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The construction of China’s power spot market is still in its early stage, with a high
concentration on generation-side resources and frequent market power. It is
urgent to establish risk prevention mechanisms for the generation of market
power. First, the paper establishes a basic framework of the stochastic
evolutionary game theory and then builds a “stochastic evolutionary game
market-clearing” model for the market regulator and risk units. Second, the
work provides a library of multi-dimensional monitoring and evaluation
indicators for the regulator and creates a quantitative risk prevention strategy
for the power spot market in China. Finally, an evolutionary dynamic analysis is
conducted on players’ strategic evolution space and changes in market risks.
Based on a simulation of actual data from an electricitymarket in China, it turns out
that the generation-side market power risk prevention mechanism can lower
market transaction and operational risks in a variety of power supply–demand
scenarios. The study theoretically supports the development of market power risk
prevention and provides more realistic insights into China’s power spot market
as well.
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1 Introduction

The development of China’s electricity market has been accelerating. The power spot
market plays a significant role in finding reasonable electricity prices and increasing power
system efficiency. At the same time, risks of the abuse of market power on the generation side
are gradually intensifying (He et al., 2023). Currently, China’s power spot market regulatory
system is somewhat immature, with single regulatory tools, long penalty cycles, and serious
administrative interventions (Zhang and Shi, 2020). Quantitative market power risk
prevention techniques are still insufficient in a changing market (Song et al., 2020).
Regarding market power mitigation and prevention, the typical international power
market has acquired some methods and experiences.

Traditional measures to mitigate market power are divided into ex-ante prevention and
ex-post mitigation (Xie et al., 2022). Among them, ex-post mitigation refers to the regulator’s
adoption of measures such as public hearings, investigations, and appeals after discovering
high clearing prices or unreasonable bid capacities. These measures are taken to determine
whether there are instances of market power behavior and to impose penalties, such as fines,
on entities exercising market power (Rahimi and Sheffrin, 2003; Chen et al., 2018). Ex-post
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mitigation measures, however, cannot completely prevent the abuse
of market power because of the lag in action. In addition, their
implementation cycle is lengthy, the investigation process is
complex, and the final results require multiple parties to provide
evidences and engage in deliberations (Bose et al., 2015; Chen et al.,
2018). Therefore, ex-ante measures that offer high transparency and
low regulatory risks are more efficient to market participants.

Primarily including structural and behavioral market power
prevention methods (Chen et al., 2018), ex-ante measures are
widely used in electricity markets in Nordic countries, North
America, and Australia (Amundsen and Bergman, 2006; Bose
et al., 2015). This sort of power mitigation measures mainly
includes pre-screening of market power, bid limitations, market
price constraints, and bid substitutes. Structural mitigationmeasures
operate on a longer time scale, such as monthly, quarterly, and
annually (Amundsen and Bergman, 2006; Bask et al., 2011; Zhang
et al., 2021). The operational cycle for behavioral mitigation
measures can be on a weekly, monthly, or even hourly basis,
providing strong flexibility and adjustability (Shu et al., 2019;
Zhang et al., 2021; Xie et al., 2022). Regulators determine
reference prices based on historical market data by accounting
for generation types, unit capacity, and variable costs. These
reference prices enable the substitution of bids or impose price
limitations on risk entities, ensuring effective oversight by the
regulatory agency (Chen et al., 2018; Shu et al., 2019; Xie et al.,
2022). However, although such ex-ante precautionary measures can
curb market power abuse in advance, they suffer from complex
judgment criteria, over-regulation of probability, and unobjective
cost data accounting (Reitzes et al., 2007; Hellmer and Wårell, 2009;
Shafie-Khah et al., 2016; Dagoumas et al., 2017; Bao et al., 2021). In
cases where regulations are somewhat lagging behind in China’s
power market, typical international market power mitigations do
not fit well. Flexible handling of market power risks is the key matter
in the current context (Xie et al., 2022).

Due to the limitations of conventional methods to the present
spot market in China, many studies have established regulatory
approaches that are suitable for China’s spot market (Jiao et al.,
2017; Chen et al., 2018; Zhang et al., 2018; Song et al., 2020; Sun
et al., 2020; Zhang and Shi, 2020; Bao et al., 2021; Xie et al., 2021;
Xie et al., 2022; Han et al., 2023). However, these methods
generally remain at the macro level, and there is still a lack of
quantifiable standards in regulatory strategies, such as the
regulatory intensity and punishment severity under different
market power risk levels. This prevents the quick and dynamic
adaptive quantification of punishments for risk entities.
Moreover, assessments of risk prevention effectiveness are
insufficient. There are nearly no insights into the evolution of
behavioral decisions in the future. An evolutionary game model
could better understand the multi-sectorial competition and
cooperation, such as games between regulators and risk
entities on the generation side (May et al., 2008). In our
study, decisions of the regulator and risk power generation
units are also influenced by various complex factors. These
factors include internal factors such as cognitive abilities and
risk awareness as well as external factors such as policy
regulations and societal interests. Therefore, the stochastic
evolutionary game (SEG) model with a stochastic interference
system shows great advantages (Li et al., 2021).

The main innovations of this paper are as follows. 1. Expand
upon the classical evolutionary game (CEG) methodology and
introduce a stochastic disturbance factor into the mathematical
model’s RD equations, constructing the SEG model. 2. Establish
a multi-dimensional evaluation indicator library for assessing
market power risks and design quantitative strategy functions,
developing an adaptive dynamic risk prevention mechanism
based on market clearing. 3. Construct a “stochastic evolutionary
game–optimal market-clearing” dual-layer model to simulate the
SEG between the risk entities and the regulator in the spot market,
calculating players’ payoffs and electricity prices under different
equilibrium game states. 4. Illustrate players’ evolutionary space
states and the market risk prevention situation.

It is worth mentioning that market power mainly includes
extreme pricing and intentional withholding (economy and
capacity). The price fluctuations resulting from the instability of
the power system can impact the costs and revenues of market
participants, subsequently altering the market behaviors of various
entities (Wang et al., 2021a; Wang et al., 2021b). To better focus on
the research, the influences of power system stability on the
behavioral decisions of market participants are not considered
temporarily.

The remainder of the paper is organized as follows. Section 2
builds the basic SEG model. Section 3 establishes the “stochastic
evolutionary game–optimal market-clearing” model and players’
income indicator library. Section 4 designs the market power risk
prevention mechanism. Section 5 performs a case study. Section 6
states conclusions and policy implications.

2 Methodology

2.1 Basic SEG model

The CEG framework is illustrated in Table 1. Here, p is described
as the fraction of the risk unit group that bids with low risk and q as
the fraction of the regulator who applies a light punishment, so the
fraction of the risk unit group that bids with high risk as 1-p and the
fraction of the regulator who applies a severe punishment as 1-q.
a1–a4 and b1–b4 are payoffs. For the sake of the formulas’ simplicity,
we define four relative net payoffs for four strategy combinations as
follows (Cheng and Yu, 2018): (1) α = a1–a3, (2) β = a2–a4, (3) γ =
b1–b2, and (4) δ = b3–b4.

Replicator dynamics equations (RDEs) for risk units and the
regulator are Eq. (1) and Eq. (2), respectively (Amann and
Possajennikov, 2009).

d p( )
dt

� p 1 − p( ) q α − β( ) + β[ ], (1)

TABLE 1 Payoff matrix for basic risk units and regulator.

Risk unit Regulator

Light punishment Severe punishment

Low-risk bid (a1, b1) (a2, b2)

High-risk bid (a3, b3) (a4, b4)
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d q( )
dt

� q 1 − q( ) p γ − δ( ) + δ[ ], (2)

where 1-p and 1-q are non-negative and have no substantial effect on
the evolutionary results of strategy selection. For the sake of
discussion, Eq. (1) and Eq. (2) are simplified to the following
equations.

d p( )
dt

� p q α − β( ) + β[ ], (3)
d q( )
dt

� q p γ − δ( ) + δ[ ]. (4)

Introducing Gaussian white noise into Eq. (3) and Eq. (4) (Xu
et al., 2015), the one-dimensional Itô stochastic replicator dynamic
equations (SRDEs) for players are as follows:

dp t( ) � p t( ) q t( ) α − β( ) + β[ ]d t( ) + μ1p t( )dω t( ), (5)
dq t( ) � q t( ) p t( ) γ − δ( ) + δ[ ]d t( ) + μ2q t( )dω t( ), (6)

where ω(t) is a one-dimensional standard Brownian motion,
representing a random fluctuation phenomenon, that effectively
reflects how players are affected by stochastic disturbance factors.
dω(t) obeys the normal distribution N (0,

��
h

√
). μ1 and μ2 represent

the intensity of stochastic disturbance. The strategy probabilities at
time t for the low-risk bidding and mild punishment are denoted as
p(t) and q(t), respectively.

2.2 Existence and stability of trivial solution

By combining the stochastic Taylor expansion and the Itô
stochastic formula, the nonlinear Itô SRDE can be expanded and
solved with Gaussian random disturbances (Hu et al., 2008).

Considering the following general Itô stochastic differential
equation (SDE) (Kamrani, 2015),

dx t( ) � f t, x t( )( )dt + g t, x t( )( )dω t( ), (7)
where t∈[t0,T], x(t0) = x0, x0∈R, h=(T-t0)/r, and ts = t0+sh. r is the
number of sampling times, t0 is the initial time point, and ts is the sth
sampling time point. s∈{0,1,. . .,r}, performing a stochastic Taylor
expansion on Eq. (7), we obtain

x tn+1( ) � x tn( ) + J0f x tn( )( ) + J1g x tn( )( ) + J11G
1g x tn( )( )

+ J00G
0f x tn( )( ) + R, (8)

where J0 = h, J1 = Δωn, J11 = [(Δωn)
2-h]/2, G0 =

∂g(x)/∂x + (1/2)∂2g(x)/∂x2, G1 = ∂g(x)/∂x, J00 = h2/2, and R
is the remainder term of the expansion.

In practical applications, the Milstein method can be used to
numerically iterate and solve the SDE by truncating some terms in
the stochastic Taylor expansion (Kai and Guiding, 2022). The
format of the Milstein method is as follows:

x tn+1( ) � x tn( ) + hf x tn( )( ) + Δωn( )2 − h[ ]g x tn( )( )g′ x tn( )( )/2.
(9)

Based on Eq. (9), the equilibrium solutions for SRDEs Eq. (5)
and Eq. (6) can be calculated. The stability analysis of their
stochastic evolution is as follows (Hu et al., 2008; Kamrani,
2015):

Given an SDE, suppose there exists a function V(t, x) such that
c1|x|l ≤ V(t, x)≤c2|x|l, where c1, c2, and l are all positive constants. If
there exists a positive constant σ such that V*(t, x)≤-σV(t, x), then
the l-order moment of the zero-solution of Eq. (7) is said to be
exponentially stable, and it holds:

E x t, x0( )| |l < c2/c1( ) x0| |le−ηt, t≥ 0, (10)
V* t, x( ) � Vt t, x( ) + Vx t, x( )f t, x( ) + g2 t, x( )Vxx t, x( )/2. (11)
According to the aforementioned theorem, for Eq. 5 and Eq. 5,

taking V(t, p(t)) = p(t), where p(t)∈(0,1],V(t, q(t)) = q(t), where
q(t)∈(0,1], c1 = c2 = 1, l = 1, η = 1, then V*(t, p(t)) = f(t, p(t)) = p(t)
[q(t)(α-β)+β],V*(t, q(t)) = f(t, q(t)) = q(t)[p(t)(γ-δ)+δ]. If the l-order
moment of the zero-solution is stable, it must satisfy the condition
that

p t( ) q t( ) α − β( ) + β[ ]≤−p t( ), (12)
q t( ) p t( ) γ − δ( ) + δ[ ]≤−q t( ). (13)

Subsequently, the proposition of Eq. (12) can be expressed as
follows:

C1, when p(t)∈(0,1], α-β>0, it holds that q(t)≤(-β-1)/(α-β),
and α+1 ≥ 0.

C2, when p(t)∈(0,1], α-β<0, it holds that q(t)≥(-β-1)/(α-β), and
α+1 ≤ 0.The conditions to satisfy Eq. (13) are as follows:

C3, when q(t)∈(0,1], γ-δ>0, it holds that q(t)≤(-δ-1)/(γ-δ),
and γ+1 ≥ 0.

C4, when q(t)∈(0,1], γ-δ<0, it holds that q(t)≥(-δ-1)/(γ-δ),
and γ+1 ≤ 0.

The paper randomly sets the value of α, β, γ, and δ, which
satisfied the aforementioned propositions C1 and C3. Then, the zero-
solution exponential stability of Eq. 1–Eq.2 and Eq. 5–Eq. 6 is
simulated. The trend in Figure 1 demonstrates the validity of the
SEG model and the differences between SEG and CEG models. It is
evident that SEG and CEG models show different features. The SEG
model can simulate randomness and uncertainty in the real world,
whereas the CEG model is more suitable for problems with well-
defined strategies and rules. Figure 1A illustrates a more realistic
evolutionary path of players’ strategies. In the period of 0 h–39 h,
strategy probabilities experience significant fluctuations in the SEG
model. The fluctuations better simulate players’ decision-making
interfered with by various external or internal factors. By contrast,
the CEG path remains smooth, with players evolving undisturbed in
an ideal state, as presented in Figure 1B.

3 Stochastic evolutionary
game–optimal market-clearing model

Model construction can employ a dual-level optimization
method and an adaptive dynamic programming method. The
former is more suitable when there are sufficient computational
resources and a relatively small state space. It has a simple principle
and is convenient for studying the impact of parameter variations
within the model. The latter is better suited for problems that are
model-independent or have requirements related to data efficiency
(Hu et al., 2022; Wang et al., 2022).

A two-layer optimization model incorporating SEG is
constructed as the foundation for studying market risk
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prevention mechanisms. The upper layer represents the SEG which
involves the regulator and risk units, while the lower layer displays
the optimal market-clearing module, as depicted in Figure 2. The
model framework demonstrates the payoffs and strategies of the
players in the game, as well as the factors considered when adjusting
the evolutionary game strategies.

3.1 SEG model

The pure strategy game matrix of players is shown in Table 2.
Ad,i and Bd,i are all positive normalized indicators, which
respectively denote the payoffs of each strategy combination
on trading day di.

FIGURE 1
Zero-solution exponential stability of games. (A) Stochastic evolutionary game. (B) Classical evolutionary game. Propositions C1 and C3: α = −0.04,
β = -0.05, γ = 0.08, δ = −0.03, and pinitial = qinitial = 0.5.

FIGURE 2
Dual-layer iterative model framework.

Frontiers in Energy Research frontiersin.org04

Xie et al. 10.3389/fenrg.2023.1270681

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1270681


(1) Winning rate of the unit

Rn,d,t � Qn,d,t

Pn,d,t
, (14)

3.1.1 Risk unit payoffs
The formulation of Ad,i primarily takes into account the physical

operation and economic revenue aspects of power generation units.
Indicators for the physical operation aspect can be quantified as

shown in Eq. (14) and Eq. (15). where Qn,d,t represents the winning
capacity of unit n at time t on trading day d. Pn,d,t represents the
declared capacity of unit n at time t on trading day d.

(2) Relative utilization rate of the unit (Reitzes et al., 2007)

Measuring the capacity utilization rate of a unit in market
trading, the indicator is calculated as follows:

RUn,d,t � Qn,d,t

Gn
· Q

eq
d,t

Gw
, (15)

where Gn is the installed capacity of unit n, Q
eq
d,t is the system load at

time t on trading day d, and Gw is the total installed capacity in the
spot market.

The economic dimension indicators are shown in Eq. (16) and
Eq. (17).

(1) Expected profit deviation rate

Measuring the difference in the unit’s generation returns for
2 consecutive years, the indicator is calculated as follows:

DRn,d,t � CRn,d,t − LRn,d,t

CRn,d,t
, (16)

where CRn,d,t is the actual profit of unit n at time t on trading day d,
while LRn,d,t represents the actual profit of unit n at the same time
slot in the previous year.

(2) Unit sales margin

Mn,d,t � Sn,d,t − Cn,d,t

Sn,d,t
, (17)

where Cn,d,t is the generation cost of unit n at time t on trading day d,
and Sn,d,t is the income of unit n at time t on trading day d.

Based on sub-indicators from the economic and physical
aspects, the income of risk unit n at time t on trading day d,

denoted as An,d,t, is shown in Eq. (18). Hence, risk units’ payoffs
Ad,i are defined by Eq. (19).

An,d,t � θ1Rn,d,t + θ2RUn,d,t + θ3Mn,d,t + θ4DRn,d,t, (18)

Ad,i � ∑T
t�1

∑N
n�1

An,d,t

RNd,t
/T, (19)

where θ1–θ4 are weights of the indicator, RNd,t is the number of risk
units at time t on trading day d, T is the total number of trading
periods in 1 day (in this study, it is taken as 24), and N is the total
number of power generation units in the power spot market.

3.1.2 Regulator payoffs
Bd,i considers the market risk level and risk scale. The market

risk level is measured by the indicators shown in Eq. 20, Eq. 21

(1) Average relative bidding level (Xie et al., 2023a)

Measuring the extent to which the bid price of a specific unit
deviates from the overall average bid price of its peers, the indicator
is calculated as follows:

RLQd,t � ∑N
n�1

pn,d,t − ∑N
j ≠ n

pj,d,t/N

∑N
j ≠ n

pj,d,t/N
/N, (20)

where pn,d,t represents the average bid price of unit n at time t on
trading day d.

(2) Degree of proximity of market limit price (Bao et al., 2021)

Measuring how close a power generation unit’s bid price is to the
power spot market’s highest price limit, the indicator is calculated as
follows:

LPd,t � λd,t
λl
, (21)

where λd,t is the market-clearing price at time t on trading day d and
λl is the maximum market-clearing price limit.

(3) Proportion of high-risk units to all risk units

Measuring the overall level of the power spot market risk, the
indicator is calculated as follows:

TABLE 2 Pure strategy game matrix for the regulator and the risk group.

Strategies Payoffs

Risk units Regulator Probability Risk units Regulator

“High-risk bid” “Severe punishment” x, y Ad,1 Bd,1

“Low-risk bid” “Severe punishment” 1-x, y Ad,2 Bd,2

“High-risk bid” “Light punishment” x, 1-y Ad,3 Bd,3

“Low-risk bid” “Light punishment” 1-x, 1-y Ad,4 Bd,4

Note: Risk units and regulators can choose two strategies; therefore, four strategy combinations are offered in the table.
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Vd,t � HRNd,t

RNd,t
, (22)

where HRNd,t is the number of high-risk units at time t on trading
day d.

The market risk scale measurement indicators are given by
Eq. 23.

(1) Proportion of risk units among all units in the market

Dd,t � RNd,t

N
. (23)

The income of the regulator at time t on trading day d, denoted
as Bd,t, is derived from the sub-indicators related to market risk level
and scale, as shown in Eq. (24). So the regulator’s payoffs Bd,i is
defined by Eq. (25).

Bd,t � ω1Vd,t
′ + ω2Dd,t

′ + ω3RLQd,t
′ + ω4LPd,t

′, (24)

Bd,i � ∑T
t�1
Bd,t/T, (25)

where ω1–ω4 are the weights of the indicator. Vd,t
′ is indicator Vd,t

after being positive normalized. The remaining indicators follow the
same processing approach.

3.2 Optimal market-clearing model

The optimal market-clearing model implements the paper’s risk
prevention mechanism by increasing the bid prices of risk units during
market clearing, which uses market-based measures to constrain the
winning capacity of risk units rapidly and accurately. Our earlier work
on this model is detailed in Xie et al. (2023a). In this paper, the optimal
market-clearing model is used as the same as our previous work.

3.3 Computational process of the total
model

The “stochastic evolutionary game–optimal market-clearing”
model follows a top–down iterative process, as depicted in
Figure 3. The specific steps are as follows.

(1) On trading day di, the equilibrium stability analysis is conducted
through the SEG model to determine a stable equilibrium point
(x, y) and the stochastic evolutionary stabilization strategy
(SESS) of players. Then, the risk unit group’s SESS and the
regulator’s SESS will be outputted. Additionally, data regarding
four strategy combinations of players are computed.

(2) Four sets of strategy data are separately fed into the optimal
market-clearing algorithm. This algorithm facilitates a unified
clearing process for both risk units and non-risk units in every
strategy combination of players, resulting in the determination
of winning capacities of units and market-clearing prices for
four strategy combinations.

(3) Based on the power market operation and clearing data, the
payoffs of players in the game can be calculated. Then, the
payoff matrix for the SEG model is updated.

(4) Another round of SEG stability analysis is performed to obtain
SESS for the next trading day di+1. The data for each strategy
combination are calculated. Finally, one iteration of the SEG
model on trading day di is completed.

4 Quantitative strategies for players

4.1 Regulator strategy development

In the market-clearing process, risk units are subject to bid price
adjustments based on their risk levels. It aims to reduce their
winning capacity as a form of “penalty.” Penalties are positively
correlated with the magnitude of bid price revisions. The

FIGURE 3
Model iterative calculation flow chart.
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development of the regulator’s risk prevention strategy considers
both subjective and objective factors.

When considering objective factors in the power spot market,
several indicators are formulated based on the aspect of risk units’
power generation incomes, risk units’ historical performances, and
risk units’ bidding behaviors.

4.1.1 Indicators for measuring the risk unit’s power
generation incomes

Indicators measuring risk units’ power generation incomes are
defined in Eq. 26–Eq. 29.

(1) Deviation degree of risk unit electricity price

We measure the extent to which the market-clearing price of a
risk unit deviates from the average market-clearing price of
comparable units. Its formula is as follows.

DPn,d � ∑T
t�1

λrn,d,t − λcn,d,t
λcn,d,t

/T, (26)

where λrn,d,t is the market-clearing price of risk unit n at time t on
trading day d. λcn,d,t is the average market-clearing price of normal
units (the same cost-type as risk unit n) at time t on trading day d.

(2) Risk unit income deviation

We measure the extent to which the income of a risk unit
deviates from the average income of comparable units. Its formula is
as follows.

DSn,d � ∑T
t�1

Srn,d,t − Scn,d,t
Scn,d,t

/T, (27)

where Srn,d,t is the income of risk unit n at time t on trading day d.
Scn,d,t is the average income of normal units (the same cost-type as
risk unit n) at time t on trading day d.

(3) High-price winning rate of the risk unit (Wang et al., 2022)

The formula for calculating the proportion of winning capacity
at the high bid price for a risk unit can be expressed as follows.

WRh
n,d � ∑T

t�1

Qh
n,d,t

qhn,d,t
/T, (28)

whereQh
n,d,t is the winning capacity of risk unit n at time t on trading

day d, which bids at a high price. qhn,d,t is the high price declared
capacity of risk unit n at time t on trading day d.

(4) Actual markup index of the risk unit (Han et al., 2023)

The method for measuring the extent to which the market-
clearing price deviates from the marginal cost of the unit’s
generation is as follows:

PAIn,d � ∑T
t�1

λrn,d,t − Cac
n,d,t

Cac
n,d,t

/T, (29)

where Cac
n,d,t is the generation cost of risk unit n at time t on trading

day d.
To obtain the overall indicator IRUGRn,d for measuring the

generation income of risk units in risk prevention strategies, the
weighted sum of the sub-indicators can be calculated.

IRUGRn,d
� η1DPn,d + η2DSn,d + η3WRh

n,d + η4PAIn,d, (30)
where η1–η4 are weights of sub-indicators.

4.1.2 Methods for evaluating the risk unit’s
historical performances

The historical performance aspect includes indicators such as
historical anomaly level and credit rating.

(1) Risk unit historical anomaly level

The historical anomaly level can be determined by counting the
number of times a unit has been identified as a risk unit in the past.

(2) Risk unit credit rating

The credit rating of a unit can be determined by assessing the
overall creditworthiness of the power generation company to which
the unit belongs.

4.1.3 Indicators for the risk unit’s bidding behaviors
Indicators measuring bidding behaviors are as follows.

(1) Maximum bid price differential index of the risk unit (Han et al.,
2023)

Assess behaviors of risk units that allocate a significant
portion of their capacity to low-bidding segments to ensure
winning bids, while allocating a smaller portion of their
capacity to high-bidding segments, thereby elevating the
market-clearing price.

MDn,d
max � 1, max1≤ k≤K−1 pr

n,d,t,k+1 − pr
n,d,t,k{ }≥ δ p max − p min( )

0, else
{ ,

(31)
where pr

n,d,t,k and qrn,d,t,k represent the bid price and bid capacity of
risk unit n at time t on trading day d in the kth bidding segment,
respectively. pmax and pmin represent the maximum and minimum
bid prices specified by the market, respectively, while δ denotes the
allowed bid price differential range.

(2) Relative bidding level of the risk unit

It is followed Eq. (20).

(3) Risk unit bidding premium index (Chen et al., 2018)

The index measures the proportion by which unit bids deviate
from their marginal costs.

BAIrn,d � ∑T
t�1

pr
n,d,t − Cac

n,d

Cac
n,d

/T. (32)
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The total indicator IRUOBn,d for measuring bidding behaviors of
risk units is obtained by weighting and summing up the sub-
indicators.

IRUOBn,d
� π1MDn,d

max + π2RLQ
r
n,d + π3BAI

r
n,d, (33)

where π1–π3 are weights of the sub-indicators.

4.1.4 Strategy formulation for the regulator
Based on the assumption of bounded rationality of players in the

evolutionary game, the subjective influence of the regulator’s
willingness to adjust bid prices of risk units is measured by
probabilities {y, 1-y}. The greater the probabilities y or 1-y, the
higher the regulator’s willingness to choose a strong or light
punishment strategy and vice versa (Xie et al., 2021). In brief, the
regulator’s strategy, considering both objective market factors and
subjective punishment willingness, can be represented by Eq. (34).
The bidding adjustment function for risk units is defined as follows:

pt,n
′ � pt,n 1 + τ( ), (34)

where pt,n
′ is the adjusted bid price of the risk unit, pn,t is the original

bid price of the risk unit n, and τ represents the degree of bid
adjustment.τ1 represents the regulator’s strong punishment strategy.
τ2 represents the regulator’s light punishment strategy. They are
determined as shown in Eq. (35) and Eq. (36), respectively.

τ1 � τ0 · μ1C1 + μ2C2( ) · S1 y( ), (35)
τ2 � τ0 · μ1C1 + μ2C2( ) · S2 y( ), (36)

where τ0 is the given initial value of τ. C1 and C2 are objective factors
for the strategy based on the risk unit’s generation income, bidding
behavior, and historical performance. μ1 and μ2 represent the
weights of C1 and C2, respectively. S1(y) and S2(y) are subjective
modifying factors for the regulator’s penalty strategy based on its
subjective punishment willingness. The values of C1, C2, and S1(y),
S2(y) can be found in Section 5.1.

4.2 Strategy formulas of risk units

The electricity market has been shown to involve both renewable
and conventional energy units in this paper. Compared to
conventional energy units, renewable energy units have a
distributed nature. It imposes requirements on units’ output
stability and regulatory capabilities. In this paper, it can be
approximated that their game strategy selection and formulation
are assumed to be identical.

Risk units adjust bid strategies based on their own benchmark
prices. Risk units, being the group with bounded rationality and
asymmetric information compared to the regulator, rely more on
subjective risk preferences when formulating a bid strategy (Jiao
et al., 2017). Specifically, the high-risk bid strategy and low-risk bid
strategy are defined as shown in Eq. (37) and Eq. 38, respectively:

ph
t,n � pb

t,nS1 x( ), (37)
pl
t,n � pb

t,nS2 x( ), (38)
where S1(x) and S2(x) are risk-modifying factors that represent the
subjective risk preference of risk units. pb

t,n represents the

benchmark bid price for risk unit n at time t. According to
reports of China’s National Development and Reform
Commission (National Development and Reform Commission,
2021a; National Development and Reform Commission, 2021b),
the range of risk bid price is defined as a 20% fluctuation around the
benchmark price. The values of S1(x) and S2(x) can be found in
Section 5.1.

5 Case study

The data used for our analysis consist of the trial operation data
from the power spot market in a specific region of East China for a
continuous period of 10 trading days (d1–d10). The market
information is shown in Figure 4. A total of 54 power generation
units participate in the spot market. Among them, thermal power
units are numbered from 1 to 25, while renewable energy units are
numbered from 26 to 54.

Our earlier work on the power generation units’ risk identification
method is detailed in Xie et al. (2023b). It allows for the risk detection of
54 units. The risk behavior exhibited by identified risk units during
trading days d1–d4 is intentional withholding, while during trading days
d5–d10, it involves extremely high offers.

5.1 Preparation for model simulation

To calculate the strategy data for players in the SEG, it is
necessary to establish data fuzzy classification rules. Additionally,
strategy modifying factors C1, C2, S1(y), and S2(y) and risk
preference factors S1(x) and S2(x) need to be determined.

The fuzzy classification rules for probability and indicator data
are as follows.

(1) Strategy selection probabilities

Probabilities {x, y, 1-x, 1-y} are divided into four classes, as
shown in Table 3.

(2) Indicator data

According to market trading results, the upper, middle, and
lower quartiles, ji, gi, and ei, are chosen to classify IRUGRn,d and
IRUOBn,d in a fuzzy manner. See Table 4 and Table 5.

The membership functions for the modifying factors C1 and C2

can be represented by Eq. (50) and Eq. 51, respectively.

C1 � φ1 exp p1 + p2( ) + ]1, (50)
C2 � φ2/ q1 + q2( ) + ]2. (51)

When IRUGRn,d is smaller, small, large, and larger, p1 can be taken
as 1, 2, 3, and 4, respectively, and the same relationship exists with
IRUOBn,d and p2. When the historical anomaly level is better, good,
bad, and worse, q1 can be taken as 1, 2, 3, and 4, respectively, and the
same relationship exists between credit level and q2. φ1, ]1, φ2, and ]2
that are coefficients to be determined.

S1(y) and S2(y) are determined by values of τ, C1, and C2. They
are divided into four parts equally, each forming a membership
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function with probabilities y and 1-y, respectively, as shown in
Table 6.

S1(x) and S2(x) are determined by the upper and lower limits of
risk units’ bid price. They are divided into four parts equally, each
forming a membership function with probabilities x and 1-x,
respectively, as shown in Table 7.

5.2 Analysis of the stochastic evolutionary
dynamics of players’ strategies

Once the set of risk units is determined, a simulation analysis can be
performed using the MATLAB platform. The initial strategy selection
probabilities are set as x(0) = 0.7 and y(0) = 0.6. The initial time is t0 = 0,
and the number of samples, r, is set to 1,500. The simulation time, T, is
240 h. The random disturbance intensity index, a, is taken as 0, 1, or 2.
In this section, a detailed analysis of the evolutionary dynamics will be
conducted specifically for trading day d1. The analysis principles for the
remaining trading days (d2 to d10) are the same and will not be
reiterated. The detailed analysis for trading day d1 is as follows.

1. Because of the random disturbance, the evolutionary game
system exhibits fluctuations as it converges to the equilibrium

FIGURE 4
Electricity load curves and market supply–demand ratios for 240 h time periods in a region of East China.

TABLE 3 Classification of strategy selection probabilities.

Probability Classification

Smaller Small Large Larger

x, y [0,0.25) [0.25,0.5) [0.5,0.75) [0.75,1]

1-x, 1-y

TABLE 4 Fuzzy classification of indicators in terms of generation income and
bidding behavior of risk units.

Indicator Fuzzy classification level

Smaller Small Large Larger

IRUGRn,d [0,j1] (j1,j2] (j2,j3] (j3,1

IRUOBn,d
[0,g1] (g1,g2] (g2,g3] (g3,1)

TABLE 5 Fuzzy classification of indicators in terms of historical performance of
risk units.

Indictor Fuzzy classification level

Better Good Bad Worse

Historical anomaly level [0,e1] (e1,e2] (e2,e3] (e3,1]

Credit level A B C D

TABLE 6 Values of modification factors S1(y) and S2(y).

Factor Probability y and 1-y classification

Smaller Small Large Larger

S1(y) 1.000 1.017 1.034 1.050

S2(y) 1.000 0.944 0.887 0.830

TABLE 7 Values of correction factors S1(x) and S2(x).

Factor Probability x and 1-x classification

Smaller Small Large Larger

S1(x) 1.000 1.067 1.133 1.200

S2(x) 1.000 0.933 0.867 0.800
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point, as is shown in Figure 5. Finally, the combination of players’
SESS is the risk units’ low-risk bid and the regulator’s light
punishment.

2. Under different disturbance intensities, the regulator reaches its
equilibrium strategy in approximately the same time, which is
14 h. On the other hand, the risk units reach the equilibrium
strategy in 24 h, 19.5 h, and 17.8 h for intensity coefficient a = 0,
1, and 2, respectively. This indicates that the random disturbance
factor accelerates the evolutionary pace of risk units, and the
evolutionary rate is positively correlated with the intensity of the
system disturbance.

3. The high intensity of random disturbance amplifies the
probability fluctuations during the evolutionary processes.
Taking time t = 2 as an example, probabilities and their
variations under different disturbance intensities are shown in
Table 8. For risk units, during the initial stage of system evolution
(t = 0 to t = 8), the probability x(t) shows a significant decline,
followed by a local rebound. It suggests that the willingness of the
risk unit group to adopt compliant bid behaviors and avoid
penalties has rapidly increased when they were punished by the
regulator.

Due to random factors such as risk awareness or risk preference, the
strategy probabilities of the risk group fluctuate, and the fluctuation
increases with a stronger disturbance. It is evident that various factors,
including risk awareness and risk preference, introduce randomness
into the strategy probabilities of risk groups.Moreover, this randomness

becomes more pronounced with increasing external disturbances. As
the game unfolds, risk units tend to gravitate toward stable, low-risk
bidding strategies in order to safeguard their baseline incomes. From the
regulatory standpoint, decision-making is influenced by stochastic
elements such as market-clearing outcomes, appeals, and public
sentiment. When the level of random disruption intensifies,
regulatory decisions exhibit more substantial fluctuations in the
initial stages of evolution.

When applying the combination of a low-risk bid and light
punishment strategy, the market risk level decreases and the overall
market environment tends to stabilize. Therefore, there is no
significant fluctuation in the evolution path of players on trading
days d2 and d3, as shown in Figure 6.

It is worth noting that the tight electricity supply–demand on
trading days d5 to d10 creates the willingness for risk units to increase
their risk level. The risk behavior also shifts from intentional
withholding to extremely high offers. As is shown in Figure 7, on
trading day d4, there is a change in the evolutionary process due to the
decrease in the supply–demand ratio. This indicates that even with the
implementation of risk prevention strategies, there is still a motivation
for risk units to increase their bid risk level in the game with the
regulator. There is a lag in the decision-making process of the regulatory
authority.

The evolutionary process of trading day d5 is depicted in
Figure 8. The light punishment strategy appears to have
insufficient deterrence on the risk group, resulting in risk units
continuing to adopt a high-risk bid strategy. Consequently, the

TABLE 8 Fluctuation amplitude of strategy probabilities under different stochastic disturbance intensities at time t = 2 on trading day d1.

Players Random disturbance intensity coefficient a

a = 0 a = 1 a = 2

Risk unit (initial stage x(0) = 0.7) x(2) |x(2)-x(0)| x(2) |x(2)-x(0)| x(2) |x(2)-x(0)|

0.615 0.085 0.465 0.235 0.392 0.308

Regulator (initial stage y(0) = 0.6) y(2) |y(2)-y(0)| y(2) |y(2)-y(0)| y(2) |y(2)-y(0)|

0.445 0.155 0.388 0.212 0.554 0.046

FIGURE 5
Evolutionary paths of players on trading day d1 under the stochastic disturbance system. (A) Evolutionary path of the strategy of risky units under
stochastic disturbance intensity coefficient a = 2, 1, and 0. (B) Evolutionary path of the strategy of the regulator under stochastic disturbance intensity
coefficient a = 2, 1, and 0.
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regulator experiences a decline in its income, leading to a shift back
to the strong penalty strategy.

The evolutionary paths shown in Figure 9 illustrates that risk
units rapidly change to a low-risk bid strategy on trading day d6 due
to the regulator’s imposition of strong penalties. In contrast, the
regulator’s strategy evolves at a slower pace, indicating concerns
about the possibility of risk units reverting to a high-risk bid
behavior. Random disturbances accelerate the evolution time for
players with a maximum reduction of over 12 h when the intensity
coefficient a is set to 2.

After the SEG of multiple trading days, the regulatory
mechanism has successfully suppressed the willingness of risk

units to increase their bid risk. Meanwhile, in an effort to
minimize administrative intervention in the power market, the
regulator has maintained a light punishment strategy. As a result,
the market operation has entered a virtuous cycle. The evolutionary
paths of players on trading days d7 to d10 are depicted in Figure 6.

5.3 Analysis of spot market trading and
operational risk prevention

Due to penalties imposed by the regulator, the winning
capacities of risk units on each day have decreased. Among

FIGURE 6
Evolutionary paths of players on trading days d2, d3, and d7–d10 under the stochastic disturbance system. (A) Evolutionary path of the strategy of risky
units under stochastic disturbance intensity coefficient a = 2, 1, and 0. (B) Evolutionary path of the strategy of the regulator under stochastic disturbance
intensity coefficient a = 2, 1, and 0.

FIGURE 7
Evolutionary paths of players on trading day d4 under the stochastic disturbance system. (A) Evolutionary path of the strategy of risky units under
stochastic disturbance intensity coefficient a = 2, 1, and 0. (B) Evolutionary path of the strategy of the regulator under stochastic disturbance intensity
coefficient a = 2, 1, and 0.
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them, the decrease in the awarded capacities of thermal power
units is significantly greater than those of renewable energy units,
as detailed in Table 10. The observed phenomenon can be
attributed to the following reasons: Thermal power units
typically have higher declared capacities and are more
sensitive to changes in prices compared to renewable energy
units. Therefore, the impact of different bid risk levels on
winning capacities of thermal power units is much greater
than that of renewable energy units.

Obviously, with the increase in the level of bid risk or the
intensity of punishments, the decline rate of risk units’ winning
capacities becomes larger. Table 9 presents changing rates of
winning capacities for different SESS between the regulator and

risk units, highlighting this effect. In more extreme market
conditions, where players adopt a strategy combination of severe
punishment and a high-risk bid, the average change rate for risk
units approaches 50%. When players adopt a combination of the
mild penalty and low-bidding risk strategy in milder market
environments, this value does not exceed 14%.

After the regulator has imposed penalties on risk units,
regardless of the strength of punishment, the average market-
clearing price has been found to decrease. The maximum
decrease has reached 156.9 yuan/MWh, with a maximum change
rate of 17.3%.

Given the constrained supply–demand conditions on trading days
d5–d10, the reduction in electricity prices during this period is less

FIGURE 8
Evolutionary paths of players on trading day d5 under the stochastic disturbance system. (A) Evolutionary path of the strategy of risky units under
stochastic disturbance intensity coefficient a = 2, 1, and 0. (B) Evolutionary path of the strategy of the regulator under stochastic disturbance intensity
coefficient a = 2, 1, and 0.

FIGURE 9
Evolutionary paths of players on trading day d6 under the stochastic disturbance system. (A) Evolutionary path of the strategy of risky units under
stochastic disturbance intensity coefficient a = 2, 1, and 0. (B) Evolutionary path of the strategy of the regulator under stochastic disturbance intensity
coefficient a = 2, 1, and 0.
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pronounced compared to days d1 to d4, when supply and demand are
more balanced. When comparing the average electricity price decrease
of 139.1 yuan/MWh and an average price volatility of 17.2% during
trading days d1 to d4, a slightly lower average decrease can be found
during trading days d5 to d10, i.e., 98.5 yuan/MWh, accompanied by an
average volatility of 9.8%. It is evident that the prevailing supply and
demand conditions significantly influence the effectiveness of the risk
prevention mechanism in the spot market, with more favorable risk
prevention outcomes observed during periods of lesser supply and
demand. The specific situation of market power risk prevention is
shown in Table 10.

In summary, through the proposed risk prevention mechanism
on the generation side of the electricity spot market, market risks
brought by market power are effectively mitigated. Price guidance is
achieved, which leads to lower trading prices and further
improvements in social welfare in electricity transactions.

6 Conclusion

For the emerging power spot market in China, it is crucial to
ensure its ability to discover the true price of electricity. In this
regard, a reasonable and effective market risk prevention
mechanism plays a key role. Hence, the basic evolutionary
game methodology has been expanded, and a stochastic
disturbance factor in the mathematical model, constructing
the SEG model, has been introduced. Based on the real power
spot market, an adaptive quantitative risk prevention mechanism

for extreme bid market power on the supply side of the market is
developed. Furthermore, a dual-layer dynamic “stochastic
evolutionary game–optimal market-clearing” model is
constructed for quantitative analysis.
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Electricity price
volatility (%)

Before
punishment

After
punishment
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