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This paper proposes a runoff-based hydroelectricity prediction method based on
meteorological similar days and XGBoost model. Accurately predicting the
hydroelectricity supply and demand is critical for conserving resources,
ensuring power supply, and mitigating the impact of natural disasters. To
achieve this, historical meteorological and runoff data are analyzed to select
meteorological data that are similar to the current data, forming a meteorological
similar day dataset. The XGBoost model is then trained and used to predict the
meteorological similar day dataset and obtain hydroelectricity prediction results.
To evaluate the proposedmethod, the hydroelectricity cluster in Yunnan, China, is
used as sample data. The results show that the method exhibits high prediction
accuracy and stability, providing an effective approach to hydroelectricity
prediction. This study demonstrates the potential of using meteorological
similar days and the XGBoost model for hydroelectricity prediction and
highlights the importance of accurate hydroelectricity prediction for water
resource management and electricity production.
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1 Introduction

In recent years, with the rapid development of distributed small hydropower, its position
in the field of clean energy has become increasingly important (Li et al., 2021). However, the
power transmission distance in distributed small hydropower-rich areas is far, and the
channel resources of the main power grid are limited. Furthermore, large and small
hydropower stations occupy the channel resources, which has an impact on the main
power grid. The problem of small interference stability is prominent, and it is difficult for the
power dispatching department to accurately grasp the power generation capacity of small
hydropower stations, resulting in the frequent occurrence of large-scale power generation
and water abandonment of small hydropower stations, which seriously affects the utilization
efficiency of clean energy and the safe and stable operation of the power grid (Graciano-
Uribe et al., 2021; Zhang et al., 2022). Therefore, it has become an urgent problem to carry
out the distributed small hydropower generation capacity prediction and provide reference
for the power dispatching department to carry out the coordinated dispatch of multiple
power sources.
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In recent years, the field of hydropower has become the focus of
many experts and scholars in the new energy sustainable
development industry (Kougias et al., 2019). The traditional
runoff hydropower forecasting method is mainly based on the
trend extrapolation method, which has fast calculation speed and
is suitable for forecasting with small load fluctuations (Zhou et al.,
2022). However, the modeling process of this method is relatively
complex and requires high stability of the historical data trend,
which has certain limitations.

Jung et al. (2021) predicted the potential of small hydropower in
the future by building a neural network model using climate change
scenarios and artificial simulations. The prediction results are

generally optimistic, but they cannot directly guide the power
dispatching department to carry out the coordinated dispatch of
multiple power sources, and they need to be combined with
hydropower output prediction. Demir et al. (2023)
comprehensively analyzed the advantages of using the XGBoost
algorithm in prediction from the aspects of samples, characteristics,
index performance, and model robustness. Hanoon et al. (2023)
verified the effective application of different machine learning
algorithms in hydropower forecasting by modeling three different
scenarios in quarterly, monthly, and daily dimensions with different
machine learning methods. With the continuous development of
artificial intelligence technology, application of some machine

TABLE 1 Summary of characteristics.

Feature type Generated feature Effect

Hysteresis characteristics Hydropower output lag T-2 Historical data reflect output characteristics

Water flow lag T-2 Time lag effect of flow and output

Meteorological characteristics Rainfall Rainfall directly affects runoff hydropower output

Temperature Temperature affects rainwater evaporation

Time characteristics Year Reflects seasonal variation

Month Reflects seasonal variation

Day Reflects seasonal variation

Statistical characteristics Average rate of flow Reflects the correlation between hydropower generation and runoff

Variance rate of flow Reflects the correlation between hydropower generation and runoff

Maximum rate of flow Reflects the correlation between hydropower generation and runoff

Minimum rate of flow Reflects the correlation between hydropower generation and runoff

TABLE 2 Comparison of prediction accuracy.

Dry/wet season Date Similar-day weighted XGBoost/% Original XGBoost/% GM/%

Dry season December 8 100.00 97.16 98.17

December 9 100.00 98.15 98.53

December 10 100.00 99.44 99.42

December 11 100.00 96.98 99.71

December 12 91.50 88.84 89.33

December 13 100.00 99.54 99.41

December 14 85.60 60.50 70.56

Average accuracy in the dry season 96.73 91.51 93.60

Wet season July 2 96.18 93.24 92.51

July 3 95.49 91.63 89.75

July 4 97.50 93.84 91.23

July 5 96.09 90.52 88.41

July 6 97.85 93.56 90.24

July 7 99.72 96.63 93.38

Average accuracy in the wet season 97.14 93.24 90.92
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learning methods, such as XGBoost algorithm, is gradually becoming
feasible for runoff hydropower prediction (Zhang et al., 2021; Kumar
et al., 2021). These methods use the historical data as training samples,
utilize the intelligent processing and self-learning mode of the
algorithm, learn the mapping relationship between the historical
data and the influencing factors, and apply the algorithm to predict
the future load data after strengthening learning and improving the
accuracy (Bordin et al., 2020; Bernardes et al., 2022; Lai et al., 2020). The
XGBoost method shows the nonlinear mapping ability and strong self-
adaptation ability and is expected to become an effective means to solve
the problem of distributed small hydropower generation capacity
prediction. Bilgili et al. (2022) introduced a deep learning method
based on long short-term memory (LSTM) to predict the power
generation of a run-of-the-river hydroelectric power plant 1 day in
advance. In addition, in order to compare the prediction accuracy, the
adaptive neural fuzzy inference system (ANFIS) and fuzzy C-means
(FCM), ANIS and subtractive clustering (SC), and ANFIS grid
partitioning (GP) methods were adopted, which shows that the
LSTM neural network provides higher accuracy results in short-term
energy production forecasting. Dehghani et al. (2019) combined the
gray wolf method with ANFIS to predict hydroelectric power.

1.1 Research highlights

Forecasting the generation capacity of distributed small
hydropower is an effective means to solve the problem of

frequent large-scale water abandonment due to its long
transmission distance, limited channel resources, unknown
generation capacity, and other factors.

The XGBoost algorithm applied to runoff hydropower
prediction has the ability of nonlinear mapping and strong self-
adaptation, which can effectively improve the prediction accuracy
and overall accuracy.

The artificial intelligence forecasting method takes historical
data as training samples, and its intelligent processing and self-
learning mode can learn the mapping relationship between
historical data and the influencing factors and apply it to forecast
future load data, which is an effective means to solve the problem of
distributed small hydropower generation capacity forecasting.

2 Hydropower forecasting method

2.1 Principle of the XGBoost algorithm

Themain problems of traditional runoff hydropower forecasting
methods are as follows:

Complicated modeling process: Traditional runoff-based
hydropower forecasting methods often involve complex modeling
processes, which require specialized knowledge and skills, increasing
the difficulty and cost of prediction.

High requirements for the stability of historical data trends:
The effectiveness of these methods depends heavily on the

FIGURE 1
Similar-day weighted XGBoost result prediction.
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stability of historical data. If the historical data trends change
significantly, the accuracy of predictions based on these data may
be affected.

Suitability for predictions with fewer load fluctuations: Due to
the computational process and results of traditional methods being
limited by the consistency and stability of historical data, they may
be more suitable for predictions with fewer load fluctuations. For
situations with greater load fluctuations, the accuracy of predictions
may be reduced.

Limited adaptability to future changes in hydropower
output: Traditional runoff-based hydropower forecasting
methods are mainly based on extrapolating historical data,
which may have limited the adaptability to future changes in
hydropower output. If there are significant changes in
hydropower output in the future, these methods may need to
be adjusted or re-modeled.

Lack of handling of uncertainties: Traditional methods usually
assume that the future hydropower output is deterministic, but in
reality, the future hydropower output may be affected by many
uncertain factors, such as climate change and fluctuations in the
energy demand. Traditional methods lack effective handling of these
uncertainties.

For the prediction of many quantities with uncertain
characteristics, i.e., random variables, people often use the
method of probability and statistic in engineering practice. The
probability and statistic method requires finding statistical laws
from a large number of data samples, and this statistical law

must be easy to be processed by mathematical methods (Walpole

et al., 1993). Different from probability and statistics, the gradient

boosting decision tree (GBDT) is a type of machine learning

algorithm (Ke et al., 2017); its good performance in the

prediction and classification of problems has been widely

observed by industry researchers (Charbuty et al., 2021). The

algorithm is composed of multiple decision trees and uses the

negative gradient value of the loss function in the current model

as the approximate value of the residual in the lifting tree for the

regression fit of the decision tree (Natekin et al., 2013). The general

steps of the GBDT algorithm are as follows:

1) Input n training samples X and set relevant parameters. The
number of iterations isN, F is the function space composed of all
trees, and fk is the single decision tree model; the initial value is
f0 � 0, and the expression of the GBDT algorithm is as follows:

ŷi � ∑K

k�1fk xi( ), (1)

where xi is the eigenvector of the i-th sample;K is the number
of weak regression trees; fk(xi) is the output value of the k-th
weak regression tree; and ŷi is the final predicted value of the
ith sample.

2) Define the objective function of the GBDT algorithm as

Obj � ∑n

i�1l yi, ŷi( ) +∑K

k�1Ω fk( ), (2)

FIGURE 2
Original XGBoost result prediction.
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where Ω is the complexity of the decision tree; n is the total
number of samples; l is the loss function; and yi is the true value of
the i-th sample.

The complexity is defined by the regular term:

Ω ft( ) � κT + 1
2
λ∑T

j�1ωj
2, (3)

where T is the number of nodes of the leaf; ωj is the vector value
corresponding to the leaf node; κ is the minimum loss reduction
required for leaf node splitting of the tree; and λ is the penalty term
coefficient.

3) According to the addition structure of the GBDT algorithm,
we obtain

ŷi
t � ŷi

t−1 + ft xi( ), (4)
where ŷi

t is the sum of the outputs of the first t trees of the i-th
sample; ŷi

t−1 is the sum of the outputs of the first i trees of the (t-1)-
th sample; and ft(xi) is the output value of the tth tree of the
ith sample.

Substituting Eq. 4 into the objective function and carrying out
the Taylor expansion, we obtain

Objt � ∑n
i�1

gift xi( ) + 1
2
hift

2 xi( ) + κT + 1
2
λ∑T

j�1ωj
2[ ]

� ∑T

j�1 Giωj + 1
2

Hi + λ( )ωj
2[ ] + κT, (5)

where Gi � ∑gi,Hi � ∑ hi and gi and hi are the first and
second derivatives of the loss function, respectively.

Let the first derivative of Objt be 0. Then the optimal value of
leaf node ωj* can be obtained as follows:

ωj* � − Gj

Hj + λ
. (6)

At this time, the objective function value is

Objt � −1
2
∑T

j�1
Gj

2

Hj + λ
+ κT. (7)

4) Generate a new decision tree through the greedy strategy to
minimize the value of the objective function (Friedman et al.,
2001), and obtain the optimal predictive value ωj* corresponding
to the leaf node. Add the newly generated decision tree ft(x) to
the model to obtain

ŷi
t � ŷi

t−1 + ft xi( ). (8)

5) Continue to iterate until the end of N iterations, and output the
GBDT algorithm composed of N decision trees.

The GBDT algorithm has many effective implementations, such
as the XGBoost algorithm and LightGBM algorithm, which are
integrated learning algorithms of GBDT (Shi et al., 2018; Bentéjac
et al., 2021).

FIGURE 3
GM result prediction.
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XGBoost is an improved algorithm based on GBDT that uses
multithreading parallelism to improve the accuracy and is
suitable for classification and regression problems (Chen et al.,
2016). The basic principle of XGBoost is the same as that of
GBDT. The difference is that GBDT uses the first derivative of the
loss function, while XGBoost uses the first and second derivatives
to perform the second-order Taylor expansion of the
loss function.

Experimentally, XGBoost is relatively faster than many other
integrated classifiers, such as AdaBoost. The impact of the
XGBoost algorithm has been widely recognized in many
machine learning and data mining challenges, and it has
become a more commonly used and popular tool among
Kaggle’s competitors and industry data scientists. In addition
to using different boosting algorithms, MART and XGBoost also
provide different regularization parameters. In particular,
XGBoost can provide additional parameters that are not
available in GBDT. In addition, it provides the penalty for a
single tree in the additive tree model. These parameters will affect
the tree structure and the weighting of the leaves to reduce
variance in each tree. In addition, XGBoost provides an
additional randomization parameter that can be used to
disassociate individual trees, thereby reducing the overall
variance of the additive tree model (Nielsen, 2016).

The loss function of the XGBoost algorithm is

Obj ϕ( ) � l y, f x( )( ) +∑
m
Ω fm( ), (9)

where y is the true value corresponding to the current sample
y; f(x) is the predicted value of sample x; l(y, f(x)) is the loss
function; fm is the mth classification tree model; Ω(fm) is the
regularization term, which reflects the complexity of the
algorithm; and ϕ is the model parameter to be solved.

Obj m( ) � ∑N

i�1l yi, ŷi
m( )( ) +∑m

i�1
Ω fi( )

� ∑N

i�1l yi, ŷi
m−1( ) + fm xi( )( ) +Ω fm( ), (10)

Obj m( ) ≈ ∑N

i�1 l yi, ŷi
m−1( )( ) + gifm xi( ) + 1

2
hifm

2 xi( )[ ] +Ω fm( ).
(11)

The Taylor expansion is used to approximate function fm(xi).
Substituting Eq. 10 into Eq. 11, we obtain

gi � ∂ŷi m−1( )l yi, ŷi
m−1( )( ), (12)

hi � ∂2ŷi m−1( ) l yi, ŷi
m−1( )( ), (13)

where ∂ŷi
(m−1) and ∂2

ŷi
(m−1) are the first and second derivatives of

ŷi
(m−1) on the loss function, respectively.
The regularization term in the objective function is

Ω fm( ) � γT + 1
2
λ ω‖ ‖2, (14)

where γ is the minimum loss reduction required for further
splitting at the leaf node of the tree, representing the complexity of
each leaf, and ω is the value of the leaf node.

2.2 Runoff hydropower forecasting method
based on XGBoost

The runoff hydropower prediction based on XGBoost is mainly
divided into five steps: data collection, preprocessing, characteristic
engineering, model training, and model validation (Li et al., 2019).
We collect historical hydropower generation data, runoff data, and
meteorological data related to hydropower generation. Among
them, runoff data refer to the flow data of the river, which can
be obtained through hydrological stations. After screening, de-
duplication, and checking the collected data, the duplicate,
invalid, and abnormal data are removed. Second, we process the
missing data and filled the missing data using the interpolation
method. Then, we use the method based on an isolated forest to
detect and process the outliers of the data. In runoff hydropower
prediction, feature engineering is a very important step. It can
process the data reasonably and improve the prediction
performance of the model. In this paper, we use a variety of
feature engineering methods, including lag characteristics, time
characteristics, and statistical characteristics. Table 1 lists the
specific functions:

Considering that meteorological data, which include multiple
factors such as precipitation and temperature, have a great impact
on runoff hydropower prediction, this paper proposes an XGBoost
runoff hydropower prediction method based on “meteorological
similar days.” Before model training, the meteorological data of the
day to be predicted are first composed into a feature vector, and the
similarity is then calculated by the feature vector composed of the
feature vector of the forecast day and the historical meteorological
data. This paper uses the reciprocal of Manhattan distance to
measure the similarity between the two. The specific form is
as follows:

similarity � 1∑N
i�1 xi − yi

∣∣∣∣ ∣∣∣∣ (15)

where N represents the length of the meteorological vector, yi

represents the ith element of the meteorological vector of the day to
be predicted, and xi represents the ith element of the historical
meteorological vector of a day. According to the above similarity, the
XGBoost algorithm model is weighted by the loss function to
increase the impact of similar samples on the forecast date.
Finally, the model is verified based on this scheme.

3 Example analysis

We select the output data of the hydropower cluster in Yunnan
area, which contains multistage runoff hydropower stations, as the
sample data to evaluate the proposed method.

Hydropower prediction is a complex task. The industry usually
uses capacity accuracy instead of RMSPE accuracy for the
assessment of new energy. The formula is as follows:

ACCnew energy � 1 −

���������������
1
N

∑N

i�1
yi − ŷι

Cap
( )2

√√⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ × 100%, (16)
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where N is the number of output points collected in a day, taken
as N = 96, and yi is the actual output value at the i-th time point in a
day. ŷι is the predicted output value at the i-th time point in a day,
and Cap is the capacity of the station.

The gray theory model (GM) is considered a classic model in the
field of hydropower prediction, which mainly solves the problems of
lack of data and uncertainty. Therefore, the prediction experimental
group in this paper adopts the similar-day weighted XGBoost, while
the control experimental group selects the original XGBoost and
GM, normalizes the historical data to the interval of [−1,1], and takes
80% of the data as the training data and the remaining 20% as the
test data. The prediction results are shown in Table 2.

It can be seen from the above table that considering the same
factors, the prediction accuracy of GM in the dry season is higher
than that of the original XGBoost algorithm after sample screening
according to our proposed similarity measure and allocating weights
to the sample. The prediction accuracy of GM in the dry season is
higher than that of the original XGBoost algorithm, but it is not ideal
in the wet season. The effectiveness of the sample weight selection
method based on similar days is demonstrated using the control
experimental group. In addition, we found that the accuracy of the
algorithm for winter data prediction is higher than that in the
summer. This is because the summer weather changes violently, the
unit output level fluctuates greatly, and the weather has an
unbalanced effect. Therefore, it can be seen that the selection of
meteorological data has a great impact on the prediction accuracy of
small hydropower output.

An overall comparison shows that the similar-day weighted
XGBoost has the highest prediction accuracy compared to original
XGBoost and GM in both wet and dry periods.

The prediction results using the similar-day weighted XGBoost
algorithm are shown in Figure 1. It can be seen that the hydropower
cluster has higher output and stable cycle in the wet season, and the
prediction accuracy of this algorithm is higher.

Figures 2, 3 show that the prediction accuracy of original
XGBoost is higher than that of GM in the wet season. Through
the comparison of Figures 1–3, it can be seen that similar-day
weighted XGBoost has the best prediction effect in the wet season.

4 Summary

In this paper, a novel hydropower forecasting method
combining meteorological similar days and XGBoost model is
proposed. By analyzing the historical meteorological and runoff
data, this paper selected the meteorological similar days with
meteorological conditions similar to the current data, which
provided a valuable reference for the prediction of hydropower
output. The XGBoost model not only shows its effectiveness in
learning meteorological similar day datasets but also produces
accurate and stable hydropower prediction results. The results
show that the combination of meteorological similar days and
XGBoost model is a promising method to improve the accuracy
of hydropower prediction. The high prediction accuracy and
stability of this method are particularly beneficial to water

resource management and power production, which is conducive
to better planning and utilization of hydropower resources, while
ensuring a reliable power supply.

The application of this method in the Yunnan hydropower
cluster in China has successfully demonstrated its practicability
and the potential for promotion in other regions and power
systems. However, it is worth noting that the universality of this
method in different geographical locations and different
climatic conditions needs further research and verification.
The method proposed in this paper has made a valuable
contribution to the field of hydropower prediction, and its
effectiveness in improving the accuracy and stability of
prediction highlights its importance in solving the challenges
encountered in water resource and energy management. With
continuous attention to water resources and energy, we believe
that this method will help strengthen the management of
sustainable water resources and energy, reduce the impact of
natural disasters, and promote the development of green and
sustainable energy in the future.
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