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Introduction: To solve the problems of small proportion of bolts in aerial images
of power transmission lines, small differences between classes, and difficulty in
extracting refined features, this paper proposes a method for detecting power
transmission line bolts and their defects based on positional relationships.

Methods: Firstly, a spatial attention module is added to Faster R-CNN, using two
parallel cross attention to obtain cross path features and global features
respectively, and spatial feature enhancement is performed on the features
output from the convolution layer. Then, starting from the spatial position
relationship of bolts and their defects, using the relative geometric features of
candidate regions as input, the spatial position relationship of bolts and their
defects on the image is modeled. Finally, the position features and regional
features are connected to obtain enhanced features. The bolt position
knowledge on the connecting plate is added to the detection model to
improve the detection accuracy of the model.

Results and discussion: The experimental results show that the mAP value of the
algorithm in this paper is increased by 6.61% compared to the Faster R-CNN
detection model in aerial photography of transmission line bolts and their defect
datasets, with the AP value of normal bolts increased by 1.73%, the AP value of pin
losing increased by 4.45%, and the AP value of nut losing increased by 13.63%.
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1 Introduction

Under the urgent requirement of achieving carbon peaking and carbon neutrality goals,
the structure of China’s power system form is undergoing fundamental changes (Zhuo et al.,
2023).With the construction and development of new power systems, new power equipment
such as power electronics and large-scale energy storage devices will be widely used, and the
requirements for flexible and controllable and safe and stable power grids are becoming
increasingly high (Sheng et al., 2021). Bolts are present in large numbers in power
transmission lines and play a key role in fixing and connecting various components.
However, due to long -term working in the wild, various components will be affected by
natural environment and the external mechanical load tension and the internal power load of
the power system. These factors can cause the bolts connected to various components to
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produce defects such as loose nuts, losing, and stripped pins, which
seriously affects the stable transmission of electrical energy (Zhao
et al., 2021; Zhao and Ding, 2022). Therefore, in order to ensure the
safe operation of transmission lines, it is crucial to carry out regular
inspection of transmission line bolts and their defects.

Traditional transmission line inspection methods require
electric workers to climb the tower, and in order to accurately
record the cause of faults and carry out timely repairs, workers
need to carry a variety of working tools when climbing the tower,
which is not only economically costly, dangerous working
environment and extremely inefficient inspection. Therefore,
with the continuous development of deep learning technology,
more and more scholars have started to adopt deep learning for the
analysis and processing of transmission line images. Artificial
intelligence technology has become a current hotspot and has
performed powerfully in many fields, especially in target detection
with many excellent results (Ge et al., 2017). And the main task of
target detection is to find out all the targets of interest in the image
and determine their class and location. Deep learning-based target
detection algorithms are mainly divided into two categories, one is
the Faster R-CNN (Ren et al., 2017) (Faster Regions with
Convolutional Neural Network Features) series, a two-stage
detection model based on region suggestion. One is a
regression-based single-stage detection model based on the

YOLO (Redmon et al., 2016) (You Only Look Once) series and
the SSD (Liu et al., 2016) (Single Shot Detection) series.

To achieve automatic detection of transmission line bolts and
their defects, many scholars have introduced target detection
algorithms into the detection of bolts and their defects to reduce
the reliance on traditional manual inspection. A transmission line
bolt detection method for processing massive UAV (Unmanned
Aerial Vehicle) image data using UAV inspection images was
proposed by Feng et al. (2018). This method firstly establishes a
sample library, extracts HOG (Histogram of Oriented Gradients)
features and constructs SVM (Support Vector Machine)
classification to achieve recognition of high-resolution UAV
inspection images. However, this method is susceptible to the
influence of image illumination and effects. A deep learning-
based transmission line bolt detection system for transmission
line bolts with inconspicuous features, small size and difficult
detection in inspection images was proposed by Zhang et al.
(2021). This method adopts the principle of hierarchical
detection, using the SSD algorithm to locate the defective bolt
connection parts and cut out the connection parts, increasing the
proportion of bolts in inspection images. Secondly, this method uses
data augmentation to expand the dataset, and finally uses the
YOLOv3 algorithm to detect defective bolts. An automatic
detection model called Automatic Visual Shape Clustering
Network (AVSCNet) was constructed to detect losing pins for
transmission line bolts that are prone to losing pins by Zhao
et al. (2020). First, an unsupervised clustering method for
bolometric visual shapes is proposed and applied to construct
a defect detection model that learns differences in visual shapes.
Next, three deep convolutional neural network optimisation
methods are used in the model: feature enhancement, feature
fusion, and region feature extraction. Regression calculation and
classification are applied to the region features to obtain defect
detection results. However, during the training of the model,
many hyperparameters need to be set manually and do not have
automatic learning capabilities. To solve the problems of too
small bolt targets, small differences between different categories
and difficulty in extracting fine features, a detection method with
a dual attention mechanism was proposed by Qi et al. (2021).
This method analyzes and enhances visual features at different
scales and locations respectively. This method uses multi-scale
attention modules to enhance fine features in the bolt region and
spatial attention modules to increase the feature differences

FIGURE 1
Aerial photograph of the original bolts of the transmission line.

FIGURE 2
Transmission line bolts and their defects.
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between the bolt and the background to improve the prediction of
the bolt region. The Ultrasmall Bolt Defect Detection Model
(UBDDM) based on Deep Convolutional Neural Network
(DCNN) was proposed by Luo et al. (2023). Which included
Ultrasmall Object Perception Module (UOPM) and Local Bolt
Detection Module (LBDM), and introduces a hybrid attention
mechanism and multi-scale feature fusion to further improve the
network’s ability to extract shallow features. A novel and high-
accuracy defect detection method based on deep learning
technology, named insulator defect detection network (I2D-
Net) was proposed by Fu et al. (2023), which improves the
ability of defect location in the presence of interference
factors. An efficient and high-performance defect detection
model called DDNet is proposed by Gong et al. (2023) to
recognize defects from images of unmanned aerial vehicles.
The attention mechanism was adopted in the improved
detection model in order to enhance the representation
learning of the image. However, the model only focuses on

enhancing the bolt features, without incorporating the
inherent bolt position information into the detection.

Transmission lines have problems such as small targets for bolts
and their defects, limited information on targets, difficulty in feature
extraction, and small differences between target classes. To alleviate
these problems to a certain extent and promote the widespread
application of deep learning in the detection of bolts and their
defects in transmission lines, this article proposes the following
methods. Firstly, the spatial attention module is added to the Faster
R-CNN model to help the model acquire global features to achieve
the purpose of bolts and their defects feature enhancement. Then the
location inference module is used to add location relations to the
detection model to reduce the leakage and false detection of bolts
and their defects detection, which can improve the detection effect of
the model.

2 Research background

As a crucial connection component, bolts are present in large
numbers on all types of fixtures, which are widely distributed and
numerous in transmission lines. However, the bolts and their defects
account for a very small proportion of the aerial images, making
them easy to miss detection when they are directly detected together
with the fixtures. In Figure 1, the original bolt image is nearly
impossible to identify within the complicated background of the
aerial image. The detection model is often at risk of losing important
features when extracting bolt features, rendering bolt detection a
challenging task.

Therefore, this paper discards the idea of directly detecting bolts
and their defects on aerial images, but instead annotates the metal
tool targets, mainly joint plates, to build a dataset of bolts and their
defects. Afterwards, carries out the detection of transmission line
bolts and their defects afterwards. This designmethod can effectively

FIGURE 3
Structure of the transmission line coupling board.

FIGURE 4
Overall block diagram of the bolt and its defect detection model.
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increase the proportion of bolt targets in the image, reduce the
influence of complex background on bolt detection, and effectively
reduce the information loss of bolt targets. We add a spatial
attention module to the detection model to improve the model’s
ability to extract bolts and their defect features.

Figure 2 shows several sets of cropped yoke plate images. It can
be seen that the bolts and their defect targets in the image are
distributed in a triangular pattern, and the cropped image is clearer
than the original aerial image. The cropped image size is smaller,
which can make the detection speed faster.

As the bolts on the transmission line coupling plate generally have
a fixed position, the coupling plate target is chosen for the labeling of
transmission line bolts and their defect data sets. Figure 3 shows the
structure of the transmission line joint board, which is a board-shaped

connection for the parallel assembly of multiple branches, mostly used
for the parallel assembly of double insulator strings and multiple
insulator strings, the assembly of insulator strings with double and
multiple wires and the assembly of double pulling wires and other
connections. There are various types of plates, such as L-plate, LZ-
plate, LF-plate, LJ-plate and LE-plate, etc. The different types of plates
are subject to different forces depending on their structure. In this
paper we primarily focus on L-plates. The coupling plate in Figure 3 is
the most typical and common L-shaped coupling plate, which is used
for assembling double tension insulator strings with a single
conductor, single insulator strings with two split conductors, and
also for forming triple insulator strings in parallel. In Figures 3A–C are
bolt installation positions. It can be found that the position of the bolts
on the L-shaped coupling plate is fixed and the connection of the

FIGURE 5
Spatial attention module.

FIGURE 6
Structure of the cross-attention model.
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midpoints of each bolt can form a triangle. Therefore, a priori
knowledge can be added to the detection of the bolts and their
defects, and the inference of the bolt position relationship can be
added after the (Region Proposal Network) RPN generates the
candidate region in order to improve the fit of the bolt detection
frame to the target, and at the same time improve the detection
accuracy of the model.

3 Materials and methods

The overall block diagram of the bolt and its defect detection
model in this paper is shown in Figure 4. Firstly, to address the
problem of small differences between classes of bolts and their defects
and small bolt targets, spatial attention is added after the feature
extraction network ResNet-101 to help capture global dependencies
for each pixel through two crossover networks, so that the bolts and
their defect targets can obtain global contextual information efficiently
and quickly. The specific process is divided into two branches. One is
to obtain the feature map H by convolutional downscaling of the
features output from the convolutional layer, and then input H into
the cross-attention module to produce a new feature map H*. At this
point, H* contains horizontal and vertical contextual information,
after which H* is inputted again into the cross-attention module to
output the feature map H**. The other branch is to keep the output
features unchanged. Afterwards, the features of the two branches are
fused together to obtain global contextual information. Secondly, to
address the lack of inference capability for bolt and its defect detection,
a location relationship inference module is added after the model
generates the box of interest. The main approach is to take the
bounding box of the candidate region as input, learn the spatial
discrepancy of the region as the edge of the region node, then output
the location relationship knowledge to enhance the location features,
and finally connect the location features with the region features for
regression classification process to obtain the final detection results.

FIGURE 7
Transmission line bolts and their defect data set categories.

TABLE 1 Ablation experiment.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP (%)

Baseline 88.95 60.86 33.74 61.18

Baseline + spatial attention 89.57 54.90 46.57 63.68

Baseline + positional reasoning 89.40 65.21 43.43 66.02

Ours 90.68 65.31 47.37 67.79

TABLE 2 Model detection results before and after improvement of the backbone network for VGG16.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP

Faster R-CNN 88.62 28.75 26.26 47.88

Ours 88.06 37.37 74.71 66.71

TABLE 3 Multiple model detection accuracy.

Methods Normal bolt AP (%) Pin losing AP (%) Nut losing AP (%) mAP (%)

RetinaNet 95.7 23.2 56.4 58.4

Faster R-CNN 89.0 60.9 33.7 61.2

Cascade R-CNN 89.9 77.9 27.3 65.0

Sparse R-CNN 87.1 54.2 60.6 67.3

Ours 90.7 65.3 47.4 67.8
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3.1 Spatial attention

Bolts as a large number of fixed connection components in the
transmission line, their distribution exists in a certain pattern,
especially in the bolts on specific fixtures, the location of the
bolts is more basically fixed. The original Faster R-CNN only
focuses on the local area of the image when detecting, without
considering the spatial pattern of the transmission line bolt
distribution. Moreover, UAV aerial photographs the transmission
line bolt maps will be affected by lighting, equipment jitter and other
factors. This is not conducive to obtaining a finer feature map in the
convolution layer. Therefore, this paper adds spatial attention after

the convolutional layer, and by introducing the cross-attention
module twice, it helps the detection model to obtain contextual
information of the whole image, capture global dependencies, and
regions with similar features enhance each other, making the bolts
stand out in the full field of view and helping the convolutional layer
to obtain a feature map with more obvious features.

In order to help the model obtain global contextual information,
this paper introduces the Recurrent Criss-Cross Attention (RCCA)
module (Huang et al., 2019) to help feature enhancement of regional
features with similar characteristics in a more efficient way. In this
paper, we choose the Spatial Attention module, which works as
shown in Figure 5 and is composed by two cross-cross attentions, as
a simple and efficient way to perform feature enhancement.

Firstly, local features are transmitted through a cross attention
module to collect contextual information in both horizontal and
vertical directions. Then, by inputting the feature map generated by
the first cross attention module into another module, the additional
contextual information obtained from the cross path ultimately
enables each pixel to capture the full image dependency relationship.

The structure diagram of the cross-attention module is shown
in Figure 6. The input feature map is A3 ∈ RC×W×H, which is divided
into three branches: Q, K, and V. The feature maps Q and Κ are
obtained through the convolution operation of the 1 * 1 convolution
kernel, where Q、Κ} ∈ RC*×W×H{ , then the attention map
A ∈ R(H+W−1)×W×H is obtained through Formula 1 and softmax layer.

di,u � QuM
T
i,u (1)

where di,u ∈ D represents the weight of the relation between Qu and
Mi,u, D ∈ R(H+W−1)×W×H. Qu ∈ RC* is the value of u position in the
spatial dimension of the feature graph Q,Mu ∈ R(H+W−1)C* is the set
of peer or same column elements of u position on Κ, therefore
Mi,u ∈ RC* is the ith element in Mu.

The other branch V is obtained by 1*1 convolutionV ∈ RC×W×H,
and a new feature map is obtained between V and attention diagram
by Formula 2. Vu ∈ RC is the value of u position on the spatial
dimension of the feature graph V, and Nu ∈ R(H+W−1)C is the set of
peer or same column elements of u position on V.

N*
u � ∑H+W−1

i�0 Ai,uNi,u +Hu (2)

whereN*
u is the feature vector of position u inN* ∈ RC×W×H,Ai,u is the

ith value corresponding to the position u in the attention diagram A.
Finally, H* is output in the form of residual error, which enhances the
pixel-level expression ability, aggregates the global context information,
and improves the performance of bolt and its defect target detection.

3.2 Positional reasoning

Bolts on transmission line coupling plates generally have a fixed
position, geometrically in a triangle, and existing target detection
models are only for individual targets, with little attention paid to the
positional geometric relationships between targets. In this paper, we
choose a positional relationship inference module to improve the
detection accuracy of the model by using the fixed position
information of the bolts on the coupling plates. This is done by
using the feature Q � qi{ } as an input describing the geometric
features of each region to capture the spatial knowledge of the

FIGURE 8
Comparison of bolts defect detection results between Faster
R-CNN and the proposed method (A) Faster R-CNN (B) Ours (C)
Faster R-CNN (D)Ours (E) Faster R-CNN (F)Ours (G) Faster R-CNN (H)
Ours.
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target (Hu et al., 2018). The position relationship inference module
integrates inference from M regions to regions, which is constructed
intoM region graphs G (V,E) by stackingMMLPs, and uses the edge
E to combine the region features with the region spatial location V to
learn the position relationship between the regions.

First, the location features qi of region i and qj of region j are
extracted separately, and the edge values of the two regions are learned
using MLP:

êij � MLP a qi, qj( )( ) (3)

where a () indicates the difference between the two regions.
By stackingMMLPs to obtainM location-relative area maps, the

edge values of the M location-relative area maps are accumulated
and averaged, and they are summed with the unit matrix I to obtain
the edge connections:

eij � 1
M
∑M

m�1êij + I (4)

Afterwards, the location and area features are connected using
matrix multiplication to obtain the enhanced features Fs:

Fs � εFWs (5)
where ε ∈ RN×N is the set of edges of the location-relative region
graph, eij ∈ ε, F is the input region feature, and Ws is the
transformation weight matrix.

4 Experimental design and result
analysis

In this paper, the State Grid’s “Specification for Image
Labeling of Defects in Overhead Transmission Line
Equipment (Trial)” and the PASCAL VOC (Everingham et al.,
2010) dataset construction method are referred to when
constructing the dataset, and the data are annotated in strict
accordance with the annotation specification. The dataset is
mainly based on a large number of inspection images obtained
by UAV inspection with image acquisition equipment, and the
inspection image library is filtered and optimized according to
manual empirical knowledge, using the joint board target as the
main target, providing important data support for the
construction of the bolt and its defect detection database.

This paper uses the widely used Precision (P), Recall (R),
Intersection over Union (IoU), Average Precision (AP) and mean
Average Precision (mAP) in the field of object detection as an
evaluation indicator for the accuracy of bolts and their defective targets.

P, R, and IoU are defined in Eqs 6–8 respectively. APt
i is the

accuracy of the target in category i at an IoU threshold of t,
and is defined in Eq. 9 as the value of the area bounded by the
Precision-Recall (PR) curve and the coordinate axis. The final mAP
is the average of the accuracies of all classes at 10 different IoU
thresholds and is used to assess the overall accuracy of the model,
which is defined in Eq. 10.

P � TP

TP + FP
(6)

R � TP

TP + FN
(7)

IoU � Spre ∩ Sgt
Spre ∪ Sgt

(8)

APi
t � ∫1

0
Pi Ri( )dR (9)

mAP � 1
10

∑
t∈ 0.5{ ,0.55,...,0.95}

∑C
i�1APi

C
(10)

where TP denotes correct positive samples, FP denotes incorrect
positive samples, TN denotes correct negative samples, FN denotes
incorrect negative samples, Spre denotes detection results, Sgt denotes
actual results, i denotes the ith category of bolts or defects, t denotes
the threshold of IoU, and C denotes the total number of all categories.

In this paper, transmission line bolts and their defective datasets
are selected for experimentation, containing three categories of the
normal bolt, pin losing and nut losing, with the specific number of
labels for each category shown in Figure 7, with a total of 340 images.
It can be seen that the transmission line bolts and their defects dataset
constructed in this paper has fewer defective samples and more
normal samples, showing a serious long-tail distribution, which is
in line with the current general status quo of more normal samples
and fewer defective samples for transmission line bolt components.

4.1 Comparative experiment on
improvement methods

In order to verify the effectiveness of the method in this paper,
experiments were carried out using Faster R-CNN as the baseline
model and ResNet-101 as the backbone network. The commonly
used evaluation metrics in target detection models, mAP, as well as
AP, were selected to evaluate the model. The detection results before
and after adding the spatial attention module and position relation
inference are shown in Table 1. It can be seen that the detection of
bolts and their defects by the method in this paper is significantly
better than the traditional Faster R-CNN detection model, which
does not consider the spatial context information in the detection of
bolts and their defects, and only detects the bolts themselves without
inference capability The original Faster R-CNN detection model
does not consider the spatial context information in the detection of
bolts and their defects. Therefore, this paper adds a spatial attention
module and a position relationship inference module to the Faster
R-CNN detection model. The improved model improves the mAP
by 6.61%, which significantly improves the detection accuracy of the
model for transmission line bolts and their defect dataset, which
shows the superiority of the proposed improvement.

Table 1 also gives the results of AP values for the baseline model
with Faster R-CNN as the detection model and ResNet-101 as the
backbone network, the baseline model with spatial attention added,
the baseline model with positional relationship inference added, and
themethod in this paper. It can be seen that adding spatial attention to
the baselinemodel can effectively enhance the label features, especially
for the nut losing feature which is difficult to be detected by the
baseline model, the feature enhancement effect of spatial attention is
obvious, and the AP value of nut losing is improved by 12.83%.
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The addition of the location relationship inference module to the
baseline model can also effectively improve the detection effect of the
model. Especially for the pin losing and nut losing with a small
number of labels, the AP values increased by 4.35% and 9.69%
respectively. This indicates that the location relationship inference
module can effectively exploit the location relationship between bolts.
This improves the detection capability of themodel, alleviates the long
tail effect of the dataset and helps improve the detection accuracy of
targets with fewer labels. Finally, the baseline model with Faster
R-CNN as the detection model and ResNet-101 as the backbone
network is added to the proposed method with the spatial attention
module and the position relationship inference module respectively. It
can be seen that, on top of the baseline detection model, the AP values
of the three types of tags, namely, normal bolt, pin losing and nut
losing, increase in this paper method, where the baseline detection
The nut losing, which has a lower accuracy, has increased by 13.63%
and the mAP has increased by 6.61%.

It can be seen that the location relationship-based transmission
line bolt and its defect detection algorithm proposed in this paper are
very effective in detecting the state of the bolt. The spatial attention
module is used to effectively extract global context information and
capture global dependencies, which can effectively help themodel extract
finer and more comprehensive features. The location relationship
inference module is used to add detection box location information
to the detection model, which gives the model certain inference
capabilities. This method enables the model to use tags with good
detection effects and numerous tags, helping to improve detection
accuracy for tags with poor detection effects and a small number of
tags. Through the above methods, the overall detection ability of the
model is improved. In addition, this paper also adds spatial attention and
location relationship inference modules to the Faster R-CNN detection
model with VGG16 as the backbone network, and the experimental
results are shown in Table 2. The results show that the detection effect
of themodel with VGG16 as the backbone network is significantly worse
than that of the model with ResNet-101 as the backbone network. This
is because VGG16 performs poorly in feature extraction in the detection
of transmission line bolts and their defects, and is unable to extract
fine image features for the bolts and their defects. Therefore, the spatial
attentionmodule of the method in this paper effectively helps the feature
extraction network to perform feature enhancement. When the
Faster R-CNN detection model replaces the backbone network, the
improvements in this paper can still help the Faster R-CNN detection
model to improve its detection capability, especially for the defect samples
with few samples and difficult labels to identify, the improvements in
this paper can significantly improve its detection accuracy, for example,
the AP value of pin losing in this dataset, For example, the AP value
of pin losing in this dataset increased by 8.62%, the AP value of nut
losing increased by 48.45%, and the total mAP increased by 18.83%.

4.2 Comparative experiment between this
method and other methods

In order to further verify the effectiveness of the proposed
method for detecting bolts and their defects, experiments were
conducted to compare the proposed method with state-of-the-art
target detection methods on the same dataset of fixtures, and the
methods conducted for comparison included RetinaNet (Lin et al.,

2020), Faster R-CNN, Cascade R-CNN (Cai and Vasconcelos, 2018),
and Sparse R-CNN (Sun et al., 2021). As shown in Table 3, the
experimental results show that the method in this paper has a higher
accuracy for target detection of bolts and their defect datasets.

Table 3 presents several comparative methods, and without
considering the computational effort, this method has a
significant improvement in accuracy compared to other detection
methods, with the mAP of 67.8%. In Table 3, the accuracy of this
method is 9.4% higher than that of the single-stage detectionmethod
RetinaNet, 6.6% higher than that of the two-stage detection method
Faster R-CNN, 2.8% higher than that of the multi-stage detection
method Cascade R-CNN, and 0.5% higher than that of Sparse
R-CNN, so this method The performance of this paper is better
than other detection methods to a certain extent. The experimental
data in Table 3 demonstrates that the detection accuracy of this
method is generally higher than that of the comparative detection
methods and has some practical value.

As shown in Figure 8, several sets of images of the detection
results of bolts and their defects on the coupling plate from
different shooting angles. Among them, (A), (C), (E), and (G)
are the baseline detection results, and (B), (D), (F), and (H) are the
detection results of the proposed method. There are four sets of test
results in total. In the first set of results, the detection accuracy of
both normal bolt and pin losing increased, and the confidence of
individual labels increased up to 3.5%. Moreover, the detection
frame of each label in this paper fits the label better. In the second
set of detection results, the Faster R-CNN detection model failed to
detect the difficult samples in the lower left corner, while the
proposed method detected the normal bolts in the lower left
corner. This is because the spatial attention module added in
this article can effectively assist the model in detection, so that
smaller targets will not miss detection. In the third set of detection
results, both Faster R-CNN and the proposed method detected
three labels, but the confidence level of each detection frame of the
proposed method is higher, which indicates that the proposed
method has a better detection ability. In the fourth set of detection
results, the tail of the bolt appears in the Faster R-CNN detection
image. While in the actual annotation process, the tail of the bolt is
not involved in the annotation. However, Faster R-CNN
incorrectly detects the tail of the bolt as a losing pin bolt, and
the proposed method successfully avoids such misjudgment.

5 Conclusion

In order to accurately detect transmission line bolts and their
defects, this paper uses a joint board to construct a dataset of bolts and
their defects, and further conducts the detection of normal bolts, pin
losing and nut losing on the fixture. To address these problems of
small bolt targets, low image resolution and lack of inference
capability of the detection model, a Faster R-CNN detection model
based on location relationship inference is used for experimental
validation on the self-built dataset. It is demonstrated that adding a
spatial attention module after the feature extraction network can
effectively help the model enhance the global context information and
improve the feature extraction ability of the model; adding a location
relationship inference module after the region suggestion can increase
the inference ability of the model, help the dataset alleviate the long-
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tail effect and improve the AP value of the category with a small
number of labels. 6.61%, effectively improving the accuracy of bolt
and its defect detection, and laying a good foundation for the task of
transmission line bolt and its defect detection.
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