
Computing task allocation for
power Internet of Things including
renewable energy sources

Xianfei Yang1, Xiang Yu1* and Xiang Li2

1School of Electronics and Information Engineering, Taizhou University, Taizhou, China, 2School of Art
and Design, Taizhou University, Taizhou, China

Power Internet of Things (PIoT) is the key technology to build a new power system
based on new energy. Focusing on the problem that the large amount of data
leads to the long computation delay of cloud computing in the operation control
process of PIoT including renewable energy sources, this paper establishes a
cloud-edge-end collaborative optimization calculation model for PIoT based on
edge computation. Combined with data collected by a variety of smart terminal
devices (STDs) arranged around the power generation equipment, the edge
computation framework of PIoT is analyzed, and a computing task allocation
model based on minimizing average system latency is established. The
corresponding simulation model is built for simulation verification. Compared
with other baseline schemes, it has been demonstrated that the average system
latency of all tasks can be significantly decreased by using the proposed
optimization scheme.

KEYWORDS

power Internet of Things, renewable energy, edge computation, computing task
allocation, cloud edge end

1 Introduction

In order to reach the goal of achieving carbon peak by 2030 and carbon neutrality by
2060, the construction of new power systems with new energy sources as the main body
continues to advance in china (Xu et al., 2021). Due to the limited distribution of traditional
fossil fuels in China, renewable energy sources such as wind power and photovoltaic power
generation will gradually become the main form of energy in the future power system (Xu
et al., 2022). By 2020, the installed capacity of wind power and photovoltaic power has
exceeded 24.3% of the total installed capacity of power generation, and the installed capacity
of grid-connected renewable energy power generation has maintained rapid growth in
China. The high proportion of distributed renewable energy connected to grid significantly
affects the operation mode of the power grid. Because the operation state of the distribution
network is complex and changeable and the control objects are diverse, higher requirements
are put forward for the measurement and control level of the power system.

A high proportion of renewable energy is a key feature of future energy systems (Xu,
2019). PIoT provides an effective solution for the efficient operation of distribution networks
with renewable energy. PIoT fully applies advanced information and communication
technologies such as artificial intelligence and 5G to realize real-time connection
between devices in the power system, so that the system state of each link of power
production, transmission, and consumption can be fully perceived and controlled.
Specifically, affected by natural conditions, renewable energy generation has the
characteristics of intermittence and volatility. With the continuous operation of

OPEN ACCESS

EDITED BY

Jun Wu,
Beijing University of Chemical
Technology, China

REVIEWED BY

Zhang Xiaohong,
Dalian University, China
Gaoming Yang,
Anhui University of Science and
Technology, China

*CORRESPONDENCE

Xiang Yu,
yuxiang@tzc.edu.cn

RECEIVED 31 July 2023
ACCEPTED 12 December 2023
PUBLISHED 08 January 2024

CITATION

Yang X, Yu X and Li X (2024), Computing
task allocation for power Internet of
Things including renewable
energy sources.
Front. Energy Res. 11:1269988.
doi: 10.3389/fenrg.2023.1269988

COPYRIGHT

© 2024 Yang, Yu and Li. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 08 January 2024
DOI 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/articles/10.3389/fenrg.2023.1269988/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1269988/full
https://www.frontiersin.org/articles/10.3389/fenrg.2023.1269988/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2023.1269988&domain=pdf&date_stamp=2024-01-08
mailto:yuxiang@tzc.edu.cn
mailto:yuxiang@tzc.edu.cn
https://doi.org/10.3389/fenrg.2023.1269988
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2023.1269988

renewable energy generation grids, the energy storage capacity of
lithium-ion batteries will also continue to decrease. Using a large
number of STDs arranged around the power generation equipment
to collect data and calculate, the output power of renewable energy
generation equipment in the future can be predicted and the health
status of lithium-ion batteries can be estimated, which can control
the efficient and stable operation of the power grid (Huang andWei,
2020; Zhang et al., 2020; Qin et al., 2023). PIoT connects power grid
enterprises, power generation enterprises, power users, suppliers,
and their equipment to achieve data sharing and ensure the
intelligent management of the power grid without increasing the
complexity of the physical connection structure of the power grid.

With the continuous construction of PIoT, the number of STDs
has exploded, resulting in a huge amount of STDs’ data that need to
be stored, processed, and analyzed. The traditional data processing
method is used to transmit the data to the remote cloud center server

(RCCS) with strong computing power for calculation. However, due
to the heterogeneous and large number of STDs in the PIoT
environment, the unified upload of computing tasks to the RCCS
will cause network congestion, and the RCCS is arranged at the
remote end of STDs. The transmission delay generated by the STD
uploading data will greatly increase the completion time of the
overall task, thus affecting the real-time performance of the
computing task. As an extension and supplement of cloud
computing, edge computation solves this problem well. Edge
computation technology enables many computing tasks to be
completed by local devices without being handed over to the
RCCS. The task processing is completed at the edge node
close to STDs, and the edge server (ES) can respond to the
STD’s requests and tasks in a shorter time. However, ESs
typically offer fewer computing and storage resources than
RCCS. If STDs have many computing tasks, they cannot
execute all of them simultaneously. Therefore, the edge
computation research has focused on computing task
allocation (Bi et al., 2020; Pham et al., 2020; Song et al.,
2020; Wei et al., 2020; Zhu and Zhou, 2021).

Generally, a computing task allocation scheme comprises of two
parts: offloading decision and resource allocation decision (Chen
et al., 2022a; Chen et al., 2022b; Deng et al., 2022; Fang et al., 2022;
Wang et al., 2022; Yue et al., 2022; Zhou et al., 2022; Zhou and Zhang,
2022). The former serves to determine which tasks should be
performed on ESs or RCCS. The latter specifies the amount of
computing and storage resources allocated to each STD by ESs or
RCCS. By caching applications and their associated databases on ESs,
ESs can perform tasks that require these applications, which is called
service cache (Xu et al., 2018). Nowadays, in most computation
offloading schemes, all services required by STDs’ computing tasks
have been cached by ESs. The RCCS can cache all types of services
because of its massive storage capacity. However, due to its limited
storage resources, there are only a few services that an ES can cache.
Accordingly, a joint optimization scheme for service cache updating
and computing task allocation (JOSSCUCTA) for PIoT including
renewable energy sources was proposed. The contribution of this
article mainly included the following three parts:

• JOSSCUCTA was proposed and established as a mathematical
model of mixed-integer non-linear programming (MINLP).

• JOSSCUCTA was solved using the optimal method of outer
approximation (OA).

FIGURE 1
Edge computing network architecture for PIoT with renewable energy sources.

TABLE 1 Main notations.

Notation Description

Wi Computing tasks of STD i

pi Number of identical computing tasks of STD i

bi Amount of input data of computing tasks of STD i

vi Resource demand of computing tasks of STD i

si,j Computing tasks of STD i require service j

pup
i

Transmission power of STD i

hupi Channel gain of STD i

Bi Channel bandwidth of STD i

ri Transmission rate between STD i and the ES

ci Computing resources of STD i

cei Computing resources that the ES allocates to STD i

yj Whether or not cached service j at the start of the time slot t

ys
j Whether or not cached service j after the service cache updating

mj Data volume of service j

me Storage capacity of the ES

ce Computing capacity of the ES

Frontiers in Energy Research frontiersin.org02

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

• Comparing JOSSCUCTA with other schemes of computing
task allocation, simulation results showed that it reduces
average system latency of all STDs’ computing tasks.

The remainder of this paper is organized as follows: a review on
related work on computing task allocation is provided in Section 2.
A cloud-edge-end collaboration edge computation network
framework is proposed and JOSSCUCTA is proposed and
established as an MINLP problem in Section 3. Section 4
provides a solution to the MINLP problem using the OA
method. In Section 5, simulation results are analyzed, and
conclusion is reported in Section 6 .

2 Related work

Based on optimization objectives, computing task allocation
schemes can be categorized into four types: schemes with
minimum delay, with minimum consumption of energy, with
minimum trade-off between delay and consumption of energy,
and with optimization of other performance indicators. Liu et al.
(2016) adopted the Markov decision process to establish the
computing task allocation scheme optimization model with
minimum delay under the power constraint of terminal
equipment. Based on experimental results, the scheme greatly
reduced computing delay compared to the local computing and
cloud computation schemes. Similarly, to obtain a computing task
allocation scheme with the shortest latency in an ultra-dense
network under the power constraints of terminal equipment,
Chen and Hao (2018) demonstrated the computing task

allocation problem as an MINLP problem using software-defined
networking. According to experimental results, the method can
reduce delay by 20% compared with baseline schemes. Xing et al.
(2018) introduced a time-division multiple-access communication
protocol under the scenario that each STD has several computing
tasks. These tasks can be offloaded simultaneously to many ESs and
can be completed in parallel. The performance and energy
consumption of local computing and computing on ESs were
analyzed under the framework of the protocol to develop an
optimization model with minimum delay. Zhang et al. (2017)
proposed an intelligent vehicle computing task allocation scheme
model that utilized a Stackelberg game theory method to determine
the task offloading decision with minimum delay, thereby
maximizing the efficiency of the vehicle and edge devices. Ning
et al. (2018) proposed a partial allocation scheme for computation
tasks that minimizes total amount of computing delay and
transmission delay when computing tasks may be separated into
numerous modules. Considering that STDs communicate with ESs
via wireless access networks and communication resources are
limited in the edge computation system, STDs’ energy
consumption can be minimized by computing task allocation
(Zhao et al., 2017). In order to determine the optimal c
computing task allocation scheme, computer resource allocation
and wireless network resource allocation were optimized
simultaneously. The simulation results showed that this model
had a better energy-saving effect. Because the data source is
always far away from the remote cloud, computing tasks with
delay constraints can only be offloaded to ESs for execution.
Therefore, Guo and Liu (2018) investigated an edge computing
network architecture based on a fiber–wireless network and
proposed an ES and a remote cloud collaborative computing task

FIGURE 2
Efficiency comparison of all computing offloading schemes
using different numbers of computing tasks of an STD.

FIGURE 3
Efficiency comparison of all computing offloading schemes
using different resource requirements of computing tasks.

Frontiers in Energy Research frontiersin.org03

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

allocation scheme with the minimum energy consumption of
terminal equipment under delay constraints. STDs’ energy usage
can be reduced by offloading computing tasks to idle wireless devices
nearby. Therefore, Cao et al. (2018) proposed an edge computing
network architecture composed of STDs, help devices, and an
access point device. Lan et al. (2019) developed a computing task
allocation scheme that provided the optimal allocation decision
while optimizing bandwidth resources, CPU frequency of STDs,
and transmission power, which was modeled as an MINLP
problem. Meng et al. (2019) proposed an online scheduling
algorithm that optimized the allocation decision of
computation tasks, the allocation of network bandwidth, and
computing resources so that most tasks can be completed before
the deadline. Lin and Shen (2015) aimed at optimizing the quality
of the users’ experience while playing interactive games. A
cloud–fog system was designed to reduce delay and improve
coverage using response time, network congestion, and service
coverage as indicators of users’ experience.

3 Model of computing task allocation

3.1 System model

As shown in Figure 1, STDs can access the nearest wireless
access point (such as a mobile network base station and gateway)
equipped with an ES. By the core network, the ES can offload some
computing tasks to the RCCS for execution if there are many
computing tasks arriving simultaneously. Meanwhile, the ES can
download required services from the RCCS to update the service
cache of the ES. The key notations used in this paper are summarized
in Table 1.

3.2 Execution latency model of
computational tasks performed by
STDs locally

We consider an edge computation system for PIoT with n STDs
andm services in the time slot t. Let STD i and server j represent ith STD
and jth service, respectively, where i ∈ N ≜ 1, 2,/, n{ } and
j ∈ M ≜ 1, 2,/,m{ }. The computing tasks of STD i can be
represented by a tuple Wi ≜ pi, bi, vi, si,j{ }, which means STD i has
pi identical computing tasks and each computing task has the amount
of input data bi. Its computing resource demand is vi, and si,j indicates
that computing tasks require service j. Suppose thatxl

i,x
e
i , and x

c
i are the

amount of computing tasks performed by STD i locally, the ES, and the
RCCS, respectively, which meet the constraint xl

i + xe
i + xc

i � pi. The
execution latency of xl

i computing tasks on STD i locally can be
calculated using the following formula:

tli � vix
l
i/ci, (1)

where ci is the computing resource of STD i.

3.3 Execution latency of computational tasks
performed by the ES

When the ES performs part of computing tasks of STD i, the
execution latency includes the following three parts: task offloading
latency from STD i to the ES, computing latency, and result feedback
latency. Since the result feedback latency is relatively small, it is
ignored in this article. Assuming the channel bandwidth allocated by
the wireless network to STD i is Bi and the transmission power is
pup
i , the Shannon formula can be used to calculate the data

transmission rate between STD i and the ES as follows:

ri � Bi log2 1 + pup
i hupi
Biσ2

(), (2)

where hupi and σ2 are the channel gain and the noise power spectral
density. Therefore, the transmission latency of xe

i computing tasks is

te tr
i � bix

e
i/ri. (3)

If the ES has cached the service required by STD i, the computing
latency depends on the computing resource demand of tasks.
Therefore, the computing latency is

te com
i � vix

e
i /cei , (4)

where cei is the computing resource that the ES allocates to STD i.
Combining Eqs 3, 4, the latency of the ES performing xe

i computing
tasks of STD i can be obtained as follows:

tei � bi/ri + vi/cei()xe
i . (5)

3.4 Execution latency of computational
tasks performed by the RCCS

If the RCCS performs part of computing tasks of STD i,
execution latency includes the following two parts: the first part

FIGURE 4
Efficiency comparison of all computing offloading schemes
using different numbers of STDs.

Frontiers in Energy Research frontiersin.org04

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

is the transmission latency of computing tasks, including latency
from STD i to the ES and from the ES to the RCCS. The second part
is computing latency on the RCCS. The calculation formulas of
transmission latency and calculation latency are, respectively,
given as

tc tr
i � bi/ri + bi/R()xc

i , (6)
tc com
i � vix

c
i/cci , (7)

where R is the transmission rate of computing tasks from the ES
to the RCCS. cci is the computing resource allocated to STD i by
the RCCS. Because it has massive computing resources, its
computing resources are not necessary to be allocated to
each STD optimally. The formula for calculating the latency
of xc

i computing tasks of STD i offloaded to the RCCS for
execution is

tci � bi/ri + bi/R + vi/cci()xc
i . (8)

According to Eqs 1, 5, 8, without considering service cache
updating, the formula for calculating the execution latency
expectation of computing tasks of STD i is

Ei � xl
i

pi
tli +

xe
i

pi
tei +

xc
i

pi
tci

� x(l
i)2vi
pici

+ x(e
i)2
pi

bi
ri
+ vi
cei

() + x(c
i)2
pi

bi
ri
+ bi
R
+ vi
cci

(). (9)

3.5 Latency of service cache updating

If STDs offload computing tasks to the ES for execution
and the ES has not cached services required by these
computing tasks, service need to be downloaded from the
RCCS to the ES. Let the binary variable ys

j � 1 denote that
the ES has cached service j at the start of the time slot t,
otherwise ys

j � 0. Assume variable yj � 1 indicates that the
ES has cached service j after the service cache updating,
otherwise yj � 0. Then, the latency of service cache
updating of the ES is

tu � ∑m

j�1yj 1 − ys
j()mj

R0
, (10)

where mj is the data volume of service j and R0 is the transmission
rate of downloading services from the RCCS.

3.6 Mathematical description and
optimization modeling of problems

Let X ≜< xl1,/, xl
n, x

e
1/, xe

n, x
c
1/, xc

n > denote an offloading
decision scheme, Y ≜<y1,/, ym > represent a service cache
updating scheme, and Ce ≜< ce1,/, cen > indicate a computing
resource allocation scheme by the ES. In JOSSCUCTA, the
optimization variable is Γ ≜<X,Y, Ce > . Because the system
latency of all STDs’ computing tasks includes execution latency
and service cache updating latency, aiming to minimize the average
system latency of all STDs’ computing tasks, the optimization model
is given as

P0: minf Γ() � 1
n

∑n

i�1Ei + tu(),
s.t. C1: xl

i, x
e
i , x

c
i ϵ 0, 1,/, pi{ }, i ∈ N,

C2: cei ≥ 0, i ∈ N ,

C3: yj ∈ 0, 1{ }, j ∈ M,

C4: yj ≥ si,jxe
i/pi, i ∈ N, j ∈ M,

C5: xl
i + xe

i + xc
i � pi, i ∈ N ,

C6: ∑n
i�1c

e
i ≤ ce,

C7: ∑m
j�1yjmj ≤me.

(11)

Every optimization variable has a value range restricted by
constraints C1 ~ C4. Suppose that ce is the computing capacity
of the ES. Constraint C6 indicates that the ES’s computing capacity
is greater than the sum of computing resources it allocates to all
STDs. Let me be the storage capacity of the ES. Constraint C7
indicates that the total storage requirements for all services cached
on the ES cannot exceed the storage capacity of the ES.

4 Solution for the optimization mode

Taking Eqs 9, 10 into the objective function of P0, we obtain

f Γ() � 1
n
∑n

i�1
x(l
i)2vi
pici

+ x(e
i)2
pi

bi
ri
+ vi
cei

() + x(c
i)2
pi

bi
ri
+ bi
R
+ vi
cci

()⎛⎝ ⎞⎠
+ 1
n
∑m

j�1yj 1 − ys
j()mj

R0
.

(12)
It can be proved that if the integer variables X and Y are relaxed

to real variables, Eq. 12 is a convex function. Therefore, the
optimization model P0 is an MINLP problem which can be
resolved using the OA method. This method can reduce the
complexity of optimization problems by transforming MINLP
into a non-linear programming (NLP) problem and a mixed-
integer linear programming (MILP) problem. Because the
objective function of the optimization model P0 is non-linear
and suppose a real variable τ satisfies the constraint f(Γ)≤ τ, the
optimization model P0 can be transformed into an equivalent
optimization model P1 as follows:

P1: min τ,
s.t. f Γ()≤ τ,
C1 ~ C7.

(13)

Let �X(h) and �Y(h) be the certain values of the integer variables X
and Y, respectively, satisfying the constraint C1 ~ C7. By
substituting them into the optimization model P1, an NLP
problem P2 can be obtained:

P2: min τ,

s.t.
1
n
∑n

i�1
�x(l h()
i)2vi
pici

+ �x(e h()
i)2
pi

bi
ri
+ vi
cei

() + �x(c h()
i)2
pi

bi
ri
+ bi
R
+ vi
cci

()⎛⎝ ⎞⎠
+1
n
∑m

j�1 �y
h()

j 1 − ys
j()mj

R0
≤ τC1 ~ C7, (14)

The interior point method can be used to solve the optimization
model P2. Suppose the values of the optimal variables are

Frontiers in Energy Research frontiersin.org05

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

Γ(h) ≜< �X(h), �Y(h), �Ce(h) > , the upper bound of the optimization
objective function value of P0 can be updated by calculating
f(Γ(h)). Using the tangent function of the non-linear convex
function to replace the non-linear function itself, the OA method
relaxes the non-linear constraint into a linear constraint, thereby
transforming the MINLP problem into an MILP problem. Let

p h() Γ() � f Γ h()() + ∇X,Y,Cef Γ()∣∣∣∣Γ�Γ h() Γ − Γ h()(). (15)

Add p(h)(Γ)≤ τ to the optimization model P1, and replace the
non-linear constraint f(Γ)≤ τ. The optimization model P1 is
transformed into an MILP problem.

P3: min τ,
s.t. p h() Γ()≤ τ,

C1 ~ C7.
(16)

By solving the optimization model P3, the optimal objective
function value τ and the integer optimization variable values �X(h+1)

and �Y(h+1) can be obtained, and the lower bound of the optimization
objective value can be updated with the function value τ. The integer
optimization variable values �X(h+1) and �Y(h+1) are substituted into
the optimization model P2 to realize the iterative calculation of the
lower and upper bounds of the optimization target value of P0. The
algorithm steps of solving the optimization model P1 using the OA
method are shown in Algorithm 1

input: wi, ys
j, ε;

output: X, Y, Ce;

Initialization: UB � ∞, LB � −∞;

(�X(0)
, �Y

(0)) � rand genernation with constraints();
�ce(0) � optimization model P2(�X(0)

, �Y
(0));

UB � f(�X(0)
, �Y

(0)
, �ce(0));

(�X(1)
, �Y

(1)
, τ) � optimization model P3(�X(0)

, �Y
(h0)

, �ce(0)).
LB � τ;

h � 1;

While UB − LB> ε do

�ce(h) � optimization model P2(�X(h)
, �Y

(h));
UB � min (UB,f(�X(h)

, �Y
(h)

, �ce(h));
(�X(h+1)

, �Y
(h+1)

, τ) � optimization model P3(�X(h)
, �Y

(h)
, �ce(h)).

LB � τ;

h � h + 1;

End While

Algorithm 1. The JOSSCUCTA scheme based on the OA method.

5 Performance evaluation

An evaluation of the efficiency of JOSSCUCTA is conducted in
this section. The specific simulation environment is as follows: the
simulation in this paper was conducted using MATLAB. The edge
computation system includes one RCCS, one WiFi wireless access
point, one ES, and multiple STDs. STDs are randomly distributed in
a square area, and the center of the area is deployed with one wireless
access point and one ES. Channel gain is hupi � d−4i , and di is the
distance between wireless access point and STD i. ci satisfies the
uniform distribution U ~ (0.8, 1)Gsycles/s. pup

i � 100mv,
Bi � 1Mbps, and σ2 � −174dbm/Hz. bi satisfies the distribution
U ~ (0.5, 1)Mbps. The ES and the RCCS computing resource are

15Gsycles/s and 100Gsycles/s, respectively. The ES’s storage
resource is me � 35Mbps. There are five services, and the storage
space required by each service obeys the distribution
U ~ (10, 20)Mbps. The efficiency of JOSSCUCTA was verified by
comparing with the following computing task allocation schemes:

• All local: STDs perform all computing tasks locally.
• All offloading: The BS or the RCCS execute all
computing tasks.

• STD–edge-cloud collaborative computing without service
cache updating (SE3CSCU): Use the optimization scheme
proposed in this article to allocate computing tasks to
devices, but set the download times of services to infinity,
making cached service updating impossible.

To verify whether JOSSCUCTA can reduce the average system
latency of all STDs’ computing tasks when the ES has not cached
services required by STDs, experiments 1 and 2 assume that services
required by all STDs are not cached by the ES. The simulation
scenario of experiment 1 is as follows: there are five STDs that
require five servers, or that require two services. A comparison of the
average system latency of different computing offloading schemes as
the number of computing tasks of each STD increases is illustrated
in Figure 2. As each computing task requires more and more
computing resources, the average system latency of different task
allocation schemes is compared, as shown in Figure 3.

Figures 2, 3 show that as the number of computing tasks on each
STD increases or the computing resources required to perform each
computing task increase, the average system latency of all computation
offloading schemes increases. Because each STD’s total computing tasks
requiremore computing resources and each STDor the ES has constant
computing resources, each computing task is allocated fewer resources.
As a result, the average system latency increases.

The average system latency of JOSSCUCTA increases as the
number of servers required by STDs increases because the more
STDs need the same service, the earlier the service is downloaded
from the RCCS to the ES. The average system latency of all local is
the highest among all computation offloading schemes, which
indicates that computing intensive tasks are hardly to perform
locally. SE3CSCU has higher average system latency than
JOSSCUCTA because without service cache updating, computing
tasks of STDs can only be offloaded to the RCCS.

The simulation scenario of experiment 2 is that the server required
by each STD in the edge computation system is different. As shown in
Figure 4, the average system latency of JOSSCUCTA gradually increases
as the number of STDs increases when there are fewer STDs in the edge
computation system. This is because the ES allocates fewer computing
resources to each task when STDs offload more computing tasks to it.
However, with an increasing number of STDs, more computing tasks
are executed on the RCCS to obtain a smaller execution delay. Thus,
average system latency does not continue to increase. Meanwhile, in
computing task allocation schemes of all local and all offloading, the
average execution latency does not increase or decrease consistently as it
depends on computing resource requirements, computing resources
supplied by all STDs, and transmission latency.

To verify whether JOSSCUCTA can reduce the average system
latency of all STDs’ computing tasks when the ES has not cached
part of the services required by STDs, the simulation scenario of

Frontiers in Energy Research frontiersin.org06

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

experiment 3 is that the edge computation system contains five
STDs, and each of them requires different services. The ES has
cached three services which are required by first to third STDs, and
there is no enough storage capacity in the ES to cache more servers.
Figure 5 illustrates the comparison of all computing offloading
schemes when the number of computing tasks of the fourth and
fifth STDs increases.

In Figure 5, we can see even if the services cached in the ES are all
required by STDs and the ES has no more storage resources to cache
other services, JOSSCUCTA can reduce the average system latency.
Because an STD has many computing tasks, it will increase
transmission latency to offload them to the RCCS. JOSSCUCTA
can download the service required by the STD to the ES, reducing
the transmission latency of these computing tasks. To cache the new
service, the ES needs to delete services required by other STDs with a
small number of computing tasks and perform their computing
tasks on the RCCS. Even though the total execution latency of these
STDs has increased, it remains that the pros outweigh the cons.

The simulation scenario of experiment 4 is that there are two
categories of STDs in the edge computation system. The services
required by one category of STDs have been cached on the ES, and
there are no more storage resources to cache other services on the
ES. The services required by another category of STDs are not
cached by the ES, but they are the same services. Figure 6 shows the
comparison of all computing offloading schemes as the number of
the second category of STDs increases.

We can see that when there are fewer STDs of the second category,
the average system latency of JOSSCUCTA is the same as that of
SE3CSCU, as shown in Figure 6 because server cache updating does not
occur. However, as more and more STDs need the same service,
JOSSCUCTA improves performance further. This is because the

required service can be downloaded to the ES through service cache
updating. Therefore, JOSSCUCTA can effectively adapt quickly to the
changing service requirements of many STDs.

6 Conclusion

Massive heterogeneous data in PIoT with renewable energy need to
be processed, and the demand for computing power and
communication resources has increased dramatically. Edge
computation can significantly improve the computational
performance of the smart power grid. However, as the categories of
computing tasks increase in PIoT and ESs are equipped with limited
storage resources, ESs cannot cache all types of services required by
STDs’ computing tasks. Therefore, this article proposed JOSSCUCTA
for PIoT with renewable energy sources and established it as anMINLP
problem. Simulation experiments showed that the JOSSCUCTA
scheme can effectively reduce the average system latency of all
STDs’ computing tasks when the ES has not cached or cached part
of the services required by computing tasks.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary material; further inquiries can be directed
to the corresponding author.

Author contributions

XYa: Writing–review and editing. XYu: Writing–original
draft, Writing–review and editing. XL: Writing–review
and editing.

FIGURE 5
Efficiency comparison of all computing offloading schemes
using different numbers of computing tasks of fourth and fifth STDs.

FIGURE 6
Efficiency comparison of all computing offloading schemes
using different numbers of the second category of STDs.

Frontiers in Energy Research frontiersin.org07

Yang et al. 10.3389/fenrg.2023.1269988

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

Funding

The author(s) declare financial support was received
for the research, authorship, and/or publication of this
article. The paper was funded by the Science
and Technology Project of Taizhou (2003gy15
and 20ny13).

Acknowledgments

The authors gratefully acknowledge the support provided
by the Science and Technology Project of Taizhou (2003gy15
and 20ny13).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, the editors, and the reviewers. Any product that
may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Bi, R., Liu, Q., Ren, J., and Tan, G. J. T. S., (2020). Utility aware offloading for mobile-
edge computing. Util. aware offloading mobile-edge Comput. 26 (2), 239–250. doi:10.
26599/TST.2019.9010062

Cao, X., Wang, F., Xu, J., Zhang, R., and Cui, S. (2018). Joint computation and
communication cooperation for energy-efficient mobile edge computing. IEEE Internet
Things J. 6 (3), 4188–4200. doi:10.1109/JIOT.2018.2875246

Chen, M., and Hao, Y. (2018). Task offloading for mobile edge computing in software
defined ultra-dense network. IEEE J. Sel. Areas Commun. 36 (3), 587–597. doi:10.1109/
JSAC.2018.2815360

Chen, X., Zhang, J., Lin, B., Chen, Z., Wolter, K., andMin, G. (2022a). Energy-efficient
offloading for DNN-based smart IoT systems in cloud-edge environments. Ieee Trans.
Parallel Distributed Syst. 33 (3), 683–697. doi:10.1109/tpds.2021.3100298

Chen, Y., Zhang, S., Jin, Y., Qian, Z., Xiao, M., Ge, J., et al. (2022b). LOCUS: user-
perceived delay-aware service placement and user allocation in MEC environment. Ieee
Trans. Parallel Distributed Syst. 33 (7), 1581–1592. doi:10.1109/tpds.2021.3119948

Deng, X., Li, J., Guan, P., and Zhang, L. (2022). Energy-efficient UAV-aided target
tracking systems based on edge computing. Ieee Internet Things J. 9 (3), 2207–2214.
doi:10.1109/jiot.2021.3091216

Fang, T., Yuan, F., Ao, L., and Chen, J. (2022). Joint task offloading, D2D pairing, and
resource allocation in device-enhanced mec: a potential game approach. Ieee Internet
Things J. 9 (5), 3226–3237. doi:10.1109/jiot.2021.3097754

Guo, H., and Liu, J. (2018). Collaborative computation offloading for multiaccess edge
computing over fiber–wireless networks. IEEE Trans. Veh. Technol. 67 (5), 4514–4526.
doi:10.1109/TVT.2018.2790421

Huang, Q., and Wei, S. (2020). Improved quantile convolutional neural network with
two-stage training for daily-ahead probabilistic forecasting of photovoltaic power.
Energy Convers. Manag. 220, 113085. doi:10.1016/j.enconman.2020.113085

Lan, X., Cai, L., and Chen, Q. (2019). “Execution latency and energy consumption tradeoff
in mobile-edge computing systems,” in 2019 IEEE/CIC International Conference on
Communications in China: IEEE), Changchun, China, 11-13 August 2019, 123–128.

Lin, Y., and Shen, H. (2015). “Cloud fog: towards high quality of experience in cloud
gaming,” in 2015 44th International Conference on Parallel Processing: IEEE, Beijing,
China, September 1-4, 2015, 500–509.

Liu, J., Mao, Y., Zhang, J., and Letaief, K. B. (2016). Delay-optimal computation task
scheduling for mobile-edge computing systems. IEEE. 1451-1455 %@
1509018069 Available at: https://arxiv.org/abs/1604.07525.

Meng, J., Tan, H., Li, X.-Y., Han, Z., and Li, B. (2019). Online deadline-aware task
dispatching and scheduling in edge computing. IEEE Trans. Parallel Distributed Syst. 31
(6), 1270–1286. doi:10.1109/TPDS.2019.2961905

Ning, Z., Dong, P., Kong, X., and Xia, F. (2018). A cooperative partial computation
offloading scheme for mobile edge computing enabled Internet of Things. IEEE Internet
Things J. 6 (3), 4804–4814. doi:10.1109/JIOT.2018.2868616

Pham, X.-Q., Nguyen, T.-D., Nguyen, V., and Huh, E.-N. J. I. C. L. (2020). Joint
service caching and task offloading in multi-access edge computing: a qoe-based utility
optimization approach. IEEE Commun. Lett. 25 (3), 965–969. doi:10.1109/LCOMM.
2020.3034668

Qin, Y., Yuen, C., Yin, X., and Huang, B. (2023). A transferable multistage model with
cycling discrepancy learning for lithium-ion battery state of health estimation. IEEE
Trans. Industrial Inf. 19 (2), 1933–1946. doi:10.1109/TII.2022.3205942

Song, F., Xing, H., Luo, S., Zhan, D., Dai, P., and Qu, R. (2020). A multiobjective
computation offloading algorithm for mobile-edge computing. IEEE Internet Things J. 7
(9), 8780–8799. doi:10.1109/JIOT.2020.2996762

Wang, X., Ning, Z., Guo, L., Guo, S., Gao, X., and Wang, G. (2022). Online learning
for distributed computation offloading in wireless powered mobile edge computing
networks. Ieee Trans. Parallel Distributed Syst. 33 (8), 1841–1855. doi:10.1109/tpds.
2021.3129618

Wei, Z., Pan, J., Lyu, Z., Xu, J., Shi, L., and Xu, J. J. C. C. (2020). An offloading strategy
with soft time windows in mobile edge computing. Comput. Commun. 164, 42–49.
doi:10.1016/j.comcom.2020.09.011

Xing, H., Liu, L., Xu, J., and Nallanathan, A. (2018). “Joint task assignment and
wireless resource allocation for cooperative mobile-edge computing,” in 2018 IEEE
International Conference on Communications: IEEE), Kansas City, MO, USA, 20-
24 May 2018.

Xu, J., Chen, L., and Zhou, P. (2018). “Joint service caching and task offloading for
mobile edge computing in dense networks,” in IEEE INFOCOM 2018-IEEE Conference
on Computer Communications: IEEE), Honolulu, Hawaii, USA, 16-19 April 2018,
207–215.

Xu, X., Lin, Z., Li, X., Shang, C., and Shen, Q. J. I. J. o.P. R. (2022). Multi-objective
robust optimisationmodel for MDVRPLS in refined oil distribution. Int. J. Prod. Res. 60,
6772–6792. doi:10.1080/00207543.2021.1887534

Xu, X., Wang, C., and Zhou, P. (2021). GVRP considered oil-gas recovery in refined
oil distribution: from an environmental perspective. Int. J. Prod. Econ. 235, 108078.
doi:10.1016/j.ijpe.2021.108078

Xu, X. J. R. P., Wei, Z., Ji, Q., Wang, C., and Gao, G. (2019). Global renewable energy
development: influencing factors, trend predictions and countermeasures. Resour.
Policy 63, 101470. doi:10.1016/j.resourpol.2019.101470

Yue, S., Ren, J., Qiao, N., Zhang, Y., Jiang, H., Zhang, Y., et al. (2022). TODG:
distributed task offloading with delay guarantees for edge computing. Ieee Trans.
Parallel Distributed Syst. 33 (7), 1650–1665. doi:10.1109/tpds.2021.3123535

Zhang, K., Mao, Y., Leng, S., Maharjan, S., and Zhang, Y. (2017). “Optimal delay
constrained offloading for vehicular edge computing networks,” in 2017 IEEE
International Conference on Communications: IEEE), Paris, France, 21-25 May
2017.

Zhang, Y., Li, Y., and Zhang, G. (2020). Short-term wind power forecasting approach
based on Seq2Seq model using NWP data. Energy 213, 118371. doi:10.1016/j.energy.
2020.118371

Zhao, P., Tian, H., Qin, C., and Nie, G. (2017). Energy-saving offloading by jointly
allocating radio and computational resources for mobile edge computing. IEEE Access 5,
11255–11268. doi:10.1109/ACCESS.2017.2710056

Zhou, H., Jiang, K., Liu, X., Li, X., and Leung, V. C. M. (2022). Deep reinforcement
learning for energy-efficient computation offloading in mobile-edge computing. Ieee
Internet Things J. 9 (2), 1517–1530. doi:10.1109/jiot.2021.3091142

Zhou, J., and Zhang, X. (2022). Fairness-Aware task offloading and resource
allocation in cooperative mobile-edge computing. Ieee Internet Things J. 9 (5),
3812–3824. doi:10.1109/jiot.2021.3100253

Zhu, X., and Zhou, M. J. I. I. o.T. J. (2021). Multiobjective optimized cloudlet
deployment and task offloading for mobile-edge computing. IEEE Internet Things J. 8
(20), 15582–15595. doi:10.1109/JIOT.2021.3073113

Frontiers in Energy Research frontiersin.org08

Yang et al. 10.3389/fenrg.2023.1269988

https://doi.org/10.26599/TST.2019.9010062
https://doi.org/10.26599/TST.2019.9010062
https://doi.org/10.1109/JIOT.2018.2875246
https://doi.org/10.1109/JSAC.2018.2815360
https://doi.org/10.1109/JSAC.2018.2815360
https://doi.org/10.1109/tpds.2021.3100298
https://doi.org/10.1109/tpds.2021.3119948
https://doi.org/10.1109/jiot.2021.3091216
https://doi.org/10.1109/jiot.2021.3097754
https://doi.org/10.1109/TVT.2018.2790421
https://doi.org/10.1016/j.enconman.2020.113085
https://arxiv.org/abs/1604.07525
https://doi.org/10.1109/TPDS.2019.2961905
https://doi.org/10.1109/JIOT.2018.2868616
https://doi.org/10.1109/LCOMM.2020.3034668
https://doi.org/10.1109/LCOMM.2020.3034668
https://doi.org/10.1109/TII.2022.3205942
https://doi.org/10.1109/JIOT.2020.2996762
https://doi.org/10.1109/tpds.2021.3129618
https://doi.org/10.1109/tpds.2021.3129618
https://doi.org/10.1016/j.comcom.2020.09.011
https://doi.org/10.1080/00207543.2021.1887534
https://doi.org/10.1016/j.ijpe.2021.108078
https://doi.org/10.1016/j.resourpol.2019.101470
https://doi.org/10.1109/tpds.2021.3123535
https://doi.org/10.1016/j.energy.2020.118371
https://doi.org/10.1016/j.energy.2020.118371
https://doi.org/10.1109/ACCESS.2017.2710056
https://doi.org/10.1109/jiot.2021.3091142
https://doi.org/10.1109/jiot.2021.3100253
https://doi.org/10.1109/JIOT.2021.3073113
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1269988

	Computing task allocation for power Internet of Things including renewable energy sources
	1 Introduction
	2 Related work
	3 Model of computing task allocation
	3.1 System model
	3.2 Execution latency model of computational tasks performed by STDs locally
	3.3 Execution latency of computational tasks performed by the ES
	3.4 Execution latency of computational tasks performed by the RCCS
	3.5 Latency of service cache updating
	3.6 Mathematical description and optimization modeling of problems

	4 Solution for the optimization mode
	5 Performance evaluation
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

