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A modern power system integrates more and more new energy and uses a large
number of power electronic equipment, which makes it face more challenges
in online optimization and real-time control. Deep reinforcement learning (DRL)
has the ability of processing big data and high-dimensional features, as well as
the ability of independently learning and optimizing decision-making in complex
environments. This paper explores a DRL-based online combination optimization
method of grid sections for a large complex power system. In order to improve
the convergence speed of the model, it proposes to discretize the output action
of the unit and simplify the action space. It also designs a reinforcement learning
loss function with strong constraints to further improve the convergence speed
of the model and facilitate the algorithm to obtain a stable solution. Moreover,
to avoid the local optimal solution problem caused by the discretization of the
output action, this paper proposes to use the annealing optimization algorithm
to make the granularity of the unit output finer. The proposed method in this
paper has been verified on an IEEE 118-bus system. The experimental results
show that it has fast convergence speed and better performance and can obtain
stable solutions.

KEYWORDS

grid section, deep reinforcement learning, convergence speed, discretize, loss function,
annealing optimization algorithm

1 Introduction

The fundamental issue of power systems is to ensure that the grid operates economically,
reliably, and stably. At present, as new energy develops rapidly and its proportion in the total
power supply continues to increase, power systems face new challenges in terms of real-time
dispatch and stability control.

Most of the traditional power dispatching solutions are based on accurate modeling of
the system, mainly using classical methods, metaheuristic methods, and hybrid methods.
In order to solve the constrained economic dispatch problem, Gherbi and Lakdja
(2011) proposed a quadratic programming method based on a variable transformation
technique to handle the linearization of constraints. Irisarri et al. (1998) studied the interior
point method, which is one of the methods for dealing with constrained optimization
problems. Zhan et al. (2013) investigated a fast iteration method. Different from these
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classical methods, Larouci et al. (2022) improved fourmetaheuristic
algorithms, while Modiri-Delshad et al. (2016) presented a new
backtracking search algorithm that utilizes crossover and mutation
operators to efficiently explore search domains. Among the hybrid
methods, Aydın and Özyön (2013) used incremental artificial bee
colony (IABC) algorithm, together with local search, to solve the
non-convex economic dispatch problem, whereas Alshammari et al.
(2022) extended IABC and introduced four various chaotic maps
in all phases of the artificial bee colony algorithm to generate the
random variables.

However, in modern power systems, the integration of
renewable energy brings more randomness into the energy output
of unit commitment. It greatly increases the uncertainty of system
operation while decreasing the system’s ability to resist faults. In
modern power systems, traditional power dispatching methods face
several problems, such as large action space, long decision-making
steps, high computational complexity, and poor performance. They
also have to deal with uncertainty and sudden situations.

Power dispatching is a multi-constraint, nonlinear, and high-
dimensional optimization decision problem. Recently, deep learning
(DL) has been applied to the optimization and control of smart
grids as it has the powerful feature representation ability, as
well as the approximation function of neural networks (Yin et al.,
2018; Ardakani and Bouffard, 2018; Diehl, 2019). On the other
hand, reinforcement learning (RL) algorithms, such as Q-learning,
SARSA, distributional RL, policy gradient, DDPG, and A3C,
have also been adopted in modern power grids. Furthermore,
deep reinforcement learning (DRL) combines the decision-making
ability of RL and the ability of processing large data and high-
dimensional features of DL, which makes it very suitable for power
dispatching.

The basic principle of RL is that the agent performs a series
of actions in an environment and obtains feedback from the
environment to adjust its strategy, thus achieving optimal decision-
making. Yan and Xu (2020) proposed an optimal power flow
method based on Lagrangian deep reinforcement learning for
real-time optimization of power grid control. Guo et al. (2022)
implemented online AC-OPF by combining reinforcement learning
and imitation learning. Imitation learning is introduced to improve
the learning efficiency of agents in reinforcement learning by
learning from expert experience. Jiang et al. (2021) used a deep
Q-network (DQN) to model the reactive voltage optimization
problem. Zhao et al. (2022) and Zhou et al. (2021) used the policy-
based reinforcement learning algorithm PPO to realize autonomous
dispatching of the power system. Different from Zhou et al. (2021),
Zhao et al. (2022) combined the graph neural network (GNN) with
reinforcement learning to model the power grid structure and its
topological changes, achieving autonomous dispatch of the power
system with variable topology. Liu et al. (2022) explored how to
autonomously control the power system under the influence of
extreme weather. They proposed a DRL method based on imitation
learning.The imitation learningmodule interacts with agents during
reinforcement learning, making the system operate as much as
possible in the original topology. Sayed et al. (2022) aimed at theAC-
OPF problem. They proposed a DRL method based on the penalty
convex process. A systematic control strategy is obtained through
DRL, and the operation constraint is satisfied by using the convex
safety layer.

All of the aforementioned works have investigated the
application of deep reinforcement learning in power dispatching.
This paper explores the section control of the modern power system
integrated with new energy. It aims at online optimization for a
large-scale power system whose optimization goals are complex.
In this paper, a DRL method with accelerated convergence speed
is proposed to solve the problem of dimensional disaster that
occurs when the problem scale and decision variables increase.
The proposed method also addresses the problem of the dispatching
algorithm where it is difficult to obtain a stable solution because
the optimization targets are coupling and mutually constrained,
and moreover, each target has inconsistent sensitivity to the unit
adjustment.

The contributions of this paper are as follows:

(1) The paper proposes a combination optimization method
for grid dispatching based on deep reinforcement learning
in which it simplifies the action space and improves the
convergence speed of the model by discretizing the unit output
action.

(2) A reinforcement learning loss function with strong constraints
is proposed to further improve the convergence speed of the
model as well as achieve the stability of the algorithm solution.

(3) The annealing optimization algorithm is proposed to make
the granularity of the unit output finer and avoid the problem
of local optimal solutions caused by the discretization of the
output actions.

Experimental results on an IEEE 118-bus system show that the
method proposed in this paper is effective. By using the proposed
method, the convergence speed of theDRLmodel is faster, and stable
solutions can be achieved.

2 Mathematical model for
combination optimization of grid
sections

2.1 Objective function

With the objective of minimizing the total power generation
costs of the hydro, thermal, and wind power multi-energy
complementary systems and improving the system’s new energy
consumption (see Eq. 1 for details), a short-term optimal scheduling
model for combination optimization of grid sections is established.

Fc =min
T

∑
t=1
(w1∑

i∈It

Ci,t (pi,t) +w2∑
i∈Iw

Ci,t (pi,t)

+w3 ∑
i∈Ine

Ci,t (pi,t) +w4∑
i∈Ine

pi,t
pmax
i
), (1)

where Ci,t(pi,t) is the operating cost of the ith generator unit at
interval t. It is a quadratic function (Zivic Djurovic et al., 2012) of
the unit’s output interval and the corresponding energy price (see
Eq. 2 for details). pi,t is the active power output of the ith generator
unit at time t; w1, w2, w3, and w4 are combination coefficients; It is
the thermal generator sets; Iw is the hydroelectric generator sets; and
Ine is the wind and solar power generator sets. p

max
i is the maximum

active output of the ith generator unit; T is the number of time slots
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FIGURE 1
Overall structure of the method.

in the scheduling cycle; and N is the number of units participating
in the combination calculation.

Ci,t (pi,t) = a⋆ p
2
i,t + b⋆ pi,t + c, (2)

where a, b, and c are the coefficients for the quadratic, linear, and
constant terms of the operating cost function, respectively.

2.2 Constraints

(1) Load balance constraint.

In the power system, the total output of the generator units
should be equal to the system load at any time, and this can be
expressed as follows:

Lt −
N

∑
i=1

pi,t = 0,∀t, (3)

where Lt is the total load data of the power system at time t.

(2) Maximum andminimumoutput constraints of generator units.

Considering the generator unit’s physical properties
(Shchetinin et al., 2018), its output is adjustable within a certain
range, and this can be expressed as follows:

pmin
i ≤ pi ≤ p

max
i ,∀i, (4)

where pmin
i and pmax

i are the minimum and maximum output of the
nth generator unit, respectively.

(3) Cross-section power flow limit constraint

In the power system, the active power flow of the grid section
should be within a certain range at any time (Bakirtzis et al., 2002),
and this can be expressed as

|Ps (a)| ≤ |Pmax
s | ,∀s ∈ S, (5)

where Ps(a) is the active power flow of the section s based on the
current output p of the generator unit, Pmax

s is the active power flow
limit of the section s, and S represents the section set.

3 Combination optimization of grid
sections

3.1 Deep reinforcement learning

Reinforcement learning is an important method for solving
optimization problems. Its mathematical basis is the Markov

decision process (MDP). The components of MDP include state
space, action space, state transition function, and reward function.
Reinforcement learning implementsMDPwith agent, environment,
state, reward, and action.

Most recent works have combined deep learning with
reinforcement learning, which is called DRL. In DRL, deep learning
models are used to learn the value function or the policy function so
that agents can learn tomake better decisions. Commonly usedDRL
algorithms include DQN (deep Q-network) (Mnih et al., 2013),
DDPG (deep deterministic policy gradient) (Lillicrap et al., 2015),
and actor–critic (Sutton et al., 1999).

This paper adopts the actor–critic (AC) algorithm and
introduces two neural networks into it. One is the policy network,
and the other is the value network.

The policy network π(a|s; θ) is equivalent to an actor. It chooses
the action a based on the state s, which is fed back by the
environment.The value network plays the role of a critic. It evaluates
the policy by using the value network q (s; v). θ and v are the
parameters to be trained in the policy network and value network,
respectively.

The objective of the policy network is to obtain a higher
evaluation by adjusting the action. The policy network in the AC
algorithm adopts a policy gradient (PG) network to optimize the
policy. In the optimization method, the agent learns to estimate the
expected reward of each state and uses the learned knowledge to
decide how to choose the action.

The value network evaluates the action of the policy network
and feeds back a temporal difference (TD) (Sutton, 1988) value to
the policy network, determining whether the behavior of the policy
network is good or bad.

Although the basic AC algorithm is a good idea, it needs
to be improved due to the difficulty in convergence. A DRL
method with accelerated convergence speed is proposed in
this paper. The overall structure of the proposed method is
shown in Figure 1. In addition, in order to reduce the network
update error, the TD error (Silver et al., 2014) with baseline
is incorporated. Moreover, the asynchronous parallel computing
method is also used in order to maximize the computing
performance.

3.2 Environment setting for reinforcement
learning

The basic elements of this reinforcement learning environment
are as follows:
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TABLE 1 Action space.

Generator Traditional method
action space

Proposed method
action space

0 [0,30] {−1, 0, 1}

1 [0,100] {−1, 0, 1}

⋮ ⋮ ⋮

N [0,80] {−1, 0, 1}

Action space ∞ 3N

(1) Environment. The environment mainly includes various grid
section information, such as grid topology, system load, bus
load, generator unit status, and section data. In addition, grid
system constraints exist in the environment, including power
flow constraints, load balance constraints, and generator unit
constraints.

(2) Agents. It is a set of generator units participating in the
combination optimization calculation of grid sections.

(3) State space. The state space includes current active power
output of generator units, system load, bus load, and branch
load. The state transition function refers to the probability that
the generator unit will take the next action in the current state.

(4) Actions and action space. Actions represent current decisions
made by the agent. Action space represents the set of all
possible decisions. In the combination optimization problem
of the grid section, action represents the active power output
of the generator unit at the next moment. Action space is all
possible values of the active power output of generators, which
is constrained by the maximum and minimum values of the
generator’s output.

In order to improve the learning speed of the policy network,
this paper simplifies the action space from the absolute output of
the generator unit to one of the three discrete values, namely, 1,
−1, or 0, which represent that the next output of the generator
unit is upward-adjusted (represented as 1 in Table 1), downward-
adjusted (−1), or not adjusted (0), respectively. This optimization
method transforms the multi-dimensional continuous action space
into amulti-dimensional discrete action space, avoiding the curse of
dimensionality and slow model convergence (Table 1).

(5) Reward function. The reward function represents the reward
value obtained by the agent after taking a certain action. The
optimization goal is to obtain the maximum reward value.
In view of the combination optimization problem of the grid
section, this paper designs five types of rewards: 1) system cost
rewards, 2) power flow limitation rewards, 3) load balancing
rewards, 4) clean energy consumption rewards, and 5) generator
unit limitation rewards. The purpose of optimizing the reward
function is to minimize the system cost and maximize the
proportion of clean energy on the premise that the power flow
does not exceed the boundary, the output of the generator unit
does not exceed the boundary, and the load is balanced in the
grid system.

For each time step t, the evaluation score Rt of the system is
calculated as follows:

Rt =
5

∑
i=1

ri,t, (6)

where ri,t is the reward of the ith type at the time step t. For simplicity,
the subscript in the following formulas is omitted. Specifically, the
calculation of each type of reward is as follows:

1) System cost (positive reward) with the value range of A0
⋆[0,100]:

r0 = A0 ⋆ 100⋆min(
Cmin

∑N
i=1

Ci

, 1), (7)

where A0 = 1 is the score weight. ci is the cost of the corresponding
generator, and the system has N generators in total. Cmin is the
normalization constant, which is the minimum cost of the system
at a moment over a period of time. The lower the system cost is, the
higher the reward score is.

2) Power flow limit reward (positive reward) with the value range of
A1 ⋆ [0,100]:

r1 = A1 ⋆max((100−
S

∑
s=1

rs), 0) , (8)

where A1 = 4 is the score weight, S is the total number of sections,
and rs is the reward value of the sth section. It is calculated
according to different situations (over-limit or normal). In over-
limit situations (that is, exceeding the upper or lower limit of the
predetermined value), severe penalties are imposed, whereas under
normal circumstances, there is no penalty. The specific calculation
method is as follows:

rs =

{{{{{{{
{{{{{{{
{

|Ps − P
min
s |

10
, Ps < Pmin

s ,

0, Pmin
s <= Ps <= Pmax

s ,
|Ps − Pmax

s |
10
, Ps > Pmax

s

(9)

where Ps is the power flow of section s, Pmax
s is the upper limit of

section s, and Pmin
s is the lower limit of section s. The denominator

number in the equation is a parameter that restricts the severity of
punishment, and 10 is a suitable figure for restricting the power flow.

3) Load balance reward (positive reward) with the value range of
A2 ⋆ [0,100]:

r2 = A2 ⋆max(100⋆(1−
|L−∑N

i=1
Pi|

(0.1⋆ L)
),0), (10)

where A2 = 3 is the score weight, L represents the total real load of
the system at time t, and the denominator 0.1⋆ L is a normalization
parameter that is set according to the comprehensive consideration
of ultra-short-term forecast deviation and score interval. Pi is the
active power output of generator unit i, andN is the total number of
generator units.

4) Clean energy consumption reward (positive reward) with the
value range of A3 ⋆ [0,100]:

r3 = A3 ⋆ 100⋆
1
M

M

∑
i=1

min(1,
Pi

Pmax
i
), (11)

whereA3 is the score weight, Pi represents the active power output of
the clean energy generator unit i, and Pmax

i represents the maximum
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FIGURE 2
Flow chart of the annealing optimization algorithm.

TABLE 2 Setting of hyper-parameters.

Hyper-parameter Value

Discount factor δ 0.95

Batch size 64

A LR 0.0001

C LR 0.001

w1 in Lactor constrained 1

w2 in Lactor constrained 1

output of the clean energy generator unit i. In order to avoid the
denominator being 0 when calculating the score, when Pmax

i is zero,
the reward of generator unit i will be zero. There are a total of M
clean energy generators.

5) Generator unit limit reward (positive reward)with the value range
of A4 ⋆ [0,100]:

r4 = A4 ⋆max((100−
N

∑
i=1

ri),0), (12)

where A4 = 1 is the score weight, N is the total number of units,
and ri is the reward value of the sth generator. It is calculated

FIGURE 3
Proposed model convergence after approximately 900 episodes.

according to different situations (over-limit or normal). In over-
limit situations (that is, exceeding the upper or lower limit of the
predetermined value), severe penalties are imposed, whereas under
normal circumstances, there is no penalty. The specific calculation
method is as follows:

ri =

{{{{{{{
{{{{{{{
{

|Pi − P
min
i |

10
, Pi < Pmin

i ,

0, Pmin
i <= Pi <= P

max
i ,

|Pi − P
max
i |

10
, Pi > P

max
i

(13)

where Pi is the active output of generator i, P
max
i is the upper limit

of the active output of generator unit i, and Pmin
i is the lower limit of

the active output of generator i.

3.3 Constrained reinforcement learning
loss

In the AC algorithm, the critic is trained to fit the reward. Its loss
function is as follows:

Lcritic =
1
N

N

∑
i
(Gt −V(st0)) , (14)

where Gt is Rt+1 + γRt+2 +⋯+ γn−1Rt+n + γnQ (st+n), and the actor is
trained to find the optimal action a for the following minimization
problem:

minimizeLactor = w1 | L−∑
i∈I

ai| +w2∑
s∈S
|Ps (a) − Pmax

s |

−w3 ∑
i∈Ine

ai
amax
i
+w4∑

i∈I
ciai, (15)

where w1,w2,w3,andw4 are the weight values of each item, L
represents the total load of the grid system, ai represents the
active power output of the ith generator, I represents the set of all
generators, S represents the set of all grid sections, Ps(a) represents
the power flow value of the section s, and a is the output of the
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FIGURE 4
Scheduling results of the AC algorithm based on CRLL and the traditional AC algorithm.

generator unit. Pmax
s is the maximum power flow of the section s,

Ine represents the clean energy generator set, amax
i represents the

maximum active output of the ith clean energy generator, and ci
represents the cost coefficient of the ith generator.

However, in the aforementioned formula, the two strong
constraints, namely, load balance and power flow constraints, are
regarded as objective functions with weights, which lead to the
inability of the algorithm to obtain a stable solution in principle.
Therefore, this paper proposes a constrained reinforcement learning
loss (CRLL) algorithm as follows:

minimize Lactor constrained = −W1∑
i∈I

ai
amax
i
+w2∑

i∈I
ciai, (16)

s.t.
{
{
{

L−∑
i∈I
ai = 0

Ps (a) <= Pmax
s .

While satisfying the load balance and power flow constraints,
the aforementioned objective functions can fit those actions
that maximize clean energy consumption and minimize cost. It
restores the essence of the grid section combination optimization
problem, which is more conducive to the convergence of the
reinforcement learning algorithm. This paper incorporates this loss
into the training of the reinforcement learning algorithm by using
Lagrangian constraints.

3.4 Training method and process

This paper chooses the actor–critic reinforcement learning
algorithm. The implementation of DRL combined with
CRLL is shown in Algorithm 1. The training process is as
follows:

1) First, generate the sample data using the PYPOWER simulator.
Then, clear the cache in the experience pool, set the initial state of
the power system, and reset the reward value.

2) Input the observed state st of the current grid section system into
the policy network, and obtain the active power output at of the
generator unit through the policy network.

3) Input the output at of the generator unit into the reinforcement
learning environment, and obtain the grid state st+1 in the

following stage, the reward value r corresponding to the current
policy, and the completion state done.

4) Save the grid state st, the nextmoment’s state st+1, the output policy
at, the current reward value r, and the completion state done into
the experience pool.

5) Judge whether the current experience pool has reached the upper
limit of capacity. If the experience pool has not reached the limit,
repeat Step 3; otherwise, go to Step 6.

6) When the accumulated data in the experience pool reach the
batch size, they will be input into the policy network and value
network as training data to train the network parameters. Then,
return to Step 1.

3.5 Annealing optimization algorithm

In the DRL method described previously, the action space is
discretized, so the granularity of the action output by the model
is not fine enough, resulting in the obtained solution being far
beyond the optimal solution. In view of this problem, the annealing
algorithm (Bakirtzis et al., 2002) is used after the proposed DRL
algorithm to optimize the output of the generator unit. In this paper,
we called it an annealing optimization algorithm. It can further
improve the proposed DRLmethod to find the optimal fine-grained
solution.

The annealing algorithm is a global optimization method based
on a simulated physical annealing process. The basic idea of
the algorithm is to start from an initial solution, continuously
perturb the current solution randomly, and choose to accept the
new solution or keep the current solution according to a certain
probability. The function that accepts a new solution with a certain
probability is called the “acceptance criterion.” The acceptance
criterion allows the algorithm to perform a random walk in the
search space and gradually reduces the temperature (that is, reduces
the probability of accepting a new solution) until it reaches a stable
state.

In the annealing optimization algorithm, the temperature
parameter is usually used to control the variation in the acceptance
criterion. At the beginning of the algorithm, the temperature is
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TABLE 3 Control experiment to verify the effectiveness of the proposedmethod. CRLL, constrained reinforcement learning loss; AO, annealing optimization
algorithm.

Model
convergence time

System
cost

Power
flow limit

Load
balance

Clean energy
consumption

Generator
unit limit

Total reward
score

Vanilla AC >>4 h 50 100 150 30 50 380

Vanilla AC + CRLL 1 h 55 395 295 50 95 890

Vanilla AC + CRLL + AO 1 h 63 397 287 55 98 910

The bold values represent the best results in the experiment.

FIGURE 5
Control experiment to verify the effectiveness of the proposed method.

relatively high, so it tends to accept the new solutions according to
the acceptance criterion.Therefore, a large-scale random search can
be performed in the search space. As time goes by, the temperature
gradually decreases, and it becomes much more difficult to
accept the new solution, making the search process gradually
stabilized. Eventually, the algorithm arrives at a near-optimal
solution.

The annealing optimization algorithm is often used to solve
nonlinear optimization problems, especially those with a large
number of local optima.The advantage of the algorithm is that it can
avoid falling into a local optimal solution and can perform a global
search in the search space. In this paper, the annealing optimization
algorithm is initialized by the output of the DRLmodel.The process
of the annealing algorithm is as follows:

(1) Initialize the temperature T and the initial solution x.
(2) At the current temperature, produce a new solution x′ by using

a random perturbation to the current solution.
(3) Calculate the energy difference ΔE between the new solution

and the current solution.
(4) If ΔE < 0, accept the new solution as the current solution.
(5) If ΔE ≥ 0, accept the new solution as the current solution with

a probability P = exp (−ΔE/T).
(6) Lower the temperature T.

(7) Repeat Steps 2–6 until the temperature drops to the end
temperature or the maximum number of iterations is reached.

The algorithm flow chart is described in Figure 2.

4 Case study

To verify the effectiveness of the proposed method, this paper
uses an IEEE 118-bus system. It consists of 118 buses, 54 generators,
and 186 branches, representing a real power system network. The
generators Gen 1 ∼Gen 20 are set as the new energy units in this
paper.

The computing environment is based on PYPOWER. The
scheduling cycle is set to 15 min a day. According to the
aforementioned description of MDP, the AC algorithm has 20
dimensions of state space. The dimension of the action space is set
to 54. The detailed setting of hyper-parameters is shown in Table 2.
The experiment runs on the Apple M1 Pro silicon with 8-core
CPU and 16 GB memory. Figure 3 shows that the proposed model
converges after approximately 900 episodes. As for the training time,
the models converge after approximately 1 hour.

Using the environment and the AC algorithm based on the
CRLL in this paper, the agent maximizes the reward by adjusting
the active power generated by the generator unit while minimizing
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the total cost and enhancing the new energy consumption. It can
be seen from Figure 4 that the AC algorithm based on CRLL can
converge and obtain the solution after 30 episodes. In contrast, it
can be found that the traditional AC algorithm (vanilla AC) cannot
achieve convergence within the same episode, and it cannot always
reach the optimal solution. Table 3 shows that vanilla AC training
takes much longer than 4 h, but after using the proposed CRLL,
the model convergence time is reduced to 1 h. By comparison, it
can be seen that the proposed loss function plays a vital role in
the stability of the solution and the convergence speed of model
training.

In Table 3, the experiment compares the results of three
methods: 1) vanilla AC, 2) vanilla AC plus CRLL, and 3) vanilla
AC plus CRLL and the annealing optimization algorithm. The
scoring for all three methods is made up of five items. The full
scores of system cost, power flow limit, load balance, clean energy
consumption, and generator unit limit are 100, 400, 300, 100, and
100, respectively. Among them, power flow limit, load balance, and
generator unit limit are strong constraints in the power grid section
system.Thegoal of the proposedmethod is tomake these three items
close to full scores.

As shown in Table 3, the scores of all indicators have been greatly
improved due to the proposed loss function, meeting the safety
requirements of the power grid.The total reward score of the vanilla
AC is 380, while the AC algorithmwith CRLL achieves a higher total
reward score of 890.

In addition, combining DRL with the annealing optimization
algorithm further improved the accuracy of the solution. In Table 3,
the average reward score of the final model is 910, among which
the power flow limit, generator unit limit, and load balance
rewards all reached almost full scores. It indicates that the addition
of the annealing optimization algorithm further improves the
performance of the algorithm and obtains a fine-grained optimal
solution.

The results of the three methods are also shown in Figure 5 as a
histogram. It intuitively demonstrates that the algorithm proposed
in this paper is able to optimize the objective function under
multiple strong constraints. So, it can be concluded that the method
proposed in this paper is effective and can meet the requirements
of online optimization and real-time control of the grid
section.

5 Conclusion

In the face of the high proportion of new energy generator
units and complex constrained environments, this paper uses
the deep reinforcement learning algorithm of simplified action
space, together with CRLL, to search for the optimal active power
output of generators. It also uses the annealing optimization
algorithm to avoid the local optimal solution. The formulation
and implementation process are introduced in detail. The test
results on the IEEE 118-bus system show that the proposed
method has good performance and is suitable for scheduling
problems. In this paper, system cost and clean energy consumption
have not reached full scores yet, and future improvement work
can be committed to achieve better results. Another attempt is
to use a multi-checkpoint and multi-process model inference

Require: episode ep, discount factor γ,LRa,LRc,

batch size b,θa, θc, maxsize

 1:  while i < ep do

 2:   reward = 0; reset env; reset the experience

pool

 3:   collect the trajectory information including

(St,At,Rt,St+1)

 4:   if poolsize < maxsize then

 5:    pool← (St,At,Rt,St+1)

 6:   end if

 7:   if poolsize > b then

 8:    update θa with Lactor_constrained

 9:    update θc with Lcritic

 10:   end if

 11:  end while

Algorithm 1. : AC training based on CRLL

approach that can both speed up the inference and improve
the indicators by allowing each checkpoint to focus on different
metrics.
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