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1 Introduction

The increasing use of non-dispatchable Renewable Energy Sources (RES) requires that the
load-generation balance is no longer exclusively addressed in a centralized way and driven by
rigid demand. Consumers gain new roles and importance because their distributed generation
capability and demand flexibility can mitigate RES uncertainty and quick variation (Rusche
et al., 2023). However, consumers do not have sufficient experience or technical knowledge to
manage their generation and demand flexibility properly. The lack of decision support and
automated solutions to support them is the main barrier to benefiting from the great potential
of consumers’ participation (Pinto and Vale, 2019). Existing solutions to support consumers in
energy management and trading are limited in terms of intelligence and automation, while
most consumers do not have enough knowledge and trust to use the available solutions. The
explainability of intelligent decision support models becomes, thereby, essential to motivate
consumers’ widespread use of such tools (Miller, 2019).

Despite the promising advances based on Artificial Intelligence (AI), particularly on
Machine Learning (ML) and Knowledge-Based Systems, the conception and development of
adequate decision support models for energy management and trading is still limited, as well
as the interpretability of such models. In fact, one of the main barriers for the successful
adoption of AI-based solutions is the lack of users’ trust. Ensuring models explainability
capabilities through Explainable AI (XAI) is a priority to address this issue (European
Commission, 2020). Through automatic explanations, users are able to understand the
reasons behind the systems decisions, increasing the acceptance on AI-based solutions
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(Zhang and Chen, 2020). This can be concluded from the results of
the study conducted in (Saranya and Subhashini, 2023), which
provides a systematic review of XAI in different applications.
This work has surveyed 91 articles published from 2018 to 2022.
From this work has resulted a XAI taxonomy with four common
approaches: Functioning-based, Result-based, Conceptual
approach, and Mixed approach. Discussion and results mainly
focus on the concept of explainability, methodology, the need for
XAI, the principles of XAI, the properties of explanation and the
main associated challenges.

The need for AI explainability in the specific scope of energy
and power systems is provided by Machlev et al. (2022), referring
to literature from 2019 to 2022. This analysis reveals interesting
trends in the current research, mainly regarding the way in which
different XAI techniques are used and the challenges and
limitations of adopting and implementing XAI techniques in
the field of energy and power systems. In particular, the survey
concludes that SHapley Additive explanation (SHAP) and Local
Interpretable Model-agnostic Explanations (LIME) are the most
widely used XAI techniques. As main obstacles to the successful
implementation of XAI, this study highlights the standardization,
security, and incorrect confidence. The work also suggests several
potential applications and future research directions related to XAI
and energy, which include the optimal energy management and
control, energy consumer applications, and power system
monitoring. Additionally, most of the ML models to which XAI
is applied are traditional ML algorithms, while deep learning
models are still very rarely addressed. The application of XAI to
ML models in the specific scope of smart grids is reviewed in (Xu
et al., 2022) using papers collected from Google Scholar over a 5-
year period. In this study, three types of ML interpretability
methods are studied, namely: Pre-model, in-model and post-
model. It is concluded that pre-model interpretability methods
can support the understanding of data. In-model interpretability
methods are more faithful to the model. Post-model
interpretability methods can interpret more complex deep
models in different forms. Overall, this review concludes that
post-model interpretability methods are the most widely used
type of interpretability in smart grid related ML works.

According to the identified need for a quick advancement in this
field, this Research Topic addresses the most recent advances
regarding explainability models for intelligent decision support
and management systems in the scope of power and energy
systems. The Research Topic brings together the most recent and
relevant contributions on XAI that enable improving the
acceptability, trust and willingness of users to adopt advanced
models in this domain, as a way to foster their widespread use.
The Research Topic comprises both theoretical conceptual models
and applicational models that constitute significant contributions to
the body of knowledge on explainability of AI-based solutions
related to energy management and decision support.

2 A short review of the contributions in
this Research Topic

Of the main sources of mistrust in the field of AI concerns the
results achieved byMLmodels, usually looked upon as black boxes.

The work presented in Li et al. presents a short-term load
prediction model based on transfer learning. The proposed
transfer learning method combines an attention mechanism
with a long short-term memory network coupled with input
and forgetting gates to construct a novel AM-CIF-LSTM short-
term load prediction model. A variational modal decomposition
method is used to extract the trend component and certain
periodic high-frequency components of the load datasets. The
achieved results show that the AM-CIF-LSTM short-term load
prediction model is able to surpass the performance of state-of-
the-art methods and it is able to adapt to quick variations of the
trend of load in the case of insufficient data.

A load pattern extraction method based on multidimensional
electrical consumption feature construction is presented in Wang
et al.A convolutional autoencoder is created to extract the temporal
feature of industrial load data. This temporal feature is combined
with industrial load characteristic set, which is created using an
improved entropy weight method. A Self-Organizing Map network
is then used to calculate the local density and distance attributes of
nodes in order to select the initial clustering centers of K-means
algorithm as means to achieve the daily load clustering. Results
shows that the proposed model achieves a good performance in
stability and clustering effect.

Wang et al. presents a novel subsynchronous oscillations
detection method for noisy synchrophasor data that considers the
issue of detection as a binary classification (true or false). In order to
overcome the issue of imbalance caused by subsynchronous
oscillations data being substantially less than false data, a
weighted kernel extreme learning machine is constructed as a
classifier to implement the detection. Results show the
effectiveness of the proposed algorithm when dealing with
imbalance issues.

Tian et al. presents a non-embedded cable joint temperature
inversion method. A uniform manifold approximation and
projection is used for feature reduction purposes. A novel meta-
heuristic model named improved sparrow search algorithm is then
proposed by combining the Tent chaotic map and population
mutation perturbation strategy as means to optimize a back
propagation neural network. The temperature inversion effect of
the proposed model is compared to state of the art algorithms on the
cable joint temperature-rise test, showing a superior performance,
while improving the interpretability of the model.

The interpretability and explainability capabilities of AI-based
models applied to energy system problems is explored in Alsaigh
et al. A total of 3,568 relevant papers have been collected from the
Scopus database, from which 15 parameters for AI governance in
energy systems have been automatically discovered, which have
been grouped into four macro-parameters, namely AI Behaviour
and Governance, Technology, Design and Development, and
Operations. The findings show that research on AI explainability
in energy systems is segmented and focused on a few AI traits
(fairness, interpretability, explainability, and trustworthiness) and
energy system problems (stability and reliability analysis, energy
forecasting, and power system flexibility). This study also highlights
some examples of specific challenges in XAI for energy systems,
namely fault detection, diagnosis, and prediction. Finally, the study
points out that another increasingly important area is the security of
ML models.
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3 Conclusion

The papers within this Research Topic address the field of
explainability of AI-based solutions related to energy
management and decision support through a complementary
view on several of the most important topics in this domain. The
development of innovative XAI models applied to a diversity of
artificial intelligence-based models, with focus on machine learning
approaches, provides a solid array of solutions able to deal with
several of the most challenging problems regarding the need for
interpretability of AI solutions in future power systems. Within this
Research Topic, models applying different ML approaches, namely
concerning classification, clustering and forecasting, including
transfer learning and deep learning technologies, are addressed,
with the aim of solving different application problems, in specific
short-term load prediction, subsynchronous oscillations detection
and load pattern extraction. Meta-heuristic optimization models are
also used and new approaches proposed, in specific for non-
embedded cable joint temperature inversion.

Subsequently, this article Research Topic provides a broad
spectrum of works covering essential and complementary topics
related to the role of interpretability and explainability as a booster
of acceptability of AI-based solutions in future power systems. The
perspectives presented in this Research Topic are crucial towards a
more comprehensive understanding of the already achieved
solutions in this domain but also present themselves as a

motivator for the significant efforts that are still required in
future research and development.
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