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In order to achieve the economic consumption of renewable energy in a multi-
energy power system including wind/PV/hydropower and energy storage, a two-
tier coordinated optimal scheduling method based on generative adversarial
network (GAN) scenario generation is proposed in this paper. First, an upper-
tier optimization model for the operation of the load and storage system is
established to achieve the objective of minimizing the load fluctuation and the
cost of energy storage plants. Furthermore, a lower-tier optimization model to
minimize the systemoperation cost and tide risk is established for the optimization
operation of renewable energy generation. Second, an improved generative
adversarial network is proposed to generate the operation scenes for
evaluating the uncertainty characteristics of the wind and photovoltaic (PV)
generation. Then, an improved coati optimization algorithm (COA) is used to
solve the proposed optimization problem. Finally, the IEEE 30-bus system is
selected as the example system for verifying the proposed method. The
simulation results corroborate the validity and feasibility of the proposed method.
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1 Introduction

Limited fossil energy sources and global greenhouse gas issues have led to the increased
interest in the utilization and development of renewable energy. The continued increase in
renewable energy generation poses a risk to the safe and stable operation of new power
systems. Due to the intermittent and fluctuating nature of renewable energy sources,
connecting high-capacity wind and photovoltaic power generation into the power
system will seriously affect the power quality and the stable operation of the grid (Sezer
et al., 2019). The scheduling and operation of various power sources, including wind/PV/
hydro/thermal and storage, are of increasing concern (An et al., 2020; Gejirifu et al., 2022).
Based on this background, the synergistic operation of PV/wind energy with other renewable
energy sources (e.g., hydropower or energy storage) is a current research hot spot. It can
accommodate more PV and wind power generation without affecting the safety and
reliability of the power system.
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Research on coordinated and optimal scheduling of power
systems is one of the current research hot spots, and many results
have been achieved in this field by previous authors. For example, Xia
et al. (2020) proposed a scheduling model based on wind/PV
generation and load demand in which a mixed integer linear
programming mode l is used to achieve economic operation of the
system when considering the power regulation speed and capacity of
the generation side. Based on the analysis of the stochastic and
intermittent nature of wind power output and PV output, Zhang
et al. (2021) considered dynamic frequency response constraints in the
conventional optimal scheduling model. The objective function is to
maximize the generation cost of the thermal generator and the storage
value of the hydropower plant. Zhang et al. (2018) studied the short-
term optimal operation of the wind power portfolio of the Yalong
River multi-energy complementary clean energy base using the
progress optimization algorithm (POA). To maximize the total
generation capacity and minimize the energy production cost of
the hybrid system, Hounnou et al. (2019) proposed a model of a
run-of-river mini-hydropower plant hybrid generation system based
on a non-dominated ranking genetic algorithm. Zhao et al. (2020)
proposed a multi-energy optimal scheduling model of wind-nuclear-
thermal-storage-gas, considering the consumption risk of nuclear and
wind power.

Wang et al. (2022) investigated the optimal scheduling of an
integrated power system considering long-term voltage stability
constraints for wind energy grid connections. The operational
constraints representing the integrated power and gas system are
formulated using a second-order cone planning formulation. Hu
et al. (2019) developed a unit model for wind power consumption in
CHP systems by analyzing the topological differences between the
power and thermal systems. The objective function is to minimize
total coal consumption and environmental costs. To address the
potential mismatch between renewable energy generation and load,
an integrated optimal scheduling strategy model with interactions
between generation and consumption was proposed by Liu et al.
(2021). In order to achieve an economic strategy for wind
abandonment and deep peaking, a unit optimization model was
proposed by Yang et al. (2020). The model considered the cost of
deep peaking and wind abandonment of thermal power units. Zhang
and Wang (2018) proposed a hierarchical distributed coordination
optimal scheduling strategy for active distribution networks. The
strategy considered wind power uncertainty, and an iterative solution
method based on cascaded analytical objectives was used.

The penetration of renewable energy in the power system is
increasing in the context of carbon peaking and carbon-neutral
strategies. Characterizing the inherent variability and uncertainty of
renewable energy is critical. Accurate modeling of renewable energy
uncertainties plays an important role in power system operation,
planning, and decision-making. Scene generation is a key approach
to providing system planners and operators with a range of possible
power scenarios to make decisions in the future. Yang et al. (2021)
proposed a coordinated interval optimization scheduling method
considering the uncertainty of renewable energy. It describes the
uncertainty of wind and PV power generation through interval
numbers. Huang et al. (2022) proposed a typical scene generation
method based on Latin hypercube sampling and spectral clustering. The
method enables efficient typical scenario generation considering
stochastic fluctuations in renewable energy output and load demand.

In order to generate representative daily scenarios of wind power, a
wind power time series scene generationmethod is proposed based on a
longitudinal and horizontal clustering strategy with reference to Guan
et al. (2018). Based on the affinity propagation clustering algorithm,
discrete stochastic models are obtained by cluster analysis along the
longitudinal and horizontal directions. Jithendranath and Das (2020)
proposed a hybrid scenario and Monte Carlo approach to measure the
uncertainty involved in the multiple energy demands of a microgrid,
considering the correlation between electricity, heating, and cooling
loads and wind and PV generation. This model helps in depicting the
probability of renewable power uncertainty. Liang et al. (2019) used a
probabilistic paradigm to construct mixing probabilities that describe
the uncertainty of renewable energy sources. Jiang et al. (2018), Sadek
et al. (2021), and Wang et al. (2021) used generative adversarial
networks as a data-driven scene generation method.

In order to realize the economic consumption of renewable
energy in a multi-energy power system, including wind power/
PV/hydropower and energy storage, while ensuring the security
and stability of the system currents, a two-tier coordinated
optimal scheduling method based on an improved generative
adversarial network scene is proposed.

The main contributions are summarized as follows:

1. This paper proposes a two-tier coordinated optimal scheduling
strategy for power systems containing wind power/PV/
hydropower and energy storage. It can reduce the load peak-
to-valley difference and improve the space for renewable energy
consumption. It can also ensure the safe and stable operation of
the system.

2. A wind power and PV scene generation method based on the
improved generative adversarial network is proposed for
constructing typical scenarios of renewable energy generation.
The improved GAN can weaken the randomness and uncertainty
of renewable energy power generation.

3. Based on the coati optimization algorithm, five improvement
strategies are fused with the coati optimization algorithm and the
retrograde improvement to enhance its optimization-seeking
capability.

The remainder of this paper is organized as follows: Section 2
describes the two-tier coordinated optimal scheduling model. In
Section 3, the improved GAN-based scene generation methods for
wind power and PV are presented. In Section 4, five improved
strategies based on the coati optimization algorithm are proposed. In
Section 5, the optimization model is solved and simulations are
performed to validate it on the improved IEEE 30-bus system.
Conclusion is reported in Section 6.

2 Two-tier coordinated optimal
dispatch model for wind/PV/
hydropower and energy storage
systems

A two-tier coordinated optimal scheduling model based on
energy interaction and grid operation is constructed from the
perspectives of economy, security, and stability. The objective
function of the upper-tier scheduling model is to minimize load
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fluctuation and the cost of the energy storage plant. It determines the
load profile and the daytime charging and discharging strategy of the
energy storage system and passes them to the lower-tier scheduling
model. The objective function of the lower-tier scheduling model is to
minimize systemoperation costs and tide risk and determine the optimal
scheduling strategy for scenic water. After the feedback of the optimal
strategies of each layer of the dispatch model, the optimization results
that satisfy the overall optimal operation of the grid are calculated. The
overall framework of the system is shown in Figure 1.

2.1 Upper-tier optimal scheduling model

The upper-tier scheduling model takes load fluctuation and
minimization of energy storage plant cost as the objective
function. It aims to achieve the objectives of reducing the
fluctuation of the grid and improving the consumption capacity
of wind and PV by using energy storage plants.

2.1.1 Objective function
1. Load fluctuation

The load volatility indicator can reflect stability and fluctuation
within 1 day after load optimization. The mathematical formulas are
as follows:

minF1 �
∑23
t�1

Pnet t + 1( ) − Pnet t( )| |

∑24
t�1
Pnet t( )

· εnet, (1)

Pnet t( ) � Pload t( ) + ∑NM

m�1
ηcP

c
S,t t( ) − ∑NM

m�1
ηdP

d
S,t t( ), (2)

where F1 and εnet are the penalty cost and penalty coefficient for load
fluctuation, respectively; Pnet(t + 1) is the load value at time (t + 1);
Pnet(t) is the load value at time t; Pc

S,t is the charging power of the
energy storage plant at time t; Pd

S,t is the discharging power of the
energy storage plant at time t; ηcand ηd are the charging and
discharging efficiency of the energy storage plant, respectively;
and NM is the total number of energy storage plants.

2. Energy storage plant costs

During the operation of the energy storage plant, the cost of the
energy storage plant consists of two parts, namely, operation and
maintenance costs and grid-connected environmental benefits,
which are expressed as follows:

minF2 � fsc − fss �∑T
t�1
βsoc(ηdPd

St + ηcP
c
St) −∑T

t�1
γsocηdPdis,t( ), (3)

where fsc is the operation and maintenance cost of the energy storage
plant,fss is the environmental benefit of the energy storage plant, βsoc is
the operating cost coefficient of the energy storage plant, γsoc is the
environmental benefit coefficient generated by the grid-connected
energy storage plant, and the meanings of the remaining variables
are consistent with the previous paper.

2.1.2 Constraint

S min ≤ Sst ≤ S max,
uc
tP

c
Smin ≤Pc

St ≤ uc
tP

c
Smax,

ud
t P

d
Smin ≤Pd

St ≤ ud
t P

d
Smax,

⎧⎪⎨⎪⎩ (4)

where Sst is the charge state of the energy storage plant at time t; S max and
S min are the upper and lower limits of the charge state of the energy storage
plant, respectively; uct and udt are the charge and discharge states of the

FIGURE 1
Framework diagram of the two-tier coordination scheduling model.
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energy storage plant, respectively; Pc
Smax and P

c
Smin are the maximum and

minimum values of the charge power, respectively; and Pd
Smax and Pd

Smin

are the maximum and minimum values of the discharge power,
respectively.

2.2 Lower-tier optimal scheduling model

The lower-tier scheduling model aims to minimize system
operation costs and tide risk. The upper tier transmits the load
profile and the results of the energy storage system charging and
discharging strategy to the lower tier, and after calculation, the best
scheduling strategy for wind farms, PV plants, and hydropower
units can be obtained, and the process satisfies the system tide
constraint. It ensures the safe and stable operation of the grid.

2.2.1 Objective function
In the lower model, the economic indicators include the

operation and maintenance costs of wind farms, PV plants, and
hydropower units; the start-up and shutdown costs of hydropower
units; the environmental benefits of grid connection and
consumption of wind farms, PV plants, and energy storage
systems; and the cost of power purchase and sale of the system.

minF3 � f1 + f2 − f3 + f4,

f1 �∑T
t�1

μwP
acc
w,t + μpvP

acc
pv,t + μhyP

acc
hy,t( ),

f2 �∑T
t�1
∑NG

j�1
sj,tuj,t 1 − uj,t−1( ),

f3 �∑T
t�1

βwP
acc
pw,t + βpvP

acc
pv,t( ),

f4 �∑T
t�1

ρbPC t( )Pline t( )Δt − ρsPC t( )Pline t( )Δt( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

where F3 is the system economic index; f1 is the system operation and
maintenance cost; μw, μpv, and μhy are the operating cost coefficients of
wind power, PV, and hydropower units, respectively; and Pacc

w,t , P
acc
pv,t,

and Pacc
hy,t are the power consumption of wind power, PV, and

hydropower units at time t, respectively. f2 is the start–stop cost of
hydropower unit j; sj,t is the start–stop cost of hydropower unit j at time
t; uj,t is the start–stop state of hydropower unit j at time t; andf3 is the
environmental benefit of wind power, PV, and energy storage
consumption. βw and βpv are the environmental benefit coefficients
for grid-connected consumption of wind power and PV, respectively;
f4 is the cost of power purchase and sale; ρbPC(t) and ρsPC(t) are the
unit price of power purchase and unit price of power sale to the superior
grid at time t, respectively; Pline(t) is the value of exchange power of the
contact line at time t; and Δt is the interval between the two time
sampling.

Tidal risk indicators include the system active network loss rate and
voltage vulnerability, and the active network loss rate of the grid is given
as the percentage of the grid power loss to feed-in tariff. The grid
vulnerability indicator is a state vulnerability indicator that starts with the
operational security of the grid. It measures the risk resistance of the grid
by analyzing the degree of voltage deviation from standard values at each
bus to improve power quality. The higher the vulnerability, the more
unstable the voltage at that bus is, and the lower the quality of power
supplied, the less the risk-resistance is. The expressions are as follows:

minF4 � fP loss + fvol,

fP loss �
∑T
t�1

∑
i,j∈ML

Gij U2
i,t + U2

j,t − 2Ui,tUj,t cos δij,t( )[ ]
∑T
t�1

Pacc
w,t + Pacc

pv,t + Pacc
hy,t + Pd

S,t( ) ,

fvol � 1
24
∑24
t�1

1
2
BV t( ) + 1

2
J t( )( ),

BV t( ) � 1
N
∑N
i�1
V t, i( ),

V t, i( ) � v t, i( ) − v t, i min( )
v t, i max( ) − v t, i min( ),

v t, i( ) �
Ut,i

Ui,o
− 1

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣
0.07

,

J t( ) � 1 −
∑N
i�1
pt,ilog2

1
pt,i
( )

log2 N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
2π

,

pt,i � V t, i( )∑N
i�1
V t, i( )

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(6)

where F4 is the tidal risk indicator; fP loss is the active network loss rate
of the system; fvol is the grid vulnerability; ML is all branches of the
network; Gij is the set of conductances of buses i and j; Ui,t and Uj,t are
the voltages of buses i and j at time t, respectively; δij,t is the phase angle
difference between buses i and j at the beginning and end of the branch
at time t;BV(t) is the average vulnerability of the grid at time t; andN is
the total number of systembuses. v(t, i) is the vulnerability of any bus i in
the network at time t, and 0.07 is defined as the maximum voltage offset;
v(t, imax) and v(t, i min), respectively, are the maximum and minimum
vulnerability values of all buses at time t before normalization. V(t, i) is
the normalized value of the vulnerability of each bus in time section t.
J(t) is the vulnerability balance of the network at time t, ranging from
0 to 1, with 0 representing absolute balance and 1 representing absolute
imbalance, and pt,i is the ratio of the vulnerability of bus i to the total
vulnerability of the network at the current time.

2.2.2 Constraint
1. Grid tide constraints

Pi � Ui∑
j∈i

Uj Gij cos θij + Bij sin θij( ),
Qi � Ui∑

j∈i
Uj Gij sin θij − Bij cos θij( ),⎧⎪⎪⎪⎨⎪⎪⎪⎩ (7)

where Pi and Qi are the injected active and reactive power at bus i,
respectively; Ui and Uj are the voltage amplitudes at buses i and j,
respectively; Gij and Bij are the line conductance values between
buses i and j, respectively; and θij is the voltage phase difference
between buses i and j.

2. Hydropower output constraint

0<Phydro
h,t ≤Phydro

h,t,max, (8)
where Phydro

h,t,max is the maximum output of the hydropower unit at
moment t.
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3. Minimum start–stop time constraints

∑t+Ton−1

k�t
ugik ≥Ton ugit − ugi t−1( )[ ],

∑t+Ton−1

k�t
1 − ugik( )≥Toff ugi t−1( ) − ugit[ ],

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (9)

where Ton and Toff are the maximum continuous start-up time and
maximum continuous shutdown time of hydropower unit i,
respectively.

4. Wind farm capacity constraint

0<Pwind
W,t ≤Pwind

W,t,max, (10)
where Pwind

W,t,max is the maximum output of the wind farm at time t.

5. PV power plant output constraint

0<PPV
m,t ≤PPV

m,t,max, (11)
where PPV

m,t,max is the maximum power output of the PV plant at
time t.

6. Line transmission capacity constraint

0≤PLt ≤PLmax, (12)
where PLt is the transmission power of line L at time t and PLmax is
the maximum transmission capacity of line L.

3 Wind power and PV operation scene
generation based on improved GAN

3.1 Generative adversarial network

A generative adversarial network is a deep learning model
first proposed by Goodfellow in 2014. It uses deep neural
networks to characterize non-linear relationships and exploit
the intrinsic features of signal data by classifying complex
signals. GAN consists of two parts: a generator and a
discriminator. The core idea of GAN training is to establish
the min–max game between the generator and discriminator. In
the training phase of the neural network, the generator generates
new samples by updating its own parameters, and the
discriminator is used to judge the authenticity of the new
samples generated by the generator. The objective function of
GAN is as follows:

min
G

max
D

V G,D( ) � Ex~Px D x( )[ ] − Ez~Pz D G z( )( )[ ], (13)

where E is the expected value of the corresponding distribution,
D(~) is the discriminator mapping function, G(~) is the generator
mapping function, x is the generated sample data, Px is the
generated sample data distribution, z is the noisy sample data,
and Pz is the noisy sample data distribution.

GAN will provide a generator that accurately reflects the
characteristics of the real sample distribution when the game
between the generator and discriminator reaches the Nash

equilibrium. In addition, the sample data generated by the
generator are close to the real data and achieve scene substitution.

3.2 Improving the GAN model

3.2.1 GAN architecture construction
To improve the training stability of the original GANmodel and the

quality of the generated sample data, the paper uses a deep convolutional
generative adversarial network (DCGAN) to construct the model.
DCGAN uses the strong feature extraction ability of a convolutional
neural network (CNN) to improve the quality of the generated sample
data of the original GAN model. Compared with the original GAN
model, the structure ofDCGANremoves the fully connected layer and all
pooling layers in the network anduses stepwise convolution instead of the
pooling layers of the original GAN model.

1. Generator network structure

It contains four neural network layers, and each network layer
contains a deconvolution layer, a batch normalization layer, and an
activation function. The deconvolution layer changes the input
dimension by using multiple deconvolution kernels. Each layer
uses ReLU as the activation function, and the last layer uses tanh
as the activation function.

2. Discriminator network structure

The sample changes its dimension after passing through the
convolutional layers, and finally, the discriminator’s score for that
sample is output through a fully connected layer with output
dimension 1. All layers use LeakyReLU as the activation function. The
structure of the discriminator designed in this paper is shown in Figure 2.

3.2.2 GAN optimization design
1. Wasserstein GAN-gradient penalty (WGAN-GP)

The Jensen–Shannon divergence is used in original GAN to
measure the similarity of two probability distributions, but
during the training process, there may be cases where the
scatter value is constant or meaningless, which leads to the
disappearance of the gradient. To solve the problem of unstable
GAN training, WGAN uses the Wasserstein distance to
construct the model instead of the discriminator loss
function in the original GAN model. The advantage is that
when there is no overlap between two probability distributions,
the distance between them can still be effectively described, and
the Wasserstein distance can be defined as follows:

W P x( ), P x′( )( ) � 1
K

sup
f‖ ‖L ≤K

Ex~P x( ) f x( )( ) − Ex′~P x′( ) f x′( )( ),
(14)

where sup is the minimum upper bound, x is the real sample data, x′
is the generated sample data,f is the discriminator using parameters
for neural network fitting, K is the Lipschitz constant for the
discriminator f, and ‖f‖L ≤K is the K-Lipschitz limit satisfied
by f.
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However, WGAN enforces the Lipschitz continuity condition
for weight cropping, which will reduce the training speed and
learning efficiency. In order to avoid the WGAN gradient
binarization, gradient disappearance, and explosion problems and
further enhance the gradient controllability, this paper adds the
gradient penalty term to the WGAN loss function to construct
WGAN-GP to improve the model training efficiency. The objective
function of WGAN-GP is as follows:

min
G

max
D

V G,D( ) � Ex~Px D x( )[ ] − Ez~Pz D G z( )( )[ ]
+λEx̂~P x̂( ) ∇x̂D x̂( )‖ ‖2 − 1( )2[ ], (15)

where λ is the gradient penalty termcoefficient;∇ is the gradient operator;
x̂ is the random interpolation between the real and generated samples,
x̂ � ξx + (1 − ξ)G(z); ξ is the uniform distribution obeying [0,1];P(x̂)
is the linear uniform sampling between the real and generated sample
sampling points; and ‖ · ‖p is the p-parameter.

2. Conditional GAN (CGAN)

GAN is trained by adding additional labels to the inputs of
generators and discriminators. The problem of the unclear and
uncontrollable direction of the original GAN generation is solved.
The CGANmodel is shown in Figure 3. Compared with the original

GAN model, CGAN combines noise and additional conditions as
inputs on the input side. The additional conditions can be any type
of auxiliary information, such as category labels, or other modal
data. The objective function of CGAN is as follows:

min
G

max
D

V D,G( ) � Ex~Px D x|c( )[ ] − Ez~P z( ) D G z|c( )( )[ ], (16)

where c is the label of the sample data.

3) Model evaluation metrics

To verify the validity of the model, the average generation effect
of the wind and PV scenes was evaluated using the root mean square
error (RMSE) and the mean absolute error (MAE). The expressions
for RMSE and MAE, respectively, are as follows:

RMSE �

�������������
1
N
∑N
n�1

x′
n − xn( )2,√√

(17)

MAE � 1
N

x′
n − xn

∣∣∣∣ ∣∣∣∣, (18)

where RMSE andMAE are used to measure the error size between the
generated samples and the real sample data, respectively (the smaller

FIGURE 2
Generator and discriminator network depth structures.
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the value, the higher the accuracy of the generated sample data);N is
the total number of scenes generated; and xn and x′

n are the real
samples and the data points corresponding to the generated samples,
respectively.

3.3 Wind power and PV scene generation
based on the improved GAN model

DCGAN uses convolutional layer feature extraction to explore
the deep dynamic information of sample data to improve wind
power and PV scene generation. WGAN-GP improves the training
stability of wind power and PV scene generation models. CGAN
mines the data feature association relationship between additional
condition labels and wind power PV samples to enhance the
interpretability of wind power and PV scene generation sample data.

In this paper, we combine the advantages ofWGAN-GP,CGAN, and
DCGANas generator and discriminator network structures to construct a
deep GAN model. It is applied to typical scene generation. The objective
function of the improved GAN model is as follows:

min
G

max
D

V G,D( ) � Ex~Px D x|c( )[ ] − Ez~Pz D G z|c( )( )[ ]
+λEx̂~P x̂( ) ∇x̂D x̂|c( )‖ ‖2 − 1( )2[ ]. (19)

The training steps of the improved GAN-based wind and PV
power generation models are shown in Table 1. The specific process
is as follows.

Step 1: Initialize the model. Initialize the network model and
training parameters. Normalize the training samples and obtain
the random noise vector z from the noise, obeying the standard
normal distribution. Splice the noise with the conditional label c, and
input the spliced data into the generator.

FIGURE 3
CGAN model.

TABLE 1 Model training steps based on improved GAN.

Initialize network model with training parameters

Set the maximum training number Niter, alternate training period Niteration of the
generator and discriminator

For Niter = 0:Niter do

The noise vector z’ is sampled from P (z’) and the label c is

generated.

Input generation of deep neural networks for training

and update the parameters θG

For Niteration = 0: Niteration do

generating PV and wind scenes G (z’) and the

corresponding labels c from the generative network.

Sampling from P(x) to obtain the real PV and wind

power scenes x and the corresponding labels.

Input to the discriminative deep neural network

Output discriminative results and update parameters

Objective function:

min
G

max
D

V(G,D) � Ex~Px[D(x|c)] − Ez~Pz[D(G(z|c))]+

λEx̂~P(x̂)[(‖∇x̂D(x̂|c)‖2 − 1)2]

End For

End For

GAN convergence to generate wind and PV output scenes that match the conditional
labels
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Step 2: Splice data. Longitudinally splice the conditional label c
with the sample data generated in Step 1. Input the result into the
discriminator, and similarly, splice the conditional label c with the
wind power and PV real sample data. The results are fed into the
discriminator.

Step 3: Train the discriminator network model. Fix the generator
parameters, train the model of the discriminative network, feed the
output and bias of the discriminator back to the discriminative
network, and update the parameter θd by means of feed-forward
propagation.

Step 4: Train the generative network model. Fix the discriminator
parameters, and update the generator parameters θG by feedback.

Step 5: Model iterative training. The network model iterates
through Steps 3 and 4 in a loop with Eq. 19 as the training
objective, updating and correcting the parameters of the internal
structure of the improved GAN model until the Nash equilibrium is
reached, at which point the training stops.

Step 6: Save the results of the generated data. After the training,
save the network structure and parameters of the generator and
discriminator. Splice the conditional label c with noise in the
test set and input it into the generator. The sample data of wind
power and PV new energy output under this condition can be
generated.

4 Two-tier optimal scheduling strategy
and solution method

4.1 Scheduling strategy

In this paper, a two-tier coordinated optimal dispatch model of
the system containing wind power/PV/hydropower and energy
storage is developed. The optimization objectives include
minimum load fluctuation and energy storage plant
operation costs, minimum system operation costs, and
minimum tidal current risk. Since multi-energy coordinated
optimal scheduling involves more variables and constraints, the
two-tier optimal scheduling model can simplify the
computational complexity. It can also make full use of the
peak-shaving and valley-filling characteristics of energy
storage power plants while improving the consumption
capacity of wind power and PV. The scheme makes decisions
on the charging and discharging power of energy storage plants
and optimizes the output of new energy generation by
coordinating the upper and lower tiers and solving the
problem in alternate iterations.

The upper-tier dispatch model uses the fast throughput
capability of the energy storage system to track load fluctuations.
The objective is to minimize the load fluctuation and the operating
cost of the energy storage plant. By optimizing the output of the
energy storage plant, the pressure on the hydropower units to cut the
remaining load is reduced. It can make the output of wind/PV/
hydropower and energy storage systems track the load profile
optimally.

The upper and lower scheduling models are solved using the
improved coati optimization algorithm. The upper tier is solved
to obtain the load profile and the optimized charging and
discharging strategy of energy storage plants. The lower tier
is based on the load profile transferred from the upper tier, and
the objective is to minimize the system operating cost and tidal
risk. The final solution yields the optimal consumption strategy
for wind power and PV, as well as the capacity plan for
hydropower units, to determine the final optimal scheduling
strategy.

4.2 Solution method based on the improved
coati optimization algorithm

Coati optimization algorithm is a meta-heuristic algorithm
proposed by Mohammad Dehghani et al. (2022) to simulate the
behavior of coatis hunting to attack iguanas and escape from
predators. It is difficult to obtain the global optimal solution
when the “premature” phenomenon occurs. To address the
shortcomings of COA, this paper adopts improvement strategies
at different phases of the algorithm to enhance the global
convergence ability of the algorithm.

4.2.1 Population initialization stage
During the population initialization process, the positions

of coatis are randomly generated, and the update of individual
positions depends on the update of population positions. To
expand the effective search space of the algorithm and reduce
the search blind spots, a refractive backward learning strategy is
used to perturb the population positions. The idea of the
refraction inverse learning strategy is derived from convex
lens imaging. It extends the search range and enhances the
search capability by generating a reverse position from the
current coordinates, and its principle is shown in Figure 4.

From the geometric relationship of the line segments in Figure 4,
it can be inferred that

FIGURE 4
Refractive backward learning mechanism.
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sin α �
a + b( )
2

− x( )
l

,

sin β � x* − a + b( )/2( )/l*,
n � sin α/ sin β,
k � l/l*,
kn � a + b( )/2 − x( )

x* − a + b( )/2( ),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(20)

where [a, b] is the search interval of the solution on the x-axis; l
and l* are the lengths of the incident and refracted rays,

respectively; and α and β are the angles of incidence and
refraction, respectively.

The population location initialization formula for the fusion
refraction backward learning strategy is as follows:

xi j( ) � lbj + r · ubj − lbj( ),
x*
i j( ) � aj + bj

2
+ aj + bj

2k
− xi j( )

k
,

⎧⎪⎪⎨⎪⎪⎩ (21)

where xi(j) is the position of the ith coati in the jth dimension; lbj
and ubj are the lower and upper bounds of the decision variables
in dimension i, respectively; x*

i(j) is the refractive inverse solution

FIGURE 5
Flow chart of the two-tier coordinated optimal scheduling algorithm.
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of xi(j); aj and bj are the minimum and maximum values in
dimension j on the search space, respectively; and r is a random
number obeying uniform distribution in the interval [0, 1].

4.2.2 Hunting and attack strategies
The COA population location update strategy was based on

the coati attacking iguana behavior in Phase I. During this phase,

FIGURE 6
Loss function and Wasserstein distance variation profile of the discriminator during training.

TABLE 2 Wind power sampling interval and its corresponding labels.

Mean daily output range/p.u Physical meaning Label y

[0,0.045) Wind power output on quiet days 1

[0.045,0.136) Wind power output on soft wind days 2

[0.136,0.27) Wind power output on breeze days 3

[0.27,0.55) Wind power output on wafari days 4

[0.55,1) Wind power output on strong wind days 5
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the coati population was assumed to be divided into two parts:
one-half of the coatis climbed trees to attack iguanas, and the
other waited under the trees for iguanas to fall and preyed
on them.

In this paper, we consider the integration of the Levy flight
strategy for its location update to improve the local development of
tree-climbing coatis. Levy flight is a special type of random
wandering process. This form of wandering presents a
combination of short-distance exploration and long-distance
walking. The location update formula of the improved tree-
climbing coatis is as follows:

xt+1
i j( ) � xt

i j( ) · u/ v| |1/β( )( )
+r · xt

bset j( ) − I · xt
i j( )( ), (22)

σu � Γ 1 + β( ) sin πβ
2

Γ 1+β
2( ) · β · 2 β−1( )/2⎛⎝ ⎞⎠1/β

, (23)

where i � 1, 2, . . . , N2 , N is the population size, xti(j) is the jth
dimensional position of the ith coati at the current iteration

TABLE 3 PV sampling interval and its corresponding labels.

Sampling interval Physical meaning Label y

[18,928) Sampling interval in January 1

[8928,16,992) Sampling interval in February 2

[16992,25,920) Sampling interval in March 3

[25920,34,560) Sampling interval in April 4

[34560,43,488) Sampling interval in May 5

[43488,52,128) Sampling interval in June 6

[52128,61,056) Sampling interval in July 7

[61056,69,984) Sampling interval in August 8

[69984,78,624) Sampling interval in September 9

[78624,87,552) Sampling interval in October 10

[87552,96,192) Sampling interval in November 11

[96192,105,120) Sampling interval in December 12

FIGURE 7
Scenarios for label 1 generation for photovoltaic and wind power generation.
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number, xt
best is the best individual position in the current

population, I is a random integer in the set 1, 2{ }, t is the current
iteration number, and β is a constant, generally set to 1.5,
u ~ N(0, σ2u), v ~ N(0, 1).

In this paper, a sine–cosine optimization strategy is used to
improve the position update of ground coatis and balance the global
search and local exploration abilities of COA. It is based on the
principle of gradually finding the optimal solution by using the
fluctuation properties of the sine and cosine functions. The
improved ground coati’s position update equation is as follows:

Igt
j � lbj + r · ubj − lbj( ), (24)

xt+1
i j( ) � xt

i j( ) + r1 · sin r2( ) · r3Ig
t j( ) − I · xt

i j( )( )∣∣∣∣ ∣∣∣∣, r4 < 0.5,
xt
i j( ) + r1 · cos r2( ) · r3Ig

t j( ) − xt
i j( )( )∣∣∣∣ ∣∣∣∣, r4 ≥ 0.5,

{
(25)

r1 � a − t ×
a

T
, (26)

where i � N
2 + 1, N2 + 2, . . . , N; Igt(j) is the current optimal

individual; T is the maximum number of iterations; a is a
constant, a � 2; r2 and r3 are random numbers obeying uniform
distribution in the interval [0, 2π] and [−2, 2], respectively; and r4 is
the selection control factor of the sine and cosine functions, which is
the random number in the interval [0, 1].

The optimal solution is updated using Eq. 27 after the first phase
of COA.

xt+1
i j( ) � xt+1

i j( ), F xt+1
i j( )( )<F xt

i j( )( ),
xt
i j( ), else,

{ (27)

where F is the fitness function.

4.2.3 Escape predator strategy
The COA population location update strategy is based on the

coati fleeing predator behavior in Phase II. By simulating the
predator avoidance strategy, each coati is made to generate a new
location randomly near its current location. A spiral search strategy
is introduced to avoid COA from falling into a local optimal solution
at this phase, and the mathematical formulas are as follows:

lblocalj � lbj
t
,

ublocalj � ubj
t
,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (28)

xt+1
i j( ) � xt

i j( ) +D · ebl cos 2πl( )
+ 1 − 2r( ) · lblocalj + r · ublocalj − lblocalj( )( ), (29)

D � 2 · r · xt
best j( ) − xt

i j( )∣∣∣∣ ∣∣∣∣, (30)
where ublocalj and lblocalj are the upper and lower bounds of the jth
dimensional decision variables updated with the number of iterations,
respectively;D is the distance between the optimal individual and the
current individual; and b defines the spiral shape, l ∈ [−1, 1].

Furthermore, the t-distribution variation mechanism is used to
perturb the individual positions of coatis to improve the COA finding
ability. The t-distribution variational operator combines the Gaussian
and Cauchy operators to replace the degree of freedom parameter of
the t-distribution with the number of iterations of the algorithm. The
t-distribution converges to the Cauchy distribution at the beginning of

the algorithm iterations to improve the COA global search capability.
As the number of iterations increases, the t-distribution converges to a
Gaussian distribution to improve the COA local search level.

The iterative process of t-distribution variation is as follows:

xt
i,new j( ) � xt

best j( ) + xt
best j( ) · t iter( ), (31)

where xt
i,new(j) is the new position of the coati after the perturbation of

the t-distribution variation, xt
best(j) is the current optimal individual

position of the long-nosed raccoon, and t(iter) is the t-distribution with
the number of algorithm iterations iter as the degrees of freedom.

The perturbation is updated using Eq. 32 after the perturbation:

xt+1
i j( ) � xt

i,new j( ), F xt+1
i j( )( )<F xt

i j( )( ),
xt+1
i j( ), else.

{ (32)

The solution flow of the improved COA-based two-tier
coordinated optimal scheduling model is shown in Figure 5.

Step 1: Initialization of basic parameters. Initialize the basic data
and basic parameters of the algorithm, such as the number of
iterations of Improved Coati optimization algorithm and the
initial population size.

Step 2: Population initialization. Initialize the coati population,
introduce the reflexive learning mechanism, and use the fitness
function to evaluate the merits of the individuals generated in Step
1 to find the optimal individual positions.

Step 3:Optimization search in Phase I. Introduce the Levy flight and
sine–cosine optimization algorithm in Phase I of ICOA to improve
the original ICOA strategy and find the optimal individual position.

Step 4: Optimization search in Phase II. In Phase II of ICOA, fuse
the spiral search mechanism and the t-distribution variation
mechanism to find the optimal individual position.

Step 5: Upper and lower model interactions. Transfer the charging
and discharging strategies and load profiles of the upper-tier energy
storage plants to the lower-tier plants. Use the upper-tier transfer
results to initialize the lower-tier parameters. Optimize the
scheduling strategies of wind power and PV, and feedback the
output of wind power, PV, and hydropower units to the upper tier.

Step 6: Iterative optimization. Judge whether the output
requirements are met, and if the termination iteration
requirements are met, output the optimized scheduling plan
before the output day; if not, return to Step 3.

5 Example analysis

5.1 Training of wind power and PV scene
generation models based on improved GAN

In this paper, the training and validation datasets are constructed
using theWind1 and PV2 integrated power generation data fromNREL
for the period of June 2017–June 2018. The dataset contains 52 wind
farms and 32 PV plants with a raw data resolution of 5 min, which is
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FIGURE 8
Comparison of the cumulative probability distribution of the PV 1–4 tag-out scene and the wind power 2–5 label output scene.

TABLE 4 Evaluation indicators for different models.

Mean value (MW) Standard deviation (MW) RMSE MAE

Real sample 1.27 1.67 – –

Traditional methods 2.54 0.45 2.15 1.93

Proposed method 1.33 1.77 2.05 1.24
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cleaned by data cleaning; 80% of them are used as the training set, and
the remaining 20% are used as the test set. The improved GANmodel is
built based on the deep learning framework PyTorch, and the GPU is
called for CUDA parallel computing to accelerate the model training.
The computer specifications are as follows: 11th Gen Intel(R)
Core(TM) i5-1135G7 2.40GHz CPU, 16GB memory, and GPU
NVIDIA GeForce MX450 with 16 GB of video memory. The
effectiveness of the proposed scene generation method in this paper
is first verified. Then, the improved GANmethod is compared with the
traditional scene generation method for simulation.

Figure 6 shows the loss function and the Wasserstein distance
variation profile of the discriminator during the training process. It can be
observed that in the initial stage of training, the discriminator loss
function increases rapidly due to the inaccurate fitting of the
discriminator to the Wasserstein distance. As the number of trainings
increases, the overlap between the real and generated sample distributions

gradually becomes larger. The Wasserstein distance between the sample
distributions decreases. The discriminant loss function gradually changes
from an upward trend to a downward trend and tends to be stable, and
the network training converges at this time.

A label indicating additional conditions is added to each training
sample during training, guiding the generation of scenes with
different features. The meanings of the specific condition labels
in this paper are shown in Tables 2, 3. The wind scene labels are
developed based on the mean size of the daily output relative to the
maximum value of the output. The PV scene labels are developed
based on the natural month, corresponding to the sampling interval.

The PV 1 label and the wind power 1 label correspond to the
typical scene generation results as shown in Figure 7.

The comparison results of cumulative probability distributions
of PV and wind power scenes under different methods are shown in
Figure 8, respectively, where beta distribution simulation is used for

FIGURE 9
Improved IEEE 30-bus system architecture diagram.
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conventional PV and Weibull distribution simulation is used for
wind power. From Figure 8, the proposed method fits better with the
cumulative probability distributions of real scenarios of PV and
wind power. It can reflect the randomness and volatility of historical
PV and wind power output data more accurately.

In order to verify the effectiveness of the generated scene using
the proposed method, the statistical characteristics between the
generated scene and the real sample are compared and
illustrated. Table 4 shows the evaluation indexes of the PV June-
generated output sample and the real output sample for comparison.
As can be observed from Table 4, compared with the traditional
method (PV obeys beta distribution), the proposed method is closer
to the real sample in two indicators of mean and standard deviation.

It can better simulate the volatility of PV output samples over
different time periods. Meanwhile, the RMSE and MAE indexes of
the proposedmethod are better than those of the traditional method,
which improves the accuracy of PV scene generation.

5.2 Day-ahead scheduling analysis with
wind/PV/hydropower and energy storage
systems

5.2.1 Optimized parameter settings
A modified IEEE 30-bus system is used for arithmetic

analysis. The system includes four hydropower units, two

FIGURE 10
Wind and PV power profiles.

FIGURE 11
Comparison of original load and load profiles.
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wind farms, two PV plants, and one energy storage plant. The
system structure is shown in Figure 9. The energy storage power
station is connected to bus 2, the PV power station is connected
to bus 7, and the wind farm is connected to bus 8. The summer
solstice day with the maximum system load operation mode is

taken as the typical day of load, and the wind power and PV
generate the output profile, as shown in Figure 10. The
parameters of the upper model are set as follows: the charging
and discharging efficiency of both energy storage power plants is
95%; the maximum charging and discharging power is 50 MW;

TABLE 5 Distribution of load before and after optimization.

Peak load (MW) Valley load (MW) Rate of peak-to-valley difference (%) Rate of load fluctuation (%)

Before optimization 283.4 113.36 60.00 9.45

After optimization 261.5 121.45 53.56 7.97

FIGURE 12
Charging and discharging strategies and charge state of energy storage systems.

FIGURE 13
Two-tier coordination optimization scheduling strategy.
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the upper and lower limits of the charge ratio are 0.9 and 0.2,
respectively; the rated capacity of the wind farm is 100 MW; and
the rated capacity of the PV power plant is 80 MW.

5.2.2 Optimized scheduling comparison
The optimal output strategy of the energy storage system and

the system load fluctuation are obtained from the upper-tier
optimization. The load profiles before and after optimization are
shown in Figure 11. It can be observed that the peak-to-valley
difference of the optimized system load profile becomes smaller.
The load distribution before and after optimization is provided in
Table 5. The difference between peaks and valleys of load changes
decreased from the initial 170.04 MW to 140.05 MW,
representing a decrease of 17.63%. In particular, the peak load
is reduced from 283.4 MW to 261.5 MW, and the valley load is
increased from 113.36 MW to 121.45 MW. The peak–valley
difference before and after optimization changes from 60% to

53.56%, and the load fluctuation rate decreases from 9.45% to
7.97%. The optimization strategy based on the load profile can
effectively reduce the overall load fluctuation. Energy storage
plants can smooth the overall load profile of the system, reduce
the peak-to-valley difference of the load, and realize “peak
shaving and valley filling.”

The charge/discharge and charge state changes in the
optimized energy storage system are shown in Figure 12. The
scheme controls the charge and discharge states of the energy
storage system in order to compensate for the anti-peaking
characteristics of wind power. It can reduce the output of the
hydropower unit and bring some environmental benefits. As
can be observed from Figure 12, the storage system starts
charging at low load from 1:00 a.m. to 6:00 a.m. and from 3:
00 p.m. to 6:00 p.m. to increase the “valley” of the load profile. In
the peak hours of 10:00 a.m. to 2:00 p.m. and 7:00 p.m. to 10:
00 p.m., the storage system starts to discharge to reduce the

FIGURE 14
Active network loss and voltage vulnerability changes in the system.
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“peak” of the load profile. At the same time, the energy storage
system is also charged during the “non-valley” hours from 7:
00 a.m. to 11:00 a.m. during daytime and during the “non-peak”
hours from 10:00 p.m. to 12:00 p.m. in order to increase the
consumption capacity of PV. The charging ratio always meets
the energy storage operating constraints during the scheduling
process. The upper-tier optimal scheduling can effectively
relieve the peaking pressure of hydropower units and leave
sufficient margin for improving the consumption rate of
wind power and PV.

The power output of each new energy generation system is
shown in Figure 13. It can be observed from Figure 13 that the
highest wind power grid consumption rate is concentrated during 3:
00 a.m.–4:00 a.m. and at 9:00 p.m. It is mainly due to the charging of
energy storage plants in the upper optimization during this time,
which provides space for the wind power to be consumed. At the
same time, the wind power consumption increases at 11:00 p.m. The
wind power output reaches its peak at 11:00 p.m., so the wind power
consumption capacity is also increased at that time after optimized
scheduling. PV grid-connected consumption is concentrated during
the period from 6:00 a.m. to 5:00 p.m. during the daytime. The
number of starts and stops of hydropower units was reduced to 0. It
can maintain a good economy while supplying smooth power to the
power system. After optimization, the consumption rate of wind
power and PV reaches 66.82%.

The comparison of active network loss and grid vulnerability is
shown in Figure 14. The active network loss of the system is
significantly reduced compared to the pre-optimization period.
The average network loss is reduced from 7.43 MW to 3.59 MW,
indicating a reduction of 51.68%. The system voltage vulnerability is
reduced from the initial voltage vulnerability index of 0.391 to 0.389,
indicating a reduction of 0.51%.

5.2.3 Comparison of different scheduling strategies
To verify the economy and effectiveness of the optimization

model proposed in this paper, three strategies are selected for
comparative analysis.

Case 1: Two-tier optimization model of a power system with wind
power/PV/hydropower and energy storage.

Case 2: Two-tier optimization model of a power system with wind
power/PV/hydropower and energy storage with all wind power and
PV consumed and energy storage considered.

Case 3: Two-tier optimization model of a power system with wind
power/PV/hydropower and energy storage without access to energy
storage.

All three strategies are based on the new energy generation
output and typical daily load profile. The upper and lower
optimization objectives of Cases 2 and 3 are the same as those
of Case 1. The comparison of the calculation results of the three
strategies is shown in Table 6. As can be observed from Table 6,
the system load fluctuation rate of Case 1 is the smallest, at only
7.97%. The strategy gives full play to the “low storage and high
discharge” function of the grid-connected energy storage power
plant. It effectively reduces the peak-to-valley difference of load
on the grid. It not only brings certain environmental benefits but
also reduces the difficulty in system peak regulation. In Case 2, it
results in the full consumption of wind and PV when the overall
system load fluctuates due to the wind power anti-peak
characteristics. The fluctuation rose from the initial 9.45% to
12.81%, and the load fluctuation rate increased by 35.56%. In
Case 3, the fluctuation of the load remains consistent with the
fluctuation of the initial load since there is no participation of
energy storage plants in the upper objective function.

Table 7 provides a comparison of the economic indicators under
different operation strategies, where the system operation cost of
Case 1 is 34052.35 yuan, which is 22.47% lower compared to
43921.92 yuan of Case 3. The system benefit of Case 2 exceeds its
operation and maintenance costs, making the system operation cost
result in a negative value in numerical terms, i.e., a profitable trend.
This is due to the setting of simulation parameters that can provide
environmental benefits to the system.

The optimal consumption strategies and consumption rates of
wind power and PV power generation are shown in Figure 15. It can
be observed that it fails to reduce the load fluctuation of the system
because there is no energy storage involved in the system operation
in Case 3. It does not ensure the stability of the system, and there is
not enough space for the consumption of wind power and PV. The
consumption rate of wind power and PV can only reach 54.30%,

TABLE 6 Optimization results for loads under different strategies.

Peak load (MW) Valley load (MW) Rate of peak-to-valley difference (%) Rate of load fluctuation (%)

Case 1 283.4 113.36 53.56 7.97

Case 2 283.3 76.19 73.12 12.81

Case 3 283.4 113.36 60.00 9.45

TABLE 7 Economic indicators under different models.

Economic indicators/yuan Case 1 Case 2 Case 3

O&M costs for wind and PV 24072.26 36364.05 21073.92

O&M costs of hydropower 70543.77 50313.61 66565.54

O&M cost of energy storage 2730.71 4,777.1 0

Environmental benefits of wind and PV 55483.66 83900.84 45552.08

Environmental benefits of ES 9821.69 17182.07 0

Start-up and shutdown costs of hydropower 0 200 300

Cost of electricity purchase and sale 2010.96 1378.15 1834.54
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which is 17.90% lower than the 66.14% in Case 1. It also reduces the
revenue of energy storage plants in the system. Among the three
strategies, it can better take into account the fluctuation of the
system while maintaining a good consumption rate in Case 1, which
can effectively improve the economy of the system.

Table 8 provides a comparison of the tidal current risk indicators
between the three strategies. It can be observed that Case 2 voltage
vulnerability index is the lowest, which is reduced by 0.51% and 3.73%
compared to 0.389 and 0.402 in Cases 1 and 3, respectively. The active
network loss ratio is 3.75% in Case 3, which is reduced by 13.99% and
21.88% compared to the active network loss index of 4.36 and 4.80 in
Cases 1 and 2, respectively. It achieves a balance between active network

loss and voltage vulnerability (Case 1) and provides a reference for the
scheduling of safe and stable operation of the system.

6 Conclusion

In order to increase the consumption of renewable energy, a
two-tier coordinated optimal dispatch model of power systems
containing wind/PV/hydropower and energy storage is proposed
in this paper. The upper tier aims at minimizing the load
fluctuation rate and the cost of energy storage plants. It uses an
energy storage system to smooth the load fluctuation of the grid
and enhance the consumption capacity of wind power and PV. The
lower tier takes the minimum system operation cost and the lowest
tidal current risk as the optimization objectives. The purpose of the
proposed method is to obtain the optimal scheduling strategy for
wind power and PV based on the results of hydroelectric unit
scheduling. Furthermore, an improved GAN wind power and PV
scenario generation method is proposed. Based on the analysis of

FIGURE 15
Comparison of the best scheduling scheme and consumption rate of wind power and PV plants under different strategies.

TABLE 8 Trend risk indicators under different strategies.

Case 1 Case 2 Case 3

Active network loss ratio 4.36% 4.8% 3.75%

Voltage vulnerability 0.389 0.387 0.402
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the output characteristics of wind power and PV, an improved
network structure based on unsupervisedly learned mapping is
applied to generate the output operational scenario of wind
power and PV. The generation scenarios are effective for
coping with the randomness and volatility of wind power and
PV. Traditional COA is improved in five parts to accelerate
convergence speed and applied to the optimization scheduling
problem. Simulation results show that the proposed method can
reduce the load fluctuation of the system and increase the
consumption of renewable energy.
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