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Reinforcement learning (RL) is recently studied for realizing fast and adaptive
power system dispatch under the increasing penetration of renewable energy. RL
has the limitation of relying on samples for agent training, and the application in
power systems often faces the difficulty of insufficient scenario samples. So,
scenario generation is of great importance for the application of RL. However,
most of the existing scenario generation methods cannot handle time-series
correlation, especially the correlation over long time scales, when generating the
scenario. To address this issue, this paper proposes an RL-based dispatch method
which can generate power system operational scenarios with time-series
correlation for the agent’s training. First, a time-generative adversarial network
(GAN)-based scenario generation model is constructed, which generates system
operational scenarios with long- and short-time scale time-series correlations.
Next, the “N-1” security is ensured by simulating “N-1” branch contingencies in the
agent’s training. Finally, the model is trained in parallel in an actual power system
environment, and its effectiveness is verified by comparisons against benchmark
methods.
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1 Introduction

In 2022, the global installed capacity of renewable energy has increased by nearly
295GW, and renewables accounted for 40% of global installed power capacity
(IRENA, 2023). Renewable energy generation has uncertainty and volatility, and
the high penetration of multiple renewable energies exacerbates the uncertainty,
strong coupling, and non-linearity of the power system. Although traditional model-
based optimization methods (Ji et al., 2018; Huang et al., 2021; López-Garza et al.,
2022) with certainty have strong interpretability, they are difficult to handle the
dispatch problems of renewable energy generation with uncertainty (Han et al.,
2023).

Artificial intelligence can reduce the dependence on physical modeling and
efficiently process multi-dimensional complex information (Wang and Ouyang,
2022; Chen et al., 2023a). Therefore, data-driven methods based on artificial
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intelligence have gradually demonstrated superior control
advantages, especially the RL-based dispatch method in data-
driven models has been researched recently due to its advantages
of fast decision-making, balancing long-term and short-term
benefits, and solving non-convex and non-linear problems
(Tang et al., 2022). Han et al. (2023) proposed deep-RL based
on soft actor-critic autonomous control, which is used to cope
with large-scale renewable energy dispatch scenarios. Wei et al.
(2022) proposed a dispatch method based on RL to optimize the
utilization rate of renewable energy. Luo et al. (2023) combined
the Kullback–Leibler (KL) divergent penalty factor with RL to
maximize the absorption of renewable energy.

Although RL has been investigated in power system dispatch,
it has the disadvantage of low sample utilization (Seo et al., 2019),
which means that the agent needs a long time to randomly
explore the environment and collect sufficient samples for
learning the optimal policy. The power system may encounter
extreme operational scenarios such as contingencies, mismatch
between generation and load, and fast changes of load or
renewables. These extreme scenarios typically have much
lower occurrence possibility than normal scenarios and thus
have the problem of insufficient samples. This will aggravate
the low sample utilization issue and negatively impact the agent’s
capability to learn the optimal dispatch policy when applying RL
(He et al., 2023).

To address the aforementioned issue, scenario generation is
one of the important means, which mainly includes statistics
methods (Goh et al., 2022; Krishna and Abhyankar, 2023) and
artificial intelligence methods (Bagheri et al., 2022; Goh et al.,
2022; Krishna and Abhyankar, 2023). The uncertainty features of
renewable energy can be explicitly modeled using statistical
methods. It is difficult to model energy systems with
significant differences, complexity, and high-dimensional non-
linear features. Considering that generative adversarial network
(GAN) has the advantages of flexibility, simple structure, and
simulating the complex distribution of high-dimensional data,
Bagheri et al. (2022) used GAN to generate photovoltaic
generation and load scenarios, Qian et al. (2022) applied GAN
to generate wind and solar scenarios, and Tang et al. (2023)
proposed an improved GAN to generate scenarios for wind
farms. To ensure the effectiveness and accuracy of scenario
generation, the time-series correlation among the generated
scenarios should be well-considered. Fraccaro et al. (2016)
proposed a time variational auto-encoder (Time-VAE)-based
method, using an encoder to extract time-series data features
for generating hidden variables, and a decoder to decode the
hidden variables into time-series data, thus achieving time-series
scenario generation. However, these existing methods only
ensure the time-series correlation between adjacent time
instants but cannot handle the time-series correlation for
relatively long-time scales. The root cause is that they lack the
mechanisms of time-series correlation evaluation and generator
network auxiliary updates. This will negatively impact the
performance of the RL-based dispatch model. Moreover, all
the existing scenario generation methods ignore the “N-1”
security, which is critical in power system dispatch.

To address the aforementioned issues, this paper proposes an
RL-based dispatch method that integrates an improved

operational scenario generation considering long time scale
time-series correlation and “N-1” security. The contributions
are as follows.

1) Existing scenario generation methods ignore the scenarios’ time-
series correlation over relatively long-time scales. To address this
issue, a Time-GAN-based scenario generation method is
proposed using the mechanism of time-series correlation
evaluation and GAN-based generator auxiliary update. The
proposed method can generate operational scenarios with
time-series correlation over long and short time scales.

2) To overcome the limitation of traditional data-driven methods that
have not addressed the “N-1” security, the proposedmethod ensures
the “N-1” security by simulating “N-1” branch contingencies during
the agent’s training when generating the scenarios.

The rest of this paper is organized as follows: Section 2
introduces the framework of data-driven dispatch with scenario
generation. Sections 3 and 4 propose the Time-GAN-based scenario
generation model and the RL-based dispatch model, respectively.
Section 5 introduces the training and execution processes. Section 6
provides the simulation. Finally, Section 7 concludes the paper.

2 Framework of data-driven dispatch
with scenario generation

To enhance the policy accuracy of data-driven dispatch models
under extreme operational scenarios, a framework of data-driven
dispatch with scenario generation is introduced, as shown in
Figure 1. The scenario generation model based on Time-GAN
(Yoon et al., 2019) serves as the data support for the
construction of the power system dispatch model based on the
proximal policy optimization (PPO) algorithm (Yang et al., 2020)
and the dispatch model as algorithmic support for online execution.

(a) A scenario generation model based on Time-GAN. First, the
real scenario data on the grid are normalized and

FIGURE 1
Framework of data-driven dispatch with scenario generation.
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preprocessed. Then, Time-GAN is trained and evaluated
using the preprocessed data. Finally, the scenario
generation model that has completed the training is
obtained. To mine typical extreme scenarios and improve
the generation effect of uncertain scenarios, it is necessary to
scenario clustering before scenario generation. The
combination of the scenario generation model with RL is
focused, and numerous scholars have proposed different
methods for scenario clustering. A Gaussian mixture
model (Jang et al., 2021) is used for scenario clustering
and will not focus on this topic in this paper.

(b) A power system dispatch model based on the PPO algorithm.
The construction of the model mainly includes two parts: the
construction of a dispatch model based on PPO and parallel
offline training. The construction of the model is to
transform the actual operating rules of the power system
into a simulation environment of RL. It mainly includes state
space, action space, and reward function design. Parallel
offline training uses parallel methods to accelerate the
training process of the model.

(c) Online execution. For system dispatch tasks, power system
operation status data are input into the trained RL dispatch
model to achieve real-time dispatch.

3 Time-GAN-based scenario
generation

Based on the framework of data-driven dispatch with scenario
generation in Section 1, a Time-GAN-based scenario generation
model is constructed in this section. A scenario generation model
based on Time-GAN is constructed to solve the problem of
insufficient samples in data-driven models. It provides data
support for the data driven distribution model in Section 3.

3.1 Scenario generation

The scenario generation process based on Time-GAN is
shown in Figure 2, which is mainly divided into the following
four steps.

(a) Preprocessing real scenarios. To obtain the distribution features
of the data, the real scenarios obtained are subjected to data
cleaning and normalization.

(b) Training Time-GAN for scenario generation. The Time-GAN
parameters are set, including the sampling time step, the
maximum training step, the hyperparameter, and batch size,
and training the Time-GAN model.

(c) Generating renewable energy generation and load scenarios.
The trained scenario generation network and test data are
utilized for scenario generation.

(d) Evaluating the quality of scenario generation. The distribution
features and spatiotemporal correlation of the generated scenarios
are evaluated.

3.2 Scenario generation based on Time-GAN

For Time-GAN, while preserving the structure of the generator and
discriminator of GAN, AEN was added for joint training to achieve
adversarial and supervised training, enabling the model to learn time-
series data that conform to the feature distribution of the real data, as
shown in Figure 3.

First, S is defined as the static feature vector, representing
renewable energy or load data at a certain time. Furthermore, X
is defined as the dynamic feature vector, representing renewable
energy or load data at a certain node at a certain period, and it is the
variable information in the scenarios. We assume (S,X1: T) follows a
certain joint distribution p, where T is the length of the time series.
The training sample set is � (Sn, Xn

1: T){ }Nn�1, and n � (1, . . . , N) is
the n-th training sample; the total number is N.

FIGURE 2
Flow of scenario generation based on Time-GAN.

FIGURE 3
Time-GAN model structure.
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Second, the real scenarios obtained will be used as the training
set, and it will be normalized as follows:

x*
t �

xt − x min

x max − x min
, (1)

where xt is the value at time t; x*t is the normalized value at time t;
and xmax and x min are the maximum and minimum values of the
sample before normalization, respectively.

Third, the real data on renewable energy or load containing both
static and dynamic features are reconstructed in the autoencoder.
The embedding function and recover function are given as follows:

Hs � Es S( )
Ht � Et Hs,Ht−1, Xt( ),{ (2a)

~S � Rs Hs( )
~Xt � Rt Ht( ),{ (2b)

where (2. a) maps S to a low-dimensional feature vector. Thus, the
key feature vector is obtained, which is the latent encoding.
Moreover, by (2.b), the low-dimensional vector is restored to the
real high-dimensional vector. Hs is the low-dimensional static
feature vector after embedding function mapping; Ht is the low-
dimensional dynamic feature vector at time t after passing through
the embedded function; Xt is the real high-dimensional dynamic
feature vector at time t; ~S and ~Xt are the high-dimensional static and
dynamic feature vectors recovered by the recovery function,
respectively; and E and R are embedding functions and
reconstruction functions, respectively. To optimize AEN, the loss
function LossR of AEN is expressed as follows:

LossR � ES,X1: T ~ p S − ~S
���� ����2 +∑

t
Xt − ~Xt

���� ����2[ ]. (3)

Meanwhile, the discriminator is used to determine whether the
generated data are similar to the real data. The generator and
discriminator are given as follows:

Ĥs � Gs ZS( )
Ĥt � Gt Ĥs, Ĥt−1, Zt( ),{ (4a)

ŷS � Ds Ĥs( )
ŷt � Dt Ût, Xt( ),⎧⎨⎩ (4b)

where Ĥs and Ĥt are static and dynamic feature vectors generated,
respectively. ŷS and ŷt are the classification results generated by
static and dynamic features, respectively. Ût is the joint encoding
output result; and G and D are generator and discriminator
functions, respectively. To improve Time-GAN, the joint loss
function LossE of the generator and discriminator is given as follows:

LossE � LossG + LossD, (5a)
LossG � ES,X1: T ~p̂

log 1 − ŷS( ) +∑t(1 − logŷt)[ ]
LossD � ES,X1: T ~ p logyS + ∑tlogyt[ ],{ (5b)

where yS and yt are the classification results of the original dynamic
and static feature data, respectively.

Finally, defining the supervised loss function LossS between the
generator and the real data evaluates the time-series correlation
learning ability of the generator as follows:

LossS � ES,X1: T ~ p ∑
t
Ht − Gs Hs,Ht−1, Zt( )‖ ‖2[ ]. (6)

3.3 Scenario generation quality assessment

To verify the effectiveness of the scenario generation model
based on Time-GAN, this paper uses t-SNE (Wang et al., 2022) to
evaluate the data distribution features, the autocorrelation
coefficient method (Chen et al., 2018) to evaluate time-series
correlation, and the Pearson method (Burgund et al., 2023) to
evaluate spatial correlation.

(a) Data distribution feature evaluation based on t-SNE. t-SNE can
display clear boundaries in low-dimensional space while
preserving the original information on the data, making the
visualization results more intuitive. Therefore, t-SNE is used to
evaluate the effectiveness of the scenario generationmodel based
on Time-GAN in this paper. The algorithm steps are listed as
follows:

1) In a high-dimensional space, assume xi is the clustering center.
The probability Pj|i of other samples xj in this category is
measured by the Gaussian probability density function as
follows:

Pj|i �
exp − xi−xj‖ ‖2

2σ2i
( )

∑k≠iexp − xi−xj‖ ‖2
2σ2i

( ), (7a)

Pi|j �
Pi|j + Pj|i

2K
, (7b)

where xi and xj are high-dimensional data; σ i is the variance of
the Gaussian distribution; and K is the total number of data
points.

2) In a low-dimensional space, the low-dimensional representation
of xi is yi, and the low-dimensional representation of xj is yj.
Assuming yi is the cluster center, the probability of other data
points yj belonging to this class Qi|j is measured using the
t-distribution function:

Qi|j �
1 + yi − yj

���� ����2( )−1
∑
k≠i

1 + yi − yj

���� ����2( )−1. (8)

3) The cost function C can be obtained using the KL distance, and
the visualization results of high-dimensional data can be
obtained as follows:

C � KL P Q‖( ) � ∑
i
∑

j
Pj|ilog

Pj|i
Qi|j

, (9)

where P and Q are the joint probability distribution of samples in
high-dimensional and low-dimensional spaces, respectively.

(b) Time-series correlation evaluation based on the
autocorrelation coefficient method. The autocorrelation
coefficient represents the correlation between moments,
which can provide a very intuitive understanding of the
relationship between time-series variables. Therefore, the
autocorrelation coefficient method is used to analyze the
time-series correlation of scenarios. The autocorrelation
coefficient of scenarios is given as follows:
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F � ∑n−h
i�1

xi − �x( ) xi+h − �x( )∑n
i�1 xi − �x( )2 , (10)

where xi is the i-th value of set x, �x is the mean of the overall sample
x, and i� 1, . . . ,n − h.

(c) Spatial correlation evaluation based on the Pearson coefficient
method. The advantage of using the Pearson coefficient method
to evaluate the correlation of spatial sequences is that it can
quickly measure the degree of correlation between two spatial
sequences, to better understand the relationship between
scenarios. The spatial correlation of scenarios is analyzed
using the Pearson method; the Pearson coefficient of
scenarios is expressed as follows:

ρ � E x − �x( ) y − �y( )[ ]�����������∑n
i�1 xi − �x( )2

√ �����������∑n
i�1 yi − �y( )2√ , (11)

where xi and yi are the i-th values of x and y, respectively. �x and �y
are the mean values of the sets x and y, respectively, and i� 1, . . . ,n.

4 Data-driven dispatch model
considering “N-1” security

The high proportion of renewable energy penetration
significantly enhances the uncertainty of the power system, and
multiple energy sources bring strong coupling and non-linearity. It
results in difficultly for traditional methods to model and achieve
rapid optimization solutions. RL can enhance decision-making and
reduce dependence on physical modeling. Therefore, based on
scenario generation in the previous section, a data-driven
dispatch model was constructed, which is implemented by the
RL algorithm.

4.1 Model formulation

4.1.1 Objective
The objective function includes minimizing the total operating

cost of the units and maximizing the consumption of renewable
energy.

1) Operating cost objective is given as follows:

F1 � min∑N

i�1∑T

t�1 Fit Pit( )*Uit( ), (12)

where Fit(Pit) � ai + bi*Pit + ci*P2
it, and ai, bi, and ci are,

respectively, the constant term, primary term, and secondary
term coefficients of the operating cost of the i-th unit. Pit is the
unit output of the i-th unit at time t; Uit is the starting and stopping
statuses of the i-th unit at time t;N is the number of units; and T is
the operating time of the unit.

2) Renewable energy consumption objective is given as follows:

F2 � max
∑Nr

i�1∑Tr
t�1PNit∑Nr

i�1∑Tr
t�1PNit

max
, (13)

where PNit and PNit
max are the actual and maximum output power

of the i-th renewable energy unit at time t, respectively; andNr and
Tr are the number and operating time of the renewable energy unit,
respectively.

4.1.2 Constraints
1) The alternating current power flow constraint is given as follows:

Pit − PLit � Vit∑n
j�1Vjt Gij cos δijt + Bij sin δijt( )

Qit − QLit � Vit∑n
j�1Vjt Gij sin δijt − Bij cos δijt( ),⎧⎨⎩ (14)

where Pit and Qit are the active and reactive power of the i-th unit at
time t, respectively; PLit andQLit are the active and reactive power of
the i-th unit during the t-th period, respectively; Vit is the voltage
modulus of the i-th node; δit is the phase angle difference between
two nodes; and Gij and Bij are the conductivity and admittance
between nodes i and j, respectively.

2) The unit generating capacity constraint is given as follows:

PTit
min*Uit ≤PTit ≤PTit

max*Uit, (15)
where PTit

min and PTit
max are the generating capacity down and up

limits of the i-th thermal unit at time t, respectively; and PTit is the
actual out power of the i-th thermal unit at time t.

3) The renewable energy generating capacity constraint is given as
follows:

PNit ≤PNit
max*Uit. (16)

4) The unit operating ramping constraint is given as follows:

PTit
min*r≤PTit − PTi t−1( ) ≤PTit

max*r, (17)
where r is the operating ramping rate of the unit PTit.

5) The swing-bus unit generating capacity constraint is given as
follows:

After the power flow calculation, the output power of the swing-
bus unit is less than 110% of the up limit or greater than 90% of the
down limit.

PBit
min*0.9≤PBit ≤PBit

max*1.1, (18)
where PBit is the output power of the i-th swing-bus unit at time t;
PBit

min and PBit
max are the generating capacity down and up limits

of the i-th swing-bus unit at time t, respectively.

6) “N-1” security constraint is given as follows:

In this paper, the operational risk of the power system “N-1”
is considered. The voltage of adjacent nodes with line
disconnection can neither be greater than the up limit of the
voltage of that node nor can it be less than the lower limit of the
voltage of that node.

Vmin
i ≤Vi ≤Vmax

i

Vmin
j ≤Vj ≤Vmax

j ,{ (19)
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where Vi and Vj are the node voltages at both ends of line Lij,
respectively; and Vi

min and Vj
min are the down and up limits of

node voltages at both ends of line Lij, respectively.

4.2 Solution based on the RL algorithm

The aforementioned dispatch problem would be transformed
into a RL power system dispatch model based on the data-driven
approach, specifically including the design of state space, action
space, and reward function.

4.2.1 State space
The information that can be obtained by the agent in actual

environments will be considered due to the limitations of physical
communication systems and data privacy. The influence of the
large-scale state space on model convergence speed is also
considered. The agent obtains the state space St at time t is set to

St � Pt, PLt, Pt+1, PLt+1, PNt
max, Vt{ }, (20)

where Pt is the output power of the unit at time t; PLt is the load of
each node at time t; Pt+1 is output power of the unit at time t+1;
PLt+1 is the load of each node at time t+1; PNt

max is the predicted
maximum output power of the renewable energy unit at time t; and
Vt is the node voltages at time t.

4.2.2 Action space
In the dispatch model based on RL, the output of the agent at

time t is Pit. At is the action of the agent at time t. The joint action at
the time t is expressed as follows:

At � P1t, P2t, . . . , Pit{ }. (21)

4.2.3 Reward function
Reward function used to describe environmental evaluation

agent action At. The reward functions are set:

1) Reward function for line power exceeding limit is expressed as
follows:

r1t � 1
nline

∑nline

l�1 rholt, (22)

where nline is the number of power grid branches and rholt is the
current load rate of branch l at time t.

2) Reward function for renewable energy consumption is expressed
as follows:

r2t � ∑Nr
i�1PNit∑Nr

i�1PNit
max

. (23)

3) Reward function for swing-bus units exceeding limit is expressed
as follows:

r3t � −∑nbalanced

i�1 ΔPBit, (24a)

ΔPBit �

PBit − PBit
max

Pmax
Bit

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ PBit

max <PBit < 1.1*PBit
max

PBit − PBit
max

PBit
max

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣ 0.9*PBit

max <PBit <PBit
max

0 others,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(25b)

where nbalanced is the number of swing-bus units.

4) The unit operating cost reward function is expressed as follows:

r4t � −∑N

i�1 ai + bi*Pit + ci*P
2
it( )Uit. (26)

5) Reward function for line node voltage exceeding limit is
expressed as follows:

r5t � −∑nsub

i�1 ΔVi, (27a)

ΔVi �

Vi − Vi
max

Vmax
i

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ Vi >Vi

max

Vi − Vi
min

Vi
min

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ Vi <Vi

max

0 others,

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(27b)

where nsub is the number of nodes.
The reward functions r3t, r4t, and r5t are normalized:

r � er−1. (28)
In summary, the domain values of r1t, r2t, and r5t are [0, 1],

while the domain values of r3t and r4t are [−1, 0]. The total reward
functions are given as follows:

Rt � α1r1t + α2r2t + α3r3t + α4r4t + α5r5t, (29)
where rit is the i-th reward function at time t; αi is the coefficient of
the i-th reward function; i� 1, 2, . . . , 5.

FIGURE 4
Offline training and online execution process.
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5 Offline training and online execution

Based on the scenario generation model in Section 2 and the
dispatch model in Section 3, the process of offline training and
online execution of the dispatch model is discussed in this section
and shown in Figure 4.

5.1 Offline training process

Compared to other RL methods, the PPO algorithm adopts
important sampling technology to effectively utilize historical data,
avoiding the problem of large variance and being able to handle the
problem of continuous action space. So the PPO algorithm is chosen
to study the power system dispatch problem.

First, the policy network and value network make actionsAt and
calculate the value function Vμ(St) based on St, respectively. Then,
At is input into the environment, and the action reward Rt and the
new environment state St+1 are obtained. Finally, the sample data
(St, At, Rt, St+1) are stored in the sample batches (Huang andWang,
2020).

For value network updates, (St, At, Rt, St+1) is obtained from the
sample batches, and Vμ(St) is calculated. According to the loss
function (31) and gradient function (30), the value network is
gradient-updated.

μ � μ − lμ∇L
V μ( ), (30)

LV μ( ) � E Rt + γVμ St+1( ) − Vμ St( )( )2, (31)

where μ and lμ are the parameter and learning rate of the value
network, respectively; ∇LV(μ) is the gradient of value network loss
function LV(μ) with respect to μ; and E(·) is the expectation.

Unlike the parameter update of the value network, the
performance of the policy network is improved according to the
advantage function Â(St, At) (Chen et al., 2023b). The parameter
update formula of the policy network is given as follows:

θ � θ − lθ∇Â, (32)
Â St, At( ) � Qμ St, At( ) − Vμ St( ), (33)

Qμ St, At( ) � E Rt|St, At; π( )
Vμ St( ) � E Rt|St; π( ),{ (34)

where θ and lθ are the parameter and learning rate of the policy
network, respectively; ∇Â is the gradient of the loss function Â of the
policy network with respect to θ; Qμ(St, At) is the expected reward
value of At based on policy π in St, which is the action value
function; andVμ(St) is the expected reward value obtained by taking
all possible actions according to π in St, which is the state value
function. To improve the training speed, a parallel training method
is adopted to train the PPO algorithm.

5.2 Online execution process

As shown in Figure 4, in the online execution process, the
dispatch policy of the power system only relies on the trained policy
network and does not require the participation of the value network.
When the dispatch task arrives, the dispatch actionAt is made based

on St by the agent, and the environment executes this action and
transfers to the next state St+1, while the reward value Rt is
calculated. Then, The load demand and environmental status are
continued to be collected at the next moment until the execution
process for the total T period is completed.

6 Simulation

The environment is constructed based on a real power system in
a province in south China, which includes 748 nodes, 845 branches,
and 187 units (55 renewable energy generation, 131 thermal units,
and 1 swing-bus unit). The dispatch interval is 15 min. The sampling
time step in Time-GAN is 96, the maximum training step is 35,000,
the hyperparameter γ is 1, and the batch size is 32. In RL, the
learning rate is 10–5, the maximum training episode is 107, and the
number of parallel environments is 88; the mini-batch is 128. All
simulations are based on Python 3.6 and PyTorch 1.6.

6.1 Scenario generation example analysis

The aforementioned grid structure historical scenario is used to
build a scenario generation model based on Time-GAN, and the
scenario generation effect of the model is verified. The real scenario
contains 2000 scenario section data, and the ratio of training and
testing scenarios is 4:1.

(a) Analysis of the distribution of scenario generation. To test the
performance of the algorithm, the scenarios generated by Time-
GAN and Time-VAE were compared and analyzed. The feature
distribution between the generated scenarios and the real
scenarios was visualized using t-NSE, as shown in Figure 5.
It can be seen that the feature distribution of Time-VAE-
generated scenarios is significantly different from that of the
real scenarios, and a large number of scenarios that deviate from
the distribution features of the real scenarios were generated. It
indicates that its effectiveness in generating scenarios is not
high. The feature distribution of scenarios generated by Time-
GAN is relatively close to that of real scenarios, fitting the
feature distribution of the real scenarios. It indicates that Time-
GAN is more effective in generating scenarios than Time-VAE.

(b) Analysis of scenario time-series correlation features based on
the autocorrelation coefficient. To study the correlation between
generated scenarios and real scenarios in terms of time-series
correlation features, autocorrelation coefficients are introduced.
The autocorrelation coefficients of scenarios are shown in
Figure 6. Within the lag range of 0–20 h, the autocorrelation
coefficients of the generated renewable energy and the real
scenarios are consistent. This indicates that the generated
scenarios can accurately simulate and preserve the
correlation features of time series in real scenarios. The long-
time scale time-series correlation features of the generated
scenarios meet the requirements of the time-series
correlation features of the real scenarios.

(c) Analysis of the scenario spatial correlation based on the Pearson
coefficient method. To study the correlation between generated
scenarios and real scenarios in terms of spatial features, the
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Pearson coefficient method is introduced. The Pearson
coefficient results of renewable energy and load are shown in
Tables 1–4. It can be seen that the spatial correlation between
the renewable energy and load scenarios generated by this
method and real scenarios is relatively close. The overall
generated scenarios comply with the correlation rule of real
scenarios. This shows that the renewable energy and load
scenario generation method in this paper can learn the
complex coupling between renewable energy and loads, and
has a good generalization effect.

6.2 Analysis of power system dispatch
results

A data-driven power system dispatch model is constructed
based on the aforementioned scenario generation. First, the
original 2000 section scenarios are expanded to 10,000 section
scenarios through the scenario generation model. Second, the
dispatch model is training. Finally, the trained dispatch model
was tested using actual real sample scenarios to verify its
effectiveness.

FIGURE 5
t-SNE visualization of Time-GAN-based renewable energy scenarios (A). Time-VAE-based renewable energy scenarios (B). Time-GAN-based load
scenarios (C). Time-VAE-based load scenarios (D).

FIGURE 6
Autocorrelation coefficients of renewable energy scenarios (A) and load scenarios (B).
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6.2.1 Analysis of RL convergence
This paper not only compares the training effects of the dispatch

model before and after scenario generation but also compares the
PPO algorithm with other RL methods. The reward convergence of
model training is shown in Figure 7. “O-PPO” represents the
convergence curve of the PPO algorithm training based on real

scenarios, and “G-PPO, G-A3C, G-A2C, G-DDPG, and G-APPO”
represents the convergence curve of training based on scenario
generation. From Figure 7, the following can be observed:

(a) Comparing the convergence curves of O-PPO and G-PPO, it
can be seen that scenario generation can improve the training
effect of the dispatch model based on the PPO algorithm. From
the perspective of the average reward value, the overall training
effect of G-PPO has improved by 607.49% compared to O-PPO.
This means that by using scenarios generated by the scenario
generation model for training, the data-driven dispatch model
can be better optimized and its performance improved. A key
advantage of using scenario generation models for training is
that it can generate a large amount of rich and diverse scenario
data, which expands the diversity of the training dataset. Due to
the possible differences between the generated scenario data and
the real scenario, the model can learn a wider range of situations
and coping methods, thus possessing stronger generalization
ability. This demonstrates the importance of scenario
generation in improving the performance of the data-driven
dispatch model.

(b) Comparing the convergence curves of G-PPO with other RL
algorithms (G-A3C, G-A2C, G-DDPG, and G-APPO), it can be
seen that the average reward convergence effect of the PPO
algorithm is better. The dispatch model based on the PPO
algorithm is more suitable for optimizing dispatch execution in
this scenario.

6.2.2 Analysis of dispatch results
(a) Analysis of output power of units. A certain section is selected as

the testing scenario, and the method proposed is used for real-time
dispatch. The dispatch results are shown in Figure 8. In the time
sections numbered 1–28, when output power of renewable energy
is low, the method proposed achieves load demand by increasing
the output of thermal power units in this paper. This method
prioritizes using renewable energy to meet the load and reduce
output power of thermal power units. In the time sections of 44–96,
when output power of renewable energy is high, this method

TABLE 1 Correlation of real renewable energy scenarios.

Unit 1 2 3 4 5 6

1 1.00 0.83 0.92 0.83 0.81 0.70

2 0.83 1.00 0.83 0.87 0.91 0.74

3 0.92 0.83 1.00 0.84 0.84 0.76

4 0.83 0.87 0.84 1.00 0.90 0.89

5 0.81 0.91 0.84 0.90 1.00 0.85

6 0.70 0.74 0.76 0.89 0.85 1.00

TABLE 2 Correlation of renewable energy scenarios generated.

Unit 1 2 3 4 5 6

1 1.00 0.86 0.93 0.84 0.87 0.72

2 0.86 1.00 0.76 0.70 0.74 0.62

3 0.93 0.76 1.00 0.86 0.90 0.64

4 0.84 0.70 0.86 1.00 0.95 0.74

5 0.87 0.74 0.90 0.95 1.00 0.73

6 0.72 0.62 0.64 0.74 0.73 1.00

TABLE 3 Correlation of real load scenarios.

Load 1 2 3 4 5 6

1 1.00 0.85 0.95 0.37 −0.23 0.90

2 0.85 1.00 0.84 0.62 −0.51 0.65

3 0.95 0.84 1.00 0.41 −0.18 0.93

4 0.37 0.62 0.41 1.00 −0.43 0.17

5 −0.23 −0.51 −0.18 −0.43 1.00 −0.04

6 0.90 0.65 0.93 0.17 −0.04 1.00

TABLE 4 Correlation of load scenarios generated.

Load 1 2 3 4 5 6

1 1.00 0.84 0.92 0.47 −0.05 0.94

2 0.84 1.00 0.88 0.56 −0.43 0.86

3 0.92 0.88 1.00 0.50 −0.13 0.96

4 0.47 0.56 0.50 1.00 −0.42 0.48

5 −0.05 −0.43 −0.13 −0.42 1.00 −0.14

6 0.94 0.86 0.96 0.48 −0.14 1.00

FIGURE 7
Curve of reward function during the training process.
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prioritizes using renewable energy to meet the load demand and
reduce output power of thermal power units. In the time sections of
29–43, when the load demand and the renewable energy output
power are low, this method makes a reasonable dispatch plan for
output power of thermal power units to meet the load demand. At
the same time, output power of the swing-bus unit is always
maintained between 300 and 800MW (the generating capacity up
limit of the swing-bus unit is 878.9 MW), meeting the real-time
safety regulation margin of the swing-bus unit.

(b) Analysis of the consumption of renewable energy. The
consumption of renewable energy has always been a key
issue in the operation and planning of the power system.
The method proposed in this paper aims to achieve the
actual output power of renewable energy as close as possible
to its maximum power through reasonable dispatch of the
system. The maximum power, actual output power, and
consumption rate of renewable energy power are shown in
Figure 9. In this paper, 100% renewable energy consumption
cannot be guaranteed using the method proposed, but the
overall renewable energy consumption rate reaches 94.06%.
Based on Figure 8, it can be seen that a high level of
renewable energy consumption can also be ensured during
the large-scale development of renewable energy. This is of
great significance for promoting the development of renewable
energy and improving the sustainability of the power system.

(c) Analysis of node voltage exceeding the limit for “N-1”. At the
same time, the aforementioned dispatch plan was verified using
alternating current power flow through “N-1” safety
verification, and the node voltage at different times under
any fault was obtained, as shown in Figure 10. By comparing
voltage values with the set safety range, it can be determined
whether the system is experiencing abnormal or overload
situations. From Figure 9, it is observed that the node
voltage remains within a safe range, indicating that the
dispatch scheme ensures the stability and safety of the power
system under the “N-1” fault state. The power system dispatch
plan based on RL can ensure the stability of node voltage in the

event of a fault, which is crucial for the operation of the power
system and thus ensures the reliable power supply of the power
system.

(d) Comparative analysis with traditional methods. To further
verify the rationality and effectiveness of the method
proposed in this paper, the convex optimization problem
(OPT) (Tejada-Arang et al., 2017) is used for comparative
analysis, and the Gurobi solver was used for the solution.
The comparison results of cross-section scenarios A and B
are shown in Table 5. Due to the large scale of the
optimization problem in this paper, although the training
speed of the method in this paper is slow, the online
solution time is reduced by more than 99% compared to
traditional OPT methods. At the same time, neither the
method proposed in this paper nor traditional OPT methods
can fully guarantee 100% renewable energy consumption
throughout the entire time period. However, compared to
the OPT method, this method can also provide a higher level
of the renewable energy consumption rate. In summary, the
method proposed in this paper not only has fast dispatch

FIGURE 8
Dispatch results of units by the PPO algorithm.

FIGURE 9
Output power and consumption rate of renewable energy.

FIGURE 10
Node voltage under “N-1” faults.
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decision-making speed but also can achieve high renewable
energy consumption.

7 Conclusion

To ensure the effectiveness of the data-driven dispatch under
insufficient scenario samples, a data-driven dispatch method with
time-series correlated scenario generation is proposed. The results
verify that the performance can be effectively improved by scenario
generation. The proposed dispatch model can bring significant
economic benefits and renewable energy consumption. It can also
ensure the security under “N-1″ contingencies. Compared with
traditional optimization-based methods, the proposed method
reduces the online solution time by more than 99%.

Future research can focus on the action of safety and
interpretability issues when applying RL in power systems.
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