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With the continuous infusion of renewable energy sources, smart buildings have
evolved from single-load characteristics into dual characteristics with both
electric energy production and consumption capability. Concurrently, the peak
and off-peak periods of electricity consumption are influenced by climatic factors,
which leads to complexity and deviation from the time-of-use tariffs set by
electricity markets, which consequently result in a loss of revenue from grid-
based electricity sales. Thus, adopting an innovative pricing mechanism to offset
the revenue deficit in the grid assumes paramount significance. Built upon a dual-
layer framework that employs intelligent optimization algorithms, this study
proposes a pricing strategy for introducing the retail electricity provider into
smart building clusters with peer-to-peer power sharing as the core. First, the
independent operation model of intelligent buildings and electric energy sharing
model without the participation of retail power suppliers are respectively
established. Subsequently, with the aim to minimize alliance costs, a novel
energy sharing pricing model involving retail electricity suppliers is developed,
and a combination of particle swarm optimization and alternating direction
multiplier methods is used for distributed solutions within a representative
model. This approach yields optimal energy sharing transaction volumes and
pricing while ensuring the confidentiality of each participating entity. Lastly, from
the perspectives of the power grid, retail electricity suppliers, and multi-building
smart alliances, this study conducts simulation analyses of key parameters that
influence the bargaining effectiveness of retail electricity suppliers. These
parameters encompass the upper limit of pricing, market supervision
coefficient, and discount coefficient associated with the grid-based electricity
sales to suppliers. Through these analyses, the study further validates the efficacy
of the proposed strategy.
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1 Introduction

In recent years, the escalating concerns surrounding global
warming and depletion of fossil energy reserves have garnered
widespread attention. As a result, countries across the globe are
steadfastly committed to advancing low-carbon economic practices.
Within this context, addressing the escalating energy demands
within China becomes pivotal, and this necessitates a robust
exploration of renewable energy systems (Zhao et al., 2023).
Consequently, smart buildings (SBs) with both electric energy
production and consumption capability have emerged (Li et al.,
2020). On the one hand, a single SB is usually composed of
distributed photovoltaics; cogeneration of cooling, heating, and
power; energy storage; and electricity/heating/cooling loads and
can realize energy interaction with the outside world through the
distribution network, the medium- and low-voltage gas distribution
networks (Mofidi and Akbari, 2020). Moreover, the integration of
multiple smart buildings can foster a smart building cluster system
through energy interconnection. This collaborative framework
empowers all SB participants to engage in peer-to-peer (P2P)
power trading, effectively harmonizing power supply and
demand dynamics, and thereby reducing reliance on the power
grid (Liu et al., 2021; Zhou et al., 2021). The realization of such
power sharing mechanisms bears immense significance in bolstering
grid electricity sales revenue.

However, the daily net load profile of SBs often diverges from the
temporal trend of time-of-use tariff prevalent in the broader power
market, which culminates in a reduction in grid revenue. Both
domestic and international research have diligently examined P2P
power sharing within the smart building cluster paradigm (Singh
and Baredar, 2017; Hu et al., 2019). Notably, efforts have been
directed toward devising a Nash game model that orchestrates
power trade negotiations among key stakeholders, encompassing
wind, solar, and hydrogen subjects. Prior investigations have
successfully employed the augmented Lagrangian multiplier
method to optimize power sharing transaction volumes,
characterized by their model simplicity and robust convergence
(Ma et al., 2021). Further contributions have extended the P2P
energy sharing model to an n-agent cooperation framework,
broadening the versatility of the model (Wu et al., 2022).

Nonetheless, the inherent variability in photovoltaic power
generation, intricacies of privacy preservation during P2P energy
transactions, and self-interested pursuit of the lowest operating costs
by SBs collectively exacerbate the challenges faced by the local power
grid (LPG) in orchestrating efficient SB scheduling (Yang et al.,
2018). To mitigate these complexities, the power grid urgently
requires accurate predictions of the internal random source load
of SBs and the judicious scheduling of SBs, so as to set the time-of-
use price properly.

In the context of a conventional distribution network structure,
the power grid exerts direct control over the pricing of power
acquisition for lower-level buildings through the implementation
of time-of-use electricity rates. This has led to concerns regarding
the potential economic losses stemming from the increasing

integration of renewable energy sources (Simkhada et al., 2022).
As a result, there has been a growing interest in exploring the
potential of introducing a retail electricity provider (REP) as an
intermediary to manage this complex and contentious task on behalf
of the grid. Literature pertaining to the introduction of REP
highlights certain strategies to mitigate passive deceleration of the
REP’s operations. Notably, the REP is established as an autonomous
profit-generating entity, distinct from the local power grid (LPG),
and is responsible for precise forecasting within the intricate lower-
level energy system and a comprehensive exploration of the SB
energy scheduling methodology (Wang et al., 2018; Xu et al., 2020).
An optimized time-of-use electricity pricing scheme is formulated to
promote the orderly transfer of flexible loads in the lower-level SB
through the market mechanism, so as to meet the requirements of
the upper-level power grid for peak shaving and valley filling and
maximize its own operating benefits (Zhang et al., 2019). Within the
realm of literature, a REP pricing model characterized by market
oversight and user satisfaction considerations is proposed (Zhou
et al., 2017; Immonen et al., 2020; Zhu et al., 2021). In this
framework, each time the REP establishes an electricity price, the
lower-level SB invariably seeks a scheduling plan that minimizes its
individual operational costs at that specific electricity price. This
approach facilitates the provision of a commodity demand for
purchasing power vectors to the REP. Conceptually, this model,
in taking the REP as a “wholesale-retail” role, seeks for a daily profit
maximization model, which can be specifically depicted as
“(wholesale price − retail price) * electric power vector and
accumulation.” It is worth noting that solving this model entails
addressing a non-trivial max–min non-linear problem,
characterized by the intricate interaction between the electricity
price variables and power variables, leading to computational
intricacies (Zhang et al., 2021). Weishang et al. (2022) introduced
a two-layer non-linear strategy grounded in the game theory for
optimizing REP pricing, which effectively addresses the optimal
pricing puzzle for individual SB. Moreover, Wang et al. (2023)
illustrated that the double-layer max–min optimal pricing problem
in between a single SB subject, REP, and the grid can be solved
maturely through the strong duality theory and KKT condition
theory. Nevertheless, notable gaps persist within the present body of
research concerning the double-layer max–min optimal pricing
problems that involve REPs, grid, and building clusters composed
of numerous SB entities.

Addressing the inherent challenges within multi-smart building
electricity price management, the power grid faces two unresolved
issues: 1) as the prevalence of mixed renewable energy access rises,
the P2P power sharing interaction costs may experience an upward
trajectory, resulting in a limited total investment cost of the system.
2) The utilization of conventional optimization solvers to determine
electricity transaction volumes per building raises concerns about
user privacy. Moreover, the conventional grid’s electricity sales
model fails to adequately account for the nuanced interests of
lower-level user buildings, resulting in price conflicts.

To address these problems, this study introduces an optimal
pricing strategy for REP in the context of SB clusters. Specifically, the
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layer particle swarm algorithm is employed on the upper layer to
derive electricity price variables, while the alternating direction
multiplier method (ADMM) is utilized on the lower level to
allocate P2P power transaction volumes, thereby safeguarding the
privacy of each participant. This dual-layer methodology not only
enhances solution efficiency but also bolsters power grid revenue
and reduces the system’s overall operational costs. The primary
contributions of this study encompass the following:

1) Strengthening power interaction: by constructing a SB clusters
power sharing model, the study augments power interactions
among various buildings, thereby augmenting the assimilative
capacity of wind and photovoltaic power sources.

2) Coordinated electricity pricing: the introduction of REP
facilitates the harmonization of electricity prices between the
upper-level power grid and lower-level buildings. In this process,
the REP garners a portion of revenue while optimizing power
grid sales income.

3) Enhanced solution methodology: a dual-layer solution
methodology, integrating particle swarm optimization and the
ADMM, is proposed. This approach ensures individual privacy
while substantially expediting solution convergence.

The subsequent sections of this article are organized as
follows: Section 2 builds the framework of P2P power sharing

grid–operator–SB clusters; Section 3 presents an independent SB
operation model; Section 4 establishes building clusters P2P
power sharing model; case analysis and conclusions are
shown in Section 5 and Section 6, respectively; and the
overall workflow.

2 Framework of SB power sharing and
REP bargaining

This section intricately models the three distinct tiers: LPG, REP,
and SB clusters, ensuring a robust safeguarding of internal
equipment configuration and energy flows for each participant
during the implementation of P2P transactions.

The upper-level LPG assumes the role of supplying external
power support, thus fostering an equilibrium within the SB’s power
system. At the middle level, REP, as a “wholesale-retail”
intermediary, is responsible for setting the optimal electricity
price and influencing SBs flexible load shift through market
mechanisms (Wei and Lin, 2017; Schneiders et al., 2022), which
alleviates the impact of LPG on SBS peak shaving pressure. The set
electricity price by the REP is intricately calibrated within the
bounds of market constraints, with a diligent pursuit of self-
interest driving its determination. Situated at the lower tier, the
SBs comprise multiple building entities. Each entity not only

FIGURE 1
Power sharing framework of grid–REP–SBs.
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encompasses diverse energy production and consumption
capabilities—ranging from electricity and heat to cold, gas, and
carbon dioxide—but also boasts autonomous dispatching,
independent management, and individual operators vested with
the authority to trade in electricity. The overall operation
framework is presented in Figure 1.

3 SB isolated operating model

In this section, the mathematical models, operational
constraints, and minimum operating cost objective functions of
key constituent devices in SBs are modeled. The lowest cost dispatch
model for SBs under REP time-of-use tariff is mainly based on the
SB isolated operation model without considering P2P, and then
extends the SB alliance P2P power sharing model based on the
ADMM. In addition, each smart building can dispatch
autonomously with the goal of its own cost minimization and
externally interacts only with the gas and electricity distribution
networks.

3.1 Mathematical modeling of major
equipment in SBs

Each isolated SB encompasses a diverse array of devices,
exemplified in Figure 1. In this section, we only conduct
detailed modeling of the three key equipment types, namely,
the flue gas diversion carbon capture system, energy storage
system, and temperature control system (Wang et al., 2018).
The distributed photovoltaic model is presented in the works of
Zhang et al. (2019). The electric heating demand response model
is expounded upon in the literature of Rahman et al. (2021), while
insights into the electric vehicle load model can be gleaned from
the studies conducted by Ge et al. (2022). The coupling
characteristics of the gas turbine electric heating system are
meticulously documented in the literature authored by Wang
et al. (2020).

3.1.1 Modeling of carbon capture systems for flue
gas splitting

The carbon emissions of gas boilers and CCHP units are
positively correlated with their thermal power output.

CCCHP
i,t � kCCHP

E2C · ECCHP
i,t + kCCHP

H2C ·HCCHP
i,t

CGL
i,t � kGLH2C ·HGL

i,t
{ , (1)

where CCCHP
i,t and CGL

i,t represent the carbon emission power of the
cogeneration unit and the heat boiler in SB i at time t, respectively.
ECCHP
i,t and HCCHP

i,t are the electric and thermal output power of the
cogeneration unit, respectively. kCCHP

E2C and kCCHP
H2C present the carbon

emission coefficients of the cogeneration unit. HGL
i,t is the thermal

output power of the heat boiler, and kGLH2C is the carbon emission
coefficient of the heat boiler.

With the aim of advancing the attainment of the “carbon
peaking, carbon neutrality” objective and mitigating erratic
carbon emissions, an increasing number of SBs have embraced
the integration of carbon capture devices subsequent to flue gas

diversion. This strategic adoption facilitates the effective capture,
storage, and controlled concentration of CO2.

CCCS
i,t � ϖ– · CGL

i,t + CCCHP
i,t( ) · ε, (2)

where ϖ denotes the flue gas split ratio and ε denotes the carbon
capture efficiency.

3.1.2 Energy storage system model
In this section, a comprehensive model is constructed,

encompassing diverse energy storage mechanisms within SBs,
spanning electricity, heat, and CO2. These energy storage devices
facilitate temporal energy displacement, effectively fostering
dynamic power equilibrium adjustments. The energy storage
model encompasses several key facets, which include energy
storage and release power constraints, operational state
uniqueness constraints, power–capacity coupling, capacity
limitations, initial and final energy parity, and constraints on
state transitions.

OEssC
i,j,t P

EssCmin
i,j ≤PEssC

i,j,t ≤OEssC
i,j,t P

EssCmax
i,j

OEssD
i,j,t P

EssDmin
i,j ≤PEssD

i,j,t ≤OEssD
i,j,t P

EssDmax
i,j

OEssC
i,j,t + OEssD

i,j,t ≤ 1
SEssi,j,t+1 � SEssi,j,t + ηEssCi,j PEssC

i,j,t Δt + ηEssDi,j PEssD
i,j,t Δt

SEssmin
i,j ≤ SEssi,j,t ≤ S

Essmax
i,j

SEssi,j,1 � SEssi,j,tend∑tend
t�2 OEssC

i,j,t − OEssD
i,j,t( ) − OEssC

i,j,t−1 − OEssD
i,j,t−1( )∣∣∣∣∣ ∣∣∣∣∣≤OEssmax

i,j

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(3)

where PEssC
i,j,t and PEssD

i,j,t present the energy storage and release power
of the j-th energy storage device in SB i at time t, respectively. OEssC

i,j,t

and OEssD
i,j,t are the state identification positions of its storage and

release, and ηEssCi,j and ηEssDi,j denote the efficiencies of its energy
storage and release, respectively. PEssCmax

i,j and PEssCmin
i,j are the upper

and lower bounds of its storage power, respectively; PEssDmax
i,j and

PEssDmin
i,j are the upper and lower bounds of its release power,

respectively; and SEssi,j,t is the amount of load energy. SEss max
i,j and

SEss min
i,j represent the upper and lower limits of its energy storage
capacity, respectively; SEssi,j,1 and S

Ess
i,j,tend present the amount of energy

stored at the beginning and end of each day, respectively; andOEss max
i,j

is the maximum number of storage and release state switching times
per day of the energy storage device.

3.1.3 Temperature control system model
As one of the main loads of SBs, the temperature control load is

mainly used in pipeline heating or central air-conditioning
refrigeration, etc., to control the temperature in order to achieve
a satisfactory temperature felt by the human body. The indoor
temperature fluctuation in building i is fundamentally contingent
upon a linear interplay involving equipment heating and cooling
power, as well as the disparity between indoor and outdoor
temperatures.

Ti,t+1 � Ti,t + ΔTi,t

ΔTi,t � kH2T
i · HT

i,t − LT
i,t( ) + kHchuandao

i · Twai
i,t − Ti,t( )Δt,

LT
i,t � kLi · ELT

i,t

⎧⎪⎨⎪⎩ (4)

where Ti,t and ΔTi,t are the temperature and amount of temperature
change in SB i at time t, respectively; kH2T

i presents the coefficient of
proportionality between the indoor heating energy consumption
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and the amount of temperature change induced; kHchuandao
i denotes

the coefficient of thermal conduction property of the building
construction; HT

i,t and LTi,t represent the indoor heating and
cooling power, respectively; Twai

i,t is the outdoor temperature. ELT
i,t

is the air conditioning and cooling power consumption, and kLi is the
air conditioning electric and cold power conversion coefficient.

3.2 Operational constraints model

In this section, only equipment power constraints, gas turbine climb
constraints and start–stop constraints, demand-side response
constraints, and multiple energy flow balance constraints are modeled.

3.2.1 Device power constraints

0≤EPV
i,t ≤EPVmppt

i,t

0≤PDevice
i,j,t ≤PDevicemax

i,j
{ , (5)

where EPV
i,t and EPVmppt

i,t are the PV power at time t in SB i and the
upper limit of PV power, respectively. PDevice

i,j,t and PDevice max
i,j,t present

the real-time power of device j and the upper limit of the output
power.

3.2.2 Gas turbine climbing constraints and
start–stop constraints

0≤ ECCHP
i,t+1 − ECCHP

i,t

∣∣∣∣ ∣∣∣∣≤ECCHP
i,papo

OCCHP
i,t · ECCHP

i,min ≤ECCHP
i,t ≤OCCHP

i,t · ECCHP
i,max ,∑tend−1

t�1 OCCHP
i,t+1 − OCCHP

i,t

∣∣∣∣ ∣∣∣∣≤OCCHP
i,max

OCCHP
i,t ∈ 0, 1{ }

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(6)

where ECCHP
i,papo denotes the upper limit of the climbing power of the

CCHP unit in SB i; ECCHP
i,max and ECCHP

i,min are the maximum and
minimum power limits of the gas turbine, respectively. OCCHP

i,t

can take the value of 1 or 0, representing the two states of
running and stopping, respectively. OCCHP

i,t is the limit of the
maximum number of start–stop switching.

3.2.3 Demand-side response constraints

−ηEDR
i · Eload

i,t ≤EDR
i,t ≤ ηEDR

i · Eload
i,t∑end

t�startE
DR
i,t � 0

−ηHDR
i ·Hload

i,t ≤HDR
i,t ≤ ηHDR

i ·Hload
i,t∑end

t�startH
DR
i,t � 0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (7)

where Eload
i,t and Hload

i,t are the predicted values of electric heat load
power at time t for SB i; ηEDR

i and ηHDR
i are the electric heat demand

response load ratios of transferable types. The transferable demand
response electric heat load has to satisfy the constraints of the full
time period and of being zero, respectively.

3.2.4 Multi-energy flow balance constraints
Smart buildings contain various energy flows such as electricity,

heat, cold, natural gas, and carbon dioxide. Their power balance
constraints are as follows:

Ebuy
i,t + EPV

i,t + ECCHP
i,t + EEssD

i,t � Esell
i,t + Eload

i,t + EDR
i,t + EEV

i,t + ELT
i,t

+ EEssC
i,t , (8)

where Ebuy
i,t and Esell

i,t are the power purchased and sold, respectively,
by SB i from the grid; EPV

i,t is the photovoltaic power generation;
EEssC
i,t and EEssD

i,t represent the charging and discharging power of the
electric energy storage device, respectively; Eload

i,t presents the electric
load power; EDR

i,t is the electric demand response power; EEV
i,t denotes

the power of electric vehicles; and ELT
i,t is the power consumption of

air conditioning and cooling.

HCCHP
i,t +HGL

i,t +HEssD
i,t � Hload

i,t +HDR
i,t +HHT

i,t +HEssC
i,t , (9)

where HEssC
i,t and HEssD

i,t are the heat storage and heat release power
of the thermal energy storage device, respectively; Hload

i,t is the heat
load power;HDR

i,t is the thermal demand response power; andHHT
i,t is

the heating power.

Gbuy
i,t � Gload

i,t + GCCHP
i,t + GGL

i,t , (10)
where Gbuy

i,t denotes the gas power purchased by SB i from the
natural gas network; Gload

i,t is the natural gas load; GCCHP
i,t and GGL

i,t

present the gas consumption power of cogeneration units and
thermal boilers, respectively.

3.3 Minimum operating cost objective
function model under isolated operation
mode

Within this section, the focus lies on formulating the
minimal operational cost W0

i under the independent
operation of SB i. The modeling primarily encompasses
various cost components, which include the cost of electricity
purchased and sold with the large grid WDW

i , the cost of natural
gas purchased from the low and medium voltage gas grid WGW

i ,
the PV penalty cost for light abandonment WPV

i , the cost of
maintenance of the storage equipment WWH

i , and the penalty
cost for carbon emissions WC

i .

WDW
i � ∑tend

t�1 Ebuy
i,t · pEbuy

t − Esell
i,t · pEsell

t( )
WGW

i � ∑tend
t�1 G

buy
i,t · pGbuy

t

WPV
i � ∑tend

t�1 p
PV
i · EPV

i,t + pPVchengfa
i EPVmppt

i,t − EPV
i,t( )[ ]

WWH
i � pEEss

i ·∑tend
t�1 EEssC

i,t + EEssD
i,t( ) + pHEss

i ·∑tend
t�1 HEssC

i,t +HEssD
i,t( )

WC
i � ∑tend

t�1 pCEss · CEss
i,t + pC · CCCHP

i,t + CGL
i,t − CEss

i,t( )[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(11)

where pEbuy
t and pEsell

t present the time-of-use electricity price
constants for SBs purchasing electricity from the grid and selling
electricity; pGbuy

t is the unit time-of-use price constant for natural
gas purchased from the low- and medium-voltage gas network by
SBs; pPV

i is the photovoltaic unit power generation cost coefficient;
pPVchengfa
i denotes the unit penalty cost coefficient for abandoned

light; pEEss
i and pHEss

i represent the depreciation cost coefficients for
the unit electrical and thermal energy storage power, respectively;
pCEss is the unit consumption cost of CO2 after carbon capture and
storage; and pC

i is the unit penalty cost of the CO2 emitted directly
into the atmosphere.
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Minimize W0
i � WDW

i +WGW
i +WPV

i +WWH
i +WC

i

s.t. 1( ) − 11( ) (12)

By employing the aforementioned formula, the minimum
operational cost W0

i for each individual SB within an isolated
operational mode can be derived. This value serves as a reference
point, representing the least favorable outcome for the
forthcoming P2P power sharing model within the building
clusters, which will be expounded upon in Section 4. The sum
W0

sum of the total operating cost of multiple SBs for the isolated
operation mode is expressed as

W0
sum � ∑N

i�1W
0
i . (13)

4 P2P power sharing model within SBs

Within this section, building upon the established framework
of isolated operation models for multiple smart buildings, we
employ the ADMM to formulate a multi-agent P2P power
sharing paradigm within the SB clusters. Specifically, the
modeling is carried out from four aspects: the necessary
preparations for P2P power sharing among the bodies of SBs,
REP bargaining model in the alliance mode, construction of a
power sharing model based on the ADMM (with the aim of
maximizing alliance benefits), and construction of the energy
mapping contribution function to achieve reasonable
redistribution of alliance benefits.

4.1 Preparation for introduction of P2P
power sharing

To clearly demonstrate the process of electric energy sharing
between N smart building bodies, N(N − 1) auxiliary variables
EP2P
i → j, i ≠ j, iϵ[1, N] are introduced, where EP2P

i → j represents the
electric power transmitted from SB i to SB j.

Given the considerable spatial span between SBs and the
utilization of the extensive power grid for transmitting power in
P2P transactions, the obligation to pay network connection fees
arises. Consequently, this study establishes distinct unit costs for
P2P power interactions based on varying spatial distances
between SBs. This approach not only facilitates a more
gradual and organized power interaction gradient between SBs
but also enhances the convergence of the calculation example
toward a singular solution. The transmission cost of electrical
energy interaction between SB i and SB j can be calculated as
follows:

Wep2p
i � ∑N

j�1∑T
t�1 mi→j EP2P

i → j,t

∣∣∣∣∣ ∣∣∣∣∣( )
0≤EP2P

i → j,t ≤EP2P,max
i → j

EP2P
i → j + EP2P

j → i � 0, j ≠ i, i ∈ 1, N[ ], j ∈ 1, N[ ]

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (14)

where Wep2p
i denotes the aggregated cost of electrical energy

transmission incurred by SB i in its interactions with other SBs;
mP2P

i → j represents the unit cost of electrical energy transmission; and
EP2P,max
i → j defines the power limit of electrothermal transmission.

4.2 REP bargaining model under SB model

Expanding upon the previously discussed introduction of P2P
dynamics, the subsequent integration of REP serves to harmonize
the vested interests between the upper-level power grid and users,
mitigating the discord that may arise between the users and power
grid owing to electricity pricing matters. Therefore, the forthcoming
analysis will delve into a comprehensive modeling approach,
examining both constraints and objective functions from a dual
perspective.

4.2.1 Constraint modeling
Market monitoring constraints on the tariff mean value limits

selected in this section:

∑tend
t�1 φ

REPsellAMSB
t ≤ αREPscjd ·∑tend

t�1 p
Ebuy
t

φ REPsellAMSB
min ≤φREPsellAMSB

t ≤φ REPsellAMSB
max

{ , (15)

where φREPsellAMSB
t defines the time-of-use tariff set by the REP,

dictating the rate at which SBs procure electricity from the REP;
pEbuy
t is the time-of-use tariff in the electricity market; αREPscjd

represents the market supervision coefficient, conventionally set
at a value below 1. This deliberate choice fosters the perception
among SB users that the REP pricing stands lower than the
prevailing market rates, thus enhancing user satisfaction;
φ REPsellAMSB

max and φ REPsellAMSB
min denote the upper and lower

thresholds that govern the range within which the REP is
authorized to establish tariff rates.

To ensure an adequate profit margin for the REP, electricity
purchasing prices from the market are frequently subject to
discounts:

χREPbuyGridt � αREPzk · pEbuy
t , (16)

where χREPbuyGridt and αREPzk represent the time-of-use tariff and
discount factors utilized by the REP for the procurement of
electricity from the grid.

The imperative of the REP to collaborate with the grid in
demand management is evidenced by the necessity to devise
electricity pricing mechanisms that influence the load
redistribution within the building clusters. The disparity
EPeak2Valley between peak and off-peak power transactions
orchestrated by the REP from the SBs should align with the pre-
established limit EPeak2Valley

limit , so as to assist the safe and stable
operation of the power grid. Nonetheless, practical operation
scenarios may introduce instances where the observed peak-to-
valley discrepancy surpasses the established threshold or where
further reduction of this variance is plausible. As a result, this
study takes the existing peak-to-valley limit EPeak2Valley

limit as a
benchmark; deviations beyond this benchmark invite
corresponding penalties, whereas adherence to or reduction
below the limit merits rewards.

EPeak2Valley � max EREPsellAMSB( ) +max EREPbuyAMSB( )
WPeak2Valley � β · EPeak2Valley − EPeak2Valley

limit( )
⎧⎨⎩ (17)

where EREPsellSBs and EREPbuySBs are the time-of-use tariff variables
for the sale and purchase of electricity from the REP to the SBs,
respectively; β denotes the incentive and penalty coefficient of the
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distribution network on the effectiveness of the REP in regulating
the peak-to-valley differential; andWPeak2Vally is the penalty cost for
exceeding the peak-to-valley differential.

4.2.2 Objective function modeling
To enhance the profitability of the RE, under this electricity

pricing scheme, a strategic approach that involves deducting the
electricity procurement cost WREPbuyGrid incurred by the REP
from the grid from the revenue WREPsellAMSB amassed through
REP’s electricity sales to smart buildings. Moreover, by factoring
in the penalty incurred due to REP’s peak-to-valley differential
surpassing the stipulated limit, a comprehensive calculation
yields the actual net income denoted as WREP, stemming from
the REP’s pricing strategy:

WREP � WREPsellAMSB −WREPbuyGrid −WPeak2Valley

WREPsellAMSB � ∑tend

t�1 EREPsellAMSB
t · φREPsellAMSB

t( )
WREPbuyGrid � ∑tend

t�1 EREPbuyGrid
t · χREPbuyGridt( )

⎧⎪⎪⎨⎪⎪⎩ . (18)

Nonetheless, formula (18) exhibits a limitation by neglecting
the presence of rooftop photovoltaic systems in SBs, which
enables the scenario of electricity sales from the SBs to REP.
To enhance the model’s accuracy, an enhancement is introduced
whereby the REP procures the electricity price scalar φREPbuyAMSB

from the SBs, while simultaneously vending electricity to the grid
at the electricity price scalar χREPsellGrid. Consequently, Eq. 18 can
be refined as

WREP � WREPsellAMSB −WREPbuyGrid −WPeak2Valley

WREPsellAMSB � ∑tend

t�1 EREPsellAMSB
t · φREPsellAMSB

t − EREPbuyAMSB
t · φREPbuyAMSB( ).

WREPbuyGrid � ∑tend

t�1 EREPbuyGrid
t · χREPbuyGridt − EREPsellGrid

t · χREPsellGrid( )
⎧⎪⎪⎨⎪⎪⎩

(19)

Then, REP empirically develops an effective time-of-use tariff
and analyzes it in comparison with the time-of-use tariff.
Specifically, load forecasting has been employed, utilizing the
ELMAN neural network, with a detailed reference available in
the work of Eskandari et al. (2022). While this aspect is not the
central focus of this study and thus will not be reiterated here. It is
worth noting that the initial generation of electricity prices can be
facilitated by employing algorithms such as deep learning. Such
algorithms establish a correlation model between historical
electricity prices and power dynamics, as evident in the works by
Xie et al. (2023) and Liang et al. (2020). Moreover, a new purchase
power variable of SBs can be brought into the model of fuzzy
training to obtain the initial electricity price closer to the optimal
value, thereby improving the convergence speed of calculation.

4.3 Model for solving subproblem P of
lowest SB operation cost

Due to its commendable convergence properties,
straightforward formulation, and robustness, the ADMM stands
as a suitable tool for resolving optimization challenges featuring
variable equality constraints within a distributed framework.
Therefore, this study uses the ADMM to solve the subproblem P
of the minimum operating cost of the SB cluster, and uses the P2P
power interaction in the resultant minimum cost dispatching

scheme as the subproblem Q of the SB cluster revenue
redistribution to calculate the contribution of each participant
degree input parameters.

With the integration of electricity sharing transaction
variables across intelligent buildings, the inherent output
constraint intervals for each device remain unchanged.
However, it is noteworthy that the resultant output values
experience dynamic optimization in alignment with the
electricity balance equation, influenced by the intricate
interplay of energy interactions. After introducing the
electricity sharing transaction variable between SBs, the new
electricity balance equation of each SB in the system is defined as

Ebuy
i,t + EPV

i,t + ECCHP
i,t + EEssD

i,t � Esell
i,t + Eload

i,t + EDR
i,t + EEV

i,t + ELT
i,t

+ EEssC
i,t +∑N

j�1,j ≠ i
EP2P
i → j,t. (20)

After the introduction of power sharing, the minimum
operating cost WEP2P

i of SB i changes from Eq. 12 to

Minimize WEP2P
i � WDW

i +WGW
i +WPV

i +WWH
i +WC

i +Wep2p
i

s.t. 1( ) − 7( ), 9( ) − 11( ), 14( ), 20( ).
(21)

After the introduction of P2P power sharing, the total operating
costWEP2P

sum of the SB cluster may be further reduced. The lowest total
operating cost of SBs is expressed as

WEP2P
sum � ∑N

i�1W
EP2P
i , (22)

min WEP2P
sum EP2P

i → 1, E
P2P
i → 2,/, EP2P

i → j,/, EP2P
i → N( )

s.t. 1( ) − 7( ), 9( ) − 11( ), 14( ), 20( ) − 22( ) . (23)

Then, using the equation constraint EP2P
i → j + EP2P

j → i � 0 of the
power interaction variables, it can be solved based on the ADMM
algorithm in a distributed manner. The specific steps are shown
in Table 1. where LP1n is the lowest cost expression of SBs
containing the augmentation term; λnk is the Lagrange
multiplier; k represents a distinctive identifier corresponding
to the paired SB i and SB j. In the context of pairwise
combinations among N subjects, the cumulative count
amounts to N(N − 1). ρ denotes the augmentation term
penalty constant, which can further improve the convergence
efficiency through introduction into the square of the two-norm
of the complementary error vector of the interaction quantity. n
presents the current number of iterations, which should remain
below its maximum value of n max. Additionally, the initial
transaction volume for power sharing among SBs stands at 0,
paralleled by the initial Lagrangian multiplier set at 0.

Progressively refine the power sharing transaction variables
through iterative updates. During each distinct iteration,
sequential iterative refinements are executed in accordance with
the primary SB bodies’ index i, ranging sequentially from 1 to n.
Concurrently, the secondary intelligent building index, designated
as j, traverses the same range from 1 to n, excluding instances where
it equals i. It is noteworthy that electric energy interactions modified
in the present evolutionary phase necessitate an update of variable
values before their integration into the solution. This iterative
process continues until all 2N(N − 1) electric energy interaction
variables have been effectively updated.
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4.4 Subproblem Q solution model for
rational redistribution of SB revenue

Within this section, we delve into the modeling of the revenue
redistribution subproblem, denoted as Q, subsequent to the P2P
power sharing framework of SBs. This modeling endeavor
prominently encompasses three pivotal facets: 1) resolving the
cumulative sum of redistributed benefits, thereby
comprehensively addressing the overall quantum of benefits to
be reallocated; 2) determining the proportional contribution
ratios attributed to each individual SB participating in the P2P
power sharing network; and 3) redistributing revenue according
to the proportion of contribution to achieve benefits for all
participants.

First, the total operating cost W0
sum of multiple intelligent

buildings obtained in the isolated operation mode in Section 3 is
subtracted from the total operating cost WEP2P,end

sum in the P2P power
sharing model of the SBs in Section 4.2, and the total redistribution
benefit Q is obtained.

WD � ∑N

i�1W
0
i −∑N

i�1W
EHP2P,end
i −∑N

i�1W
ep2p,end
i (30)

Subsequently, the energy mapping contribution function is
constructed with reference to the economic knowledge, and the
contribution ratio of each SB participating in P2P electric energy
sharing is solved according to the electric energy interaction EP2P,end

i → j .
A contribution function that meets the following basic constraints is
constructed:

1) Universality across all SBs partaking in the P2P power sharing
network.

2) Predominance of energy supply-side contribution over energy-
receiving counterpart.

3) Amplification of unit power sharing transaction contribution
during peak demand periods relative to off-peak intervals.

4) Incremental contribution correlation with escalating transaction
volume.

5) Convergence to zero contribution when transaction volume
becomes null.

6) The contribution is always greater than or equal to 0.

The supplied electric energy EP2P,s
i and received electric

energy EP2P,b
i during the energy sharing transaction process

are defined as

EP2P,s
i � max 0,∑N

j�1,j ≠ iE
P2P,end
i → j( )

EP2P,b
i � min 0,∑N

j�1,j ≠ iE
P2P,end
i → j( )

⎧⎨⎩ (31)

Construct the energy sharing contribution θi that can
satisfy ①–⑥:

θi � ∑T

t�1 pri ebuyt EP2P,s
i,t − pri esellt EP2P,b

i,t( ) (32)

To further promote energy interaction, the linearly ascending
contribution profile can be adeptly translated into an exponential
upsurge. Furthermore, a normalization process can be administered
to preempt the potential escalation of the power series beyond
manageable proportions.

τi � e

θi

∑ N

i�1 θi − 1, (33)
where τi denotes the final contribution of SB i.

Based on the contribution ratios of each SB actively engaged in the
P2P power sharing, a judicious and equitable reallocation of revenue is
effectuated. The benefitϖEHP2P,end

i distributed by SB i can be expressed as

ϖ–EP2P,endi � τi
∑N
i � 1

τi
WD. (34)

Then, the cost W0
i of SB i under the isolated operation mode

is subtracted from the redistributed benefits ϖEP2P,end
i in

the cooperative mode, and the final actual operating cost
W0EP2P

i of the SB after participating in P2P power sharing is
obtained.

W0EP2P
i � W0

i − ϖ–EP2P,endi (35)
Finally, the REP optimal pricing strategy for SB clusters with

P2P power sharing has been modeled.

TABLE 1 ADMM solving steps.

Algorithm ADMM

for iteration = 1, 2, . . ., N do

for t = 1, 2, . . ., T do

The augmented Lagrange multipliers for constructing the SBs minimum
operating cost objective function are:

LP1n � ∑N
i�1W

EP2P
i +∑N·(N−1)

k�1 [λnk(EP2P
i → j + EP2P

j → i) + ρ
2 · ‖EP2P

i → j + EP2P
j → i‖22] (24)

Decomposed into a distributed iterative solution model for each SB.

LP1n,i � WEP2P
i +∑N

j�1 λnk EP2P
i → j + EP2P

j → i( ) + ρ

2
· EP2P

i → j + EP2P
j → i

����� �����22[ ]
s.t. 1( ) − 7( ), 9( ) − 11( ), 14( ), 20( ), 21( )

(25)

Iteratively updating electrical energy shared transaction variables.
EP2P,n+1
i → j � argminEP2P

i → j
LP1n,i

s.t. 1( ) − 7( ), 9( ) − 11( ), 14( ), 20( ), 21( ) (26)

end for

Based on the transaction volume of electric energy sharing among new-
generation smart buildings, iteratively update all N(N − 1) Lagrangian multipliers.

λn+1k � λnk + ρ(EP2P,n+1
i → j + EP2P,n+1

j → i ) (27)

Number of update iterations:

n � n + 1 (28)

Determine if the function has converged:

∑T
t�1∑N

i�1∑N
j�1 EP2P,n+1

i → j + EP2P,n+1
j → i

����� �����22 ≤ ς

或n≥ nmax

⎧⎨⎩ (29)

If condition (29) is satisfied then the iteration terminates, otherwise return to
(26) for the next round of iteration

end for

The convergence condition is satisfied or the maximum number of iterations
n max is reached.

Gain the electrical energy interaction EP2P,end
i → j and the operating cost of each

building WEP2P,end
i

Substituting WEP2P,end
i into Eq. 22 yields the lowest total operating cost

WEP2P,end
sum , retaining the electrical energy interaction costWep2p,end

i of the main body
of each building.
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5 Case analysis

In this section, we substitute the same load data into three
models with different scheduling strategies, thus forming a control
group. Then, a comparative analysis is carried out from the
subproblem P of the minimum cost of the building cluster and
the subproblem Q of benefit redistribution. Finally, the analysis of
the three variables of the electricity price upper limit, market
supervision and absorption, and REP’s discount coefficient for
power purchases from the grid are, respectively, conducted,
which proves the flexibility and necessity of REP’s bargaining
and explains the impact on the revenue and costs of the SBs,
grid, and REP.

5.1 Framework design of three models of
smart buildings

From the perspective of progressive development, this
section undertakes a rigorous comparative analysis based on
models①,②, and③: model① is the isolated operation mode of
multiple SBs under the large market electricity price, the
objective function is Eq. 12, and the constraint conditions are

formulas (1–11); model ② is the SB P2P electricity sharing
mode under the large market electricity price, its objective
function refers to Eq. 19, and the constraints are from
formulas (1–7), (9–11), (14), (20–21), and (25–35); and model
③ is an REP bargaining and SB clusters P2P electricity sharing
model, its objective function is Eq. 19, and the constraint
conditions can be added to the constraints of model ② from
formulas (15–17). The specific model comparison is shown in
Figure 2.

5.2 Model ③ calculation parameter

In this section, we mainly take the most complete model ③
as the core arithmetic example. The particle swarm
optimization (PSO) algorithm is employed on the upper
layer. The initial particle swarm is subject to a maximum of
20 iterations, and its population comprises 50 individuals. In
Eq. 31, the upper limits of the REP-generated tariffs
φ REPsellAMSB

max � 1.1, the lower limits of the REP-generated
tariffs φ REPsellAMSB

min � 0.4, and the discount coefficient of the
REP’s tariffs for purchasing from the grid αREPzk � 1. Amid the
market surveillance and user satisfaction constraints delineated

FIGURE 2
Comparison of three smart building operation models.
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within Eq. 31, the market supervision coefficient αREPscjd = 1 for the
upper limit of the ratio of the average value of REP pricing to the
average value of time-sharing tariffs. The λ1k multiplier of the
ADMM in Eq. 20 in the initialized SB coalition model is 0, and
the incremental term penalty constant ρ � 10e−4. The maximum
number of iterations in Eq. 24 is 50, with a convergence
accuracy of 0.001. Within this section, three SB entities are
selected to establish an alliance for P2P power sharing. An
illustrative analysis of the procedural intricacies, as delineated
in Figure 2, is meticulously undertaken. The detailed
configuration of equipment composition and constraints of
power capacity pertaining to the three SBs are meticulously
outlined, and the complementary parameters associated with
the equipment landscape within these intelligent buildings find
elucidation. The day-ahead prediction curves of PV and
electricity–heat–gas–cooling loads are shown in Figure 3.

5.3 Analysis of results of lowest alliance
operation cost subproblem P

This part is conducted within the computational
environment provided by an Intel® Core™ i7-7700 CPU
processor @ 3.60 GHz. The programming tool employed is
MATLAB 2018b, complemented by the commercial solver
Gurobi version 10.0.1 for intricate problem solving. The
focal point of the calculation is a representative example,

undertaken by combining the established initial parameters
with the foundational parameters of model ③. The ensuing
analysis involves the generation of iterative curves, further
extending to the calculation of the electricity sharing
transaction volumes for both model ② and model ③. These
transactions are scrutinized in the pursuit of maximizing the
return yielded by the REP, thus encapsulating the essence of the
investigation.

5.3.1 Analysis of REP iterative revenue
To further analyze the impact of introducing REP on the

revenue of the power grid and SBs, a comprehensive analytical
framework is adopted. This bifurcated approach entails the
utilization of the particle swarm algorithm at the upper
layer, complemented by the application of the ADMM at the
lower layer, facilitating iterative computations. The results of
the REP’s iterative income curve of model ② are shown in
Figure 4.

Figure 4 demonstrates the convergence within a 20-iteration
threshold, effectively highlighting both the algorithm’s rapid
convergence rate and its inherent logical coherence. Notably,
with iterations below eight, the REP revenue undergoes swift
transformation from a negative value to a substantially positive
one, signifying the algorithm’s speedy convergence characteristics.
By the 10th iteration, a steady income value is attained, a pivotal
prerequisite for establishing the REP pricing framework governing
the lower tier of electric energy sharing.

FIGURE 3
Day-ahead prediction curves of photovoltaic and electricity–heat–gas–cooling loads of smart buildings. (A) Smart building ①: residential smart
building. (B) Smart building②: industrial smart building. (C) Smart building③: business smart building. (D) Electricity price of grid and the upper and lower
limits of REP pricing.
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5.3.2 Power sharing transactions before and after
introduction of REP

The P2P power sharing transaction volume of each building
before and after the introduction of the REP is shown in
Figures 5A, B

Evidently depicted in Figure 5A, a distinctive pattern emerges
wherein residential buildings exhibit scattered electrical loads,
manifesting a power surplus. Conversely, commercial and
industrial structures contend with substantial load demands
surpassing their intrinsic power output. The substantial
transmission of electric energy from residential buildings to
commercial and industrial structures results in escalated
transmission costs. At the end of power sharing, if the load
demand is still not met, buildings have to purchase power from
the higher-level power grid. There is a power price game between the
cost and the cost of power sharing. Figure 5B demonstrates that after

the introduction of REP, a conspicuous reduction in power trading
volume is observed, predominantly concentrated during peak
photovoltaic output periods. This alteration aligns with a
discernible decrease in power transmission costs, effectively
signifying that REP pricing accomplishes two key objectives:
indirect regulation of the electricity price-related tension between
the power grid and building users, while concurrently diminishing
energy loss expenses.

5.4 Analysis of Q results of reasonably
redistributing subproblem of alliance
revenue

In this section, we integrate the aforementioned electric energy
transaction volumes into the energy mapping contribution function,
thereby facilitating a systematic realignment of benefits based on the
contribution ratios of SBs within the P2P electric energy sharing
interaction. Then, the comparison of the REP bargaining price and
time-of-use electricity price after benefit redistribution and the
actual operating cost results are respectively analyzed.

5.4.1 Comparative analysis of time-of-use tariffs
before and after revenue redistribution

The comparison diagram between the optimal REP price and
time-of-use tariffs obtained through the iterative calculation under
the P2P power sharing model is shown in Figure 6.

From Figure 6, it can be observed that during the two time
periods [0–6] and [15–18], the REP pricing is slightly higher than
the time-of-use tariff, and SBs purchase less electricity from the grid.
This is because during these periods, most of the electricity supply of
the SB is derived from the energy stored in the SB’s energy storage
system from the previous day. In the [6–12] time period, the time-
of-use electricity price experiences a significant increase, while the
increase in REP pricing is comparatively minor. Moreover, the roof
photovoltaic power generation within the SBs contributes to the

FIGURE 4
REP iterative income of smart buildings.

FIGURE 5
P2P power sharing balance result. (A) Electricity sharing balance results before REP introduction. (B) Electricity trading balance results after REP
introduction.
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electricity supply, thereby reducing the amount of electricity
purchased from the main grid. During the [12–21] time period,
there is a gradual increase in the amount of electricity purchased
from the main grid in the [12–16] time period, followed by a
decrease in electricity purchases from the main grid in the
[16–21] time period. As a result, the pricing by the REP also
adjusts accordingly, further demonstrating the REP’s ability to
promptly respond to the demand-side users’ requirements and
thereby enhance user satisfaction.

5.4.2 Analysis of building operating cost before and
after revenue redistribution

Referring to the data, the post-P2P power sharing scenario
exhibits a decrease in operating costs for residential, industrial,
and commercial buildings—14,282 RMB to 13,910 RMB for
residential, 14,575 RMB to 14,187 RMB for industrial, and
14,356 RMB to 14,029 RMB for commercial structures. Despite
the cost reductions, an issue of uneven distribution emerges. To
address this concern, this study introduces the REP mechanism to
rebalance benefits across these buildings. This undertaking involves
calculating the contribution ratio via the energy mapping
contribution function. Subsequently, this ratio is applied to each

building entity, ensuring equitable benefit redistribution through
REP participation. The P2P electricity, gas, and heat equilibrium
post-redistribution is depicted.

The inclusion of the REP between the three buildings, along with
their engagement in the equitable redistribution of benefits, yields
substantial improvements. As observed, the pre- and post-
redistribution alliance operating costs are significantly reduced,
coupled with increased power grid and REP revenues. This
underscores the imperative nature of benefit redistribution.

From Table 2, it is evident that after the reassignment of revenue
among residential buildings, the costs have witnessed a reduction of
11.8%. By contrast, for industrial and commercial buildings, the
operating costs exhibit a remarkable 29.1% and 52.5% decrease,
respectively—both before and after benefit redistribution. This
collective cost reduction engenders a substantial decrease in the
overall system operating costs, aligning favorably with enhanced
economic efficiency.

5.5 Analysis of factors affecting revenue and
costs of power grid, REP, and SBs

The above example analysis only focuses on specific examples
where the REP electricity price limit variable φ REPsellAMSB

max � 1.1,
φ REPsellAMSB

min � 0.4; the market supervision coefficient variable
αREPscjd � 1; the discount coefficient variable of REP’s electricity
purchase price from the grid αREPzk � 1. This analysis fails to
entirely encompass the full flexibility inherent in REP market
bargaining. To address this limitation, these three variables will
be flexibly selected to analyze their different impacts on the
bargaining effect of REP.

5.5.1 Influence analysis of electricity price limit
variable

In this section, model ③ can be transformed into model ②
when the electricity price limit variable of the REP bargaining model
is taken as the grid large market electricity price constant
φ REPsellAMSB

max � φ REPsellAMSB
min � χREPbuyGridt , the market supervision

coefficient variable αREPzk � 1, and the discount coefficient variable
of REP’s electricity purchase price from the grid αREPscjd = 1. In
addition, under the conditions that the market supervision
coefficient variables all take αREPzk � 1 and the discount coefficient
variables of the REP’s electricity purchase price from the grid all take

FIGURE 6
Comparison of time-of-use tariffs of the grid and REP optimal
pricing.

TABLE 2 Analysis of smart buildings revenue redistribution results.

Building
type

Independent
operating
costs/RMB

P2P power
sharing

cost (RMB)

Contribution
degree

Proportion of
redistribution

benefits

Redistribution of
benefits (RMB)

Actual operation
cost after

connection (RMB)

Residential
building

14282 53.94 23615 38.9% 12771 1512

Industrial
building

14575 34.23 11789 34.4% 11286 3289

Commercial
building

14356 42.47 42376 28.7% 9411 4945

Total 43214 130.64 32780 100% 33468 9746
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αREPscjd � 1, for the different combinations of the upper limit of the
electricity price when the lower limit variable of the electricity price
is 0.4, model ③ REP optimal market negotiation is carried out
separately, and the results are shown in Figure 7.

The depicted figure reveals that as the upper limit value of the
electricity price increases, each cost and income value exhibits an
upward trajectory. The purpose behind this analysis is to identify
an electricity price limit where both grid income and REP income
are maximized, thereby determining the optimal upper limit for
electricity pricing. Notably, when the electricity price limit is below
0.8, the REP income turns negative, leading to suboptimal power
grid income and reduced overall revenue. Moreover, the total cost
of SBs consistently surpasses the power purchase expenses. This

dynamic signifies effective power transaction utilization,
concurrently reducing energy wastage within buildings.

5.5.2 Analysis of influence of market supervision
coefficients

In this section, different values of the market supervision
coefficient variables are substituted into the REP optimal market
price bargaining model when the REP power price limit variable
φ REPsellAMSB

max � 1.1, φ REPsellAMSB
min � 0.4, and the discount coefficient

variable of REP’s electricity purchase price from the grid αREPzk � 1.
The results are shown in Figure 8.

As shown in Figure 8, an increase in the market supervision
coefficient leads to a general upward trajectory in both costs and
revenues. When the supervision coefficient reaches 1.0, various costs
and revenues stabilize, rendering the market incapable of effectively
regulating returns and costs. Consequently, it becomes evident that a
supervision coefficient below 1 effectively regulates both grid and
REP revenues, ultimately yielding the optimal electricity price.

5.5.3 Analysis of influence of discount coefficient
variable on power purchase price of REP from grid

In this section, we substitute the different values of the discount
coefficient variable αREPzk of the REP’s electricity purchase price from
the grid into the model ③ REP optimal market bargaining price
when the REP power price limit variable φ REPsellAMSB

max � 1.1,
φ REPsellAMSB

min � 0.4, and the market supervision coefficient
variable αREPscjd � 1. The results are shown in Figure 9.

Figure 9 illustrates that as the REP power purchase discount
coefficient rises, there is a marginal decrease observed in both the
cost of SB clusters and the power purchase expenses. However, these
trends tend to stabilize notably when the discount coefficient reaches
1.4. As the discount coefficient incrementally rises, there is a
corresponding increase in power grid income, accompanied by a
gradual decrease in REP income—potentially even resulting in
losses. This underlines the significance of optimizing REP and

FIGURE 7
Cost–revenue curve of each subject under different electricity
price ceiling.

FIGURE 8
Cost–revenue curve of each subject under different market
supervision coefficients.

FIGURE 9
Cost–revenue curve of each subject in the change of REP
discount coefficient.
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grid revenue to foster the future development of a smart grid
infrastructure.

6 Conclusion

Addressing the challenge of load variability stemming from
fluctuations in the peak-to-valley disparity within the expansive
market, which is a critical concern impacting the power grid sales
revenue, this study presents a pricing strategy of introducing the REP
into SB clusters with P2P power sharing method. Through rigorous
analysis of the computational data, the following insights have emerged:

1) By adopting the P2P power sharing approach, a notable 7.1%
reduction in abandoned wind and solar energy within each lower-
level building is achieved. This method curtails energy wastage
through inter-building power transmission while concurrently
minimizing the variance between load peaks and valleys.

2) The REP market pricing strategy introduced in this study
effectively circumvents the revenue loss inherent in the
conventional stepped time-of-use electricity pricing structure.
Leveraging the REP, a harmonized supply–demand relationship
between the upper-level power grid and lower-level building
alliance is achieved, resulting in a commendable 12.4% reduction
in alliance-wide costs. This strategy not only bolsters the overall
economic efficiency of the system but also notably enhances user
satisfaction across the various buildings.

3) For lower-level SB entities, the proposed methodology employs the
PSO algorithm to derive preliminary electricity price variables at the
upper layer. Subsequently, the lower layer employs the ADMM to
achieve a distributed solution, thereby maximizing the collective
benefits of the SBs and ensuring stringent privacy protection for
each SB body. By establishing an energy mapping contribution
function model that comprehensively considers the quantity, type,
supply side, and time period of energy interaction, it further
promotes the reasonable redistribution of revenues.
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