extraction

LSTM (Shi et al., 2015) is a type of recurrent neural network
specifically designed to address the long-term dependency problem
that is prevalent in regular recurrent neural networks (RNNs).
The key characteristic of LSTM is the introduction of a memory
cell, also referred to simply as a cell. The memory cell can retain
additional information and controls the flow of information via
three gate structures: input gate, forget gate, and output gate. The
input gate determines whether to accept new input data. The forget
gate decides whether to retain the contents of the old memory
cell. The output gate decides whether to output the contents of the
memory cell as a hidden state. In this way, LSTM can alleviate the
vanishing gradient problemand capture long-distance dependencies
in sequences, making it highly suitable for processing and predicting
time series data. A typical LSTM network structure is shown in
Figure 2.

In this paper, before the algorithm starts training, the real
historical TOU electricity price data are input into the LSTM
network for pre-training. The trained LSTM network can output

the extracted electricity price features. Later, during the training
process, the LSTM network outputs the corresponding electricity
price features based on the current system state to guide the action
selection of the agents.

4.2 LEMADDPG algorithm structure

The algorithm adopts the enhanced actor-critic structure
(Konda and Tsitsiklis, 1999) from MADDPG, as shown in Figure 3.
Each agent includes two types of networks: the policy network
(Actor), responsible for making appropriate decision actions based
on the current observation information, and the value network
(Critic), which evaluates the quality of the actions output by the
policy network.

In the policy network section, the algorithm uses the idea
of the deterministic policy gradient (DPG) (Silver et al., 2014): it
changes from outputting the probability distribution of actions
to directly outputting specific actions and updates the network
parameters by maximizing the expected cumulative reward of each
agent. This is conducive to the agent's learning in continuous action
spaces. The agent first obtains its own observed information o
from the environment. Then, it chooses and outputs the current
action a according to the current policy π in its own policy
network. Notably, the agent uses only its own local information for
observation and execution, without needing to know the global state
information. After the agent obtains the current observation oi,t in
the environment, it selects the current action ai,t through the policy
network μi to provide its own current policy selection. Meanwhile,
to improve the degree of exploration of the agent during training in
a specific environment, a white noise signal Nt is added each time
the policy network outputs an action, that is

ai,t = μi (oi,t) +Nt (23)

In the value network section, to solve the non-stationarity
problem in the multi-agent environment, the algorithm uses a
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FIGURE 3
Structure of LEMADDPG algorithm.

centralized method to evaluate the policy of each agent. When each
agent's value network Critic evaluates the policy value Q, it not only
uses its own Actor information but also considers the information
of all agents. In other words, the Critic of each agent is centralized.
This is key to implementing centralized training and distributed
execution.

The LEMADDPG algorithm uses the experience replay
(Mnih et al., 2013) strategy to enhance the stability of the learning
process. The experience replay method stores the interaction data
of each agent in the environment in a shared replay buffer. During
training, a batch of data is randomly sampled for repetitive learning,
significantly increasing the learning efficiency of the algorithm.The
specific method is as follows: Each time the agent's policy network
generates action ai,t based on the current observation oi,t, the
environment returns the current reward value ri and the observation
at the nextmoment oi,t+1 based on the action. At this point, all related
information set {o1,t,o2,t,…,oN,t,a1,t,…,aN,t, r1,…, ri,o1,t+1,…,oi,t+1}
is stored in the experience replay pool D, waiting to be used as
training samples for the neural network. Following this, the system
undergoes a state transition.

The target network strategy refers to each agent maintaining
a target network that has the same structure as its current
network but updates parameters more slowly. The target network
is used to calculate the approximation of the expected cumulative
reward, thereby reducing the oscillation of the target function and
accelerating the convergence speed of the algorithm, as shown in
Figure 4. Similar to the original network, the target network contains
policy and value networks. The parameters at initialization use the
policy network parameters and value network parameters from the
original network, but their update methods differ substantially.

The objective of training the original network is to maximize
the expected reward of its policy network while minimizing the loss
function of the value network (Dai et al., 2021). The specific update
procedures are as follows:

The update formula for the policy network is:

∇θiJ(μi) = Ex,a∼D [∇θiμi (ai|oi)∇aiQ
μ
i (x,a1,…,aN) |ai=μi(oi)] (24)

where ∇θiJ(μi) is the gradient of the expected reward of the policy
network with network parameters θi. ∇aiQ

μ
i (x,a1,…,aN) is the

gradient of the action value function output by the network under
the current state x and joint action at = {a1,a2,…,aN} with respect
to the action. ∇θiμi(ai|oi) is the gradient of the action output of the
policy network with respect to network parameter θi.

The update formula for the value network is:

L(θi) = Ex,a,r,x′ [(Q
μ
i (x,a1,…,aN) − y)

2] (25)

where L(θi) is the loss function of the value network. y is the actual
action value function, which can be represented as:

y = r+ γQμ′

i (x
′,a1′,…,a

′
N) |a′j=μ′j(oj) (26)

where γ is the discount factor, 0 ≤ γ < 1. Qμ′

i (x
′,a1′,…,a

′
N) is the

action value function of the target network.
After a complete round of learning, we use α as the update step

size to update the parameters of the original network, which can be
expressed as:

θi← θi + α ⋅∇θiJ(μi) ,

θi← θi − α ⋅∇θiL(θi)
(27)

The target network uses a soft update method to update
the network parameters. It assigns a weight τ (0 ≤ τ < 1) to
the parameters about to be updated, preserving a portion of
the original parameters. This results in smaller changes in the
target network's parameters and smoother updates, which can be
expressed as:

θi
′← τθi + (1− τ)θi′ (28)

4.3 Algorithm overflow

The structure of the LEMADDPG algorithm is shown in
Figure 3. The specific flow is shown in Algorithm 1. The system first
initializes the EV charging and discharging environment according
to the set parameters and then generates the initial observation O0.
For each EV agent, it selects the action ai,t according to its current
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FIGURE 4
Network structure and training process of MADDPG.

Algorithm 1. LEMADDPG algorithm.

observation oi,t and strategy. Then, the joint action at is performed,
each agent obtains its own reward ri,t from the environment and
obtains the observation oi,t+1 of the next stage.The system records all
information (Ot,at, rt,Ot+1) at this time and stores the quadruple in
the experience replay poolD. Then, the current system observation
Ot is input into the LSTM network, and the electricity price feature
ξt output under the current state is obtained. The current time
electricity price feature ξt replaces the real electricity price λt for state
update, that is:

oi,t = {λt,ui,t,SOCi,t} → o′i,t = {ξt,ui,t,SOCi,t} (29)

Next, the system state is transferred. If the experience replay
poolD is full, random sampling is performed for the agent to learn
from experience. The agent uses the minimization loss function to
update its Critic network and the gradient policy to update its Actor
network. Then, all target network parameters are updated using a
soft update method. At this point, a round of training is over, and
the system returns to the initial state to start the next round of
training.

TABLE 1 EV related parameters.

Parameter Value Unit

Maximum SOC SOCmax 100 %

Minimum SOC SOCmin 0 %

Charging efficiency η 0.9 -

Maximum battery capacity E 24 kW⋅h

Maximum charging power Pmax 6 kW

TABLE 2 EV charging and dischargingmodel parameters.

Parameter Value Unit

Grid load threshold kth 20 %

SOC cost coefficient δ 0.08 -

Load impact cost coefficient μ 0.7 -

Load reward discount coefficient ρ 3 -

SOC reward discount coefficient ν 0.5 -

5 Experimental results

5.1 Environment setup

We consider a smart community with a total of N EVs, and we
simulate the process of the fleet plugging into the charging device
over a 24-h period, from 0:00 on 1 day to 0:00 the next day, totaling
24 time periods.The relevant parameters of the vehicle are shown in
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FIGURE 5
The TOU electricity prices of a city in the UK: (A) Electricity price from April 2019; (B) Electricity price from April 2020.

Table 1. The parameters of the EV charging and discharging model
are shown in Table 2.

The training process uses TOU electricity price data provided by
a power company in a city in the UK.We select the electricity prices
from April 2019 as the training dataset and electricity prices from
September 2020 as the validation dataset. The TOU electricity price
data is shown in Figure 5.

5.2 MADDPG results analysis

Upon initialization of the environment, we use the Monte Carlo
method to simulate and generate the relevant initial variables for
each EV. This includes the initial SOC, the desired SOC, and the
times when the EV arrives at and leaves the charging station.
The initial system observation includes the relevant states of all
EVs, which can be represented by a 4N-dimensional vector O0 =
{SOC1,0, SOC2,0,…, SOCN,0, SOC1,ideal,…,SOCN,ideal,T

start
1 ,…T

start
N ,

T end
1 ,…T

end
N }. The algorithm first starts from the initial state and

advances according to the scheduling step size. Each agent in the EV
cluster sequentially selects charging or discharging actions under
its current policy and then receives rewards from the environment.
Then, the EV cluster carries out all actions and receives observations
for the next period from the environment.The related data are stored
in the experience replay pool, and the environment state transitions
until the maximum number of scheduling steps is reached or the
total reward of all agents in the system reaches a steady state.

To study the effectiveness of the MADDPG algorithm for the
EV charging and discharging optimization scheduling problem, we
first use the traditional MADDPG algorithm to run this case. The
algorithm parameter settings are shown in Table 3.

The total reward curve of the MADDPG-based EV cluster's
charging and discharging is shown in Figure 6, with the following
analysis.

(1) The horizontal axis represents the training round. The vertical
axis represents the total reward obtained by the EV agent cluster
in the corresponding round. For easy observation, the data have
been smoothed with a smoothing factor of 0.95.

TABLE 3 MADDPG algorithm parameters.

Parameter Value

Maximum training episodes 5,000

Number of agents N 3

Maximum episode steps 24

Experience replay memory size 1e6

Experience replay batch size 256

Future returns discount factor γ 0.95

Soft update discount factor τ 0.1

Network learning rate lr 0.001

Number of fully connected layers 64

(2) The total number of training episodes is 5,000. The experiment
runs for 30 min under the given conditions. As shown in the
figure, the total reward curve rises rapidly in the initial 800
rounds, after which the reward curve gradually becomes smooth
and converges. Finally, it stabilizes around 0.42, indicating that
the algorithm has converged.

The converged MADDPG algorithm is validated on the TOU
electricity price dataset for September 2020. For ease of
observation, we extract the change in TOU electricity price and the
corresponding action curve of the EV agents within 50 scheduling
steps for comparison. Figure 7 shows the charging and discharging
schemes of a certain EV following the TOU electricity price. The
analysis is as follows.

(1) The blue curve represents the time-of-use electricity price, the
purple curve represents the charging and discharging power
of the EV, and the black dashed line marks the observation
points.
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FIGURE 6
Total reward curve of the MADDPG algorithm.

FIGURE 7
Charging and discharging schemes of a certain EV following the TOU electricity price.

(2) At each observation point, the agent chooses to charge at a higher
power when the electricity price is at a low point and chooses to
charge at a lower power when the electricity price is at a peak.
This indicates that the converged algorithm can timely adjust the
charging and discharging power based on changes in the TOU
electricity price.

(3) The Kendall correlation coefficient between the TOU electricity
price and the charging and discharging actions of the agent is

−0.245. Since the electricity price is one of the factors affecting
the charging and discharging of EVs, the two do not show
a strong negative correlation but a weak negative correlation.
However, this still indicates that to some extent, the agent can
follow the changes in electricity prices and make corresponding
actions, i.e., tending to reduce charging power when the price is
high and increase power when the price is low.This is consistent
with the expected results of the experiment.
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FIGURE 8
Electricity prices predicted by the LSTM network.

5.3 LEMADDPG results analysis

To fully utilize the historical data of TOU electricity prices, this
paper adopts an LSTM network to extract the temporal features of
electricity prices to guide the agent in decision making. We choose
the TOU electricity price data fromApril 2019 as the input for LSTM
training, with the output being a price series with temporal features.
The learning rate is set to 0.01. Figure 8 shows the results after 2000
rounds of LSTM training.The blue curve in the figure represents the
original electricity prices, and the orange curve represents the prices
predicted by the LSTM using temporal features. The results indicate
that LSTM can extract the features of time-of-use electricity price
data and make reasonable predictions for future prices.

During themodel training process, we replace the real electricity
price information with the electricity price features extracted by the
LSTMwhen updating the system state observation.The total reward
curve for charging and discharging of the EV cluster based on the
LEMADDPG algorithm is shown in Figure 9, with the following
analysis.

(1) Thehorizontal axis is the number of training rounds.The vertical
axis is the total reward obtained by the EV agent cluster in the
corresponding round. For ease of observation, the data have been
smoothed with a smoothing factor of 0.95.

(2) The total number of training episodes is 5,000. The red curve
represents the total reward change of the original MADDPG
algorithm. The blue curve represents the total reward change of
the MADDPG algorithm after adding the LSTM. Both curves
show a rapid rise for the first 600 rounds. After 600 rounds,
the reward curve of LEMADDPG has converged, while the
reward curve of MADDPG begins to flatten after 800 rounds.
After repeating the experiment five times, it can be calculated

that the average convergence speed of the improved MADDPG
algorithm has increased by 19.72% compared to that of the
originalMADDPG. After 1,000 rounds, the total rewards of both
eventually stabilize around 0.42.

(3) The initial state of the system differs due to the substitution of
the input electricity price informationwith the temporal features
extracted by LSTM, resulting in a distinct difference in the initial
segments of the two curves.

(4) The above results show that after adding the LSTM network in
MADDPG, there is almost no change in the stable value of the
total reward after convergence. However, the convergence speed
of the algorithm has significantly improved.

5.4 Comparative experiment

To validate the adaptability and superiority of the proposed
LEMADDPG algorithm, we conducted two comparative
experiments, one involving the performance comparison of different
algorithms under the same scale of EVs, and the other involving
different algorithms under varying scales of EVs. The parameter
settings of the algorithms are the same as those in Table 3.

Figure 10 shows the comparative results of comprehensive costs
under the same scale of EVs. The comprehensive cost is calculated
as the cumulative value every 24 h. The results indicate that the
comprehensive cost of the policy obtained by LEMADDPG is the
lowest, at 2.94, which is 2.97% lower than the cost of DDPG, and
6.67% lower than the cost of DQN. The total reward with 3 EVs
of the LEMADDPG, DDPG, and DQN algorithms are shown in
Table 4. In terms of the speed of reward convergence, compared
to LEMADDPG, the benchmark algorithms DQN and DDPG
converge even faster at 120 and 500 rounds, respectively. This
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FIGURE 9
Total reward curves of MADDPG before and after the adding LSTM.

FIGURE 10
Composite cost curves of three algorithms.

is because the LEMADDPG algorithm is more complex and its
advantages are not obvious when addressing small-scale decision
problems. In terms of the steady-state value of the reward, the policy
obtained by LEMADDPGachieves higher reward values, converging
to 0.42.The above results show that the LEMADDPG algorithm has
the best steady-state reward value and a fast response speed.

Table 4 shows the training comparison results for different
algorithms with EV quantities of 3, 9, and 27, respectively. It can
be observed that compared to the two benchmark algorithms,
LEMADDPG has achieved higher convergence reward values with
all three scales. This indicates that LEMADDPG can seek better

charging and discharging strategies for different scales of EVs.
As for convergence speed, larger scales require more resources
for the algorithm to find the optimal strategy, leading to a
delay in the convergence points for all three algorithms as the
scale of EVs increases. However, it can be observed that due to
its simple structure, DQN has the fastest convergence speed in
scenarios with 3 and 9 EVs, converging in 120 and 1,250 episodes
respectively. However, as the number of EVs grows exponentially,
the LEMADDPG algorithm demonstrates a clear advantage. When
managing 27 EVs, the convergence speed of the LEMADDPG
algorithm is 33% faster than DQN.This indicates that the algorithm
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TABLE 4 Comparison of rewards and convergence points under different scales of EVs.

Number of EVs Reward Convergence point

DQN DDPG LEMADDPG DQN DDPG LEMADDPG

3 0.24 −0.69 0.42 120 500 600

9 0.13 −0.72 0.43 1250 1480 1270

27 0.08 −1.17 0.38 2290 3850 1520

FIGURE 11
LEMADDPG Total Reward Curves with Different Soft Update Discount Factors τ.

proposed in this paper is capable of addressing the charging
management problem of a large number of EVs.

5.5 Impact of parameters

The MADDPG algorithm is highly sensitive to network
parameters. This section focuses on some parameters in MADDPG,
demonstrating and comparing the impact of different parameters on
the performance of the algorithm.

5.5.1 Soft update frequency
The frequency of soft updates is primarily controlled by the

soft update discount factor τ. The smaller the τ value is, the less
the target network parameters change, and the more stable the
algorithm will be. However, the convergence speed will also be
slower. Conversely, the larger the τ value is, the faster the network
parameters change, and the algorithm can accelerate convergence.
However, it may become unstable during the training process more
easily. Therefore, to balance the convergence speed and stability of
the algorithm, an appropriate τ value should be chosen. Figure 11
shows the total reward variation curves of the LEMADDPG
algorithm with τ = 0.01 and τ = 0.1, respectively, with the following
analysis.

(1) The total reward curve for τ = 0.1 gradually stabilizes after
600 rounds, while the total reward curve for τ = 0.01 tends to
converge around 500 rounds.

(2) After 2000 episodes, both have converged to fluctuate within a
certain area.There is no significant difference in the steady-state
values of the total rewards.

(3) The above results indicate that, assuming steady-state
convergence is assured, choosing τ = 0.01 can accelerate the
convergence of the algorithm without significantly affecting the
steady-state value of the total reward.

5.5.2 Learning rate
The learning rate lr represents the update speed of the neural

network's own strategy. If lr is too small, the network tends to
converge slowly. If lr is too large, the network loss will exacerbate
oscillation or even result in divergence. Therefore, an appropriate
network learning rate must be selected to ensure that the network
can converge quickly. Figure 12 shows the total reward variation
curves of the LEMADDPG algorithm with lr = 0.001 and lr = 0.01.
The analysis is as follows.

(1) The reward curve of lr = 0.001 is close to a logarithmic function.
Overall, it shows a steady rise and eventually tends to converge.
The reward curve of lr = 0.01 has significant fluctuations, and it
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FIGURE 12
LEMADDPG Total Reward Curves with Different Learning Rates lr.

FIGURE 13
LEMADDPG Total Reward Curves with Different Long-term Return Discount Factors γ.

diverges in the first 1500 episodes. After 1500 episodes, it starts
to rise. It eventually tends to converge near 2000 episodes, but
the fluctuations are still large.

(2) In terms of the steady-state value of the total reward, the curve of
lr = 0.01 eventually tends to −2.84. The curve of lr = 0.001 tends
to 0.42.

(3) The above results show that choosing lr = 0.001 ismore beneficial
to obtain a stable and higher total reward network. Increasing the
learning rate has a clear negative impact on the network, which
reduces the steady-state value of the total reward and makes the
algorithm unstable.

5.5.3 Expected return rate
To reflect the continuity of decisions, we hope that the policy

network of EV agents can consider not only the current action's
income but also the income of several steps after executing the
action based on the current observationwhen selecting actions.That
is, we expect agents to perceive the future situation to a certain
extent.When the policy network of the agent outputs actions that are
given high-value scores by the evaluation network, we use the long-
term return discount factor γ to express the consideration degree
of the evaluation network for the future. The larger the γ, the more
the agent can consider future returns. An excessively small γ will
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make the evaluation network unable to foresee future events in
time, leading to a slower update speed of the policy network. By
contrast, an excessively large γ will lead to low prediction accuracy
of the future of the agent's evaluation network, making its prediction
results less credible, thereby making the policy network's updates
more frequent, slowing the convergence speed and even causing the
algorithm to diverge.

In the problem of optimizing the charging and discharging
scheduling of EVs, we hope that the agent can consider future factors
such as electricity price changes and environmental information
changes to a certain extent. Therefore, it is necessary to select
an appropriate return discount factor γ. Figure 13 shows the total
reward variation curves of the LEMADDPG algorithm with γ = 0.9
and γ = 0.99. The analysis is as follows:

(1) The curve of γ = 0.9 tends to converge near 800 episodes, while
the curve of γ = 0.99 gradually becomes stable and converges
after 1100 episodes.

(2) After 2800 episodes, both have converged.The steady-state value
of the γ = 0.9 curve is 0.42, and the steady-state value of the
γ = 0.99 curve is 0.38.

(3) The above results show that choosing a lower long-term return
discount factor γ = 0.9 is beneficial to algorithm training. If the
discount factor is too large, the agent is significantly influenced
by future factors when making decisions and cannot find an
appropriate improvement direction in the initial exploration
stage, leading to relatively slow convergence of the algorithm.

6 Conclusion

Aiming at solving the optimization scheduling problem of EV
charging and discharging in the smart grid, this paper establishes
a grid model involving the grid, charging equipment, and EVs. In
thismodel, EVs can conduct real-time bidirectional communication
with the grid through the charging device, exchanging current
TOU electricity prices and state information of the EVs. By taking
into account factors such as charging and discharging costs, user
demands, and grid stability, the model aims to minimize the
comprehensive cost during the charging and discharging process.
This paper enhances the MADDPG algorithm with LSTM network,
which is used to extract time series features fromhistorical electricity
price data, thereby guiding the charging and discharging strategies
of the agents.The simulation results demonstrate that, the proposed
method LEMADDPG algorithm improves the training convergence
speed by 19.72% compared to the MADDPG algorithm. More
critically, when addressing charging issues of EVs of various scales,
the proposed method shows the obvious advantages in formulating
strategies for large-scale EVs. Compared to DQN, it converges 33%
faster and achieves a superior policy optimization.

Our combined LSTM and MADDPG method demonstrates
potential, yet faces challenges in data dependency and
interpretability. While we've ensured robust training in data-
rich environments, practical applications may require strategies
like transfer learning. Moreover, addressing model transparency
remains a priority, and our future study will explore integrating
explainable AI techniques to enhance model clarity and
interpretability, aiming to make our contributions even more
valuable to the broader scientific community.
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