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With the increasing integration of renewable energy into the power grid, the
traditional roles of the transmission and distribution networks have become less
distinct at the operational level. The integration between distribution network
planning (DNP) and the transmission and distribution networks operation is crucial
to ensure grid stability. Existing research has primarily focused on collaborative
operation control between transmission and distribution networks, leaving a gap
in integrated DNP, since few works can handle the integer variables. This study
proposes a distribution network planning method based on the integration of
operation and planning and coordinated with the transmission network. It aims to
minimize investment and operational costs while considering local generation
units, distributed renewables, and network constraints. Using a heterogeneous
decomposition algorithm (HGD), the optimization model alternates between the
two networks, assisted by injected parameters for global optimality. A
convolutional neural network (CNN) surrogate model is then used to rapidly
optimize precise distribution network plans that coordinate with the
transmission network. Experimental results on IEEE 30 and IEEE 69 cases
demonstrate that the proposed approach offers valuable engineering benefits,
reducing iteration counts by up to 20% and improving accuracy compared to
other distributed algorithms.
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1 Introduction

The DNP could ensure the economic and secure operation of power systems. For a long
time, DNP has been closely related to developing and evolving generation-transmission-
distribution characteristics (Wang et al., 2020). The emergence of distributed renewable
energy has brought uncontrollable, stochastic, and fluctuating issues to power flow (Liu et al.,
2022; Lotfi, 2022). The uncertainty of their spatial distribution profoundly impacts DNP,
which also needs to consider the renewable energy consumption capacity to optimize the
allocation of renewable energy output ratios (Wang et al., 2020).
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Compared to DNP, the existing research on coordination
optimization of transmission and distribution mainly focuses on
four problems (Xie et al., 2023): economic dispatch (Li et al., 2016,
2018b; Loukarakis, Dent and Bialek, 2016; Yu et al., 2019), unit
commitment (Kargarian and Fu, 2014; Nawaz and Wang, 2021;
Zhang et al., 2022; Zhang et al., 2022), optimal power flow (Li et al.,
2018a; Mohammadi, Mehrtash and Kargarian, 2019; Lin et al., 2020;
Zuo et al., 2020; Tang et al., 2021), and reactive power optimization
(Wang, 2015; Lin et al., 2017; Sun, 2019). These model DNP
problems as optimization problems with nonlinear constraints,
which contain sparse Jacobian matrix due to different
transmission and distribution power grid parameters. Some state-
of-the-art optimization techniques are introduced due to the feature
of problems. The analytical target cascading method (Kargarian and
Fu, 2014; Mohammadi, Mehrtash and Kargarian, 2019; Zhang et al.,
2022; Zhang et al., 2022) is proposed in the literature. However, its
algorithm suffers from slow convergence speed, easy oscillation
around the optimal point, or divergence issues when improper
penalty multiplier selection and imbalanced weights among
subsystems occur. Relatively, the HGD algorithm, which is based
on boundary interaction variables (Li et al., 2016; 2018a), is widely
applied in heterogeneous system solving (Yu et al., 2019) and can be
combined with sensitivity calculation (Li et al., 2018b) or the
alternating direction multiplier method (ADMM) to reach the
optimum of more complex multi-period (Loukarakis, Dent and
Bialek, 2016) and multi-objective (Zuo et al., 2020) problems. Since
the HGD composite algorithm above requires optimization in each
iteration (Wang, 2015; Lin et al., 2017; Zhao et al., 2019),
calculations can be computationally intensive, especially in the
case of large-scale data or complex models, less-iterative (Tang
et al., 2021) algorithms, non-iterative (Lin et al., 2020)
algorithms, mechanism-based algorithms and heuristic algorithms
(Lotfi and Shojaei, 2022) are proposed to substitute for iterative
algorithms, wherein the convergence performance of the first two
and the generality of the latter two cannot be guaranteed.

Although the reported methods show a certain level of
effectiveness in the coordination optimization of transmission
and distribution, they offer the following inadequacies:

1) The composite distributed solution algorithm requires
customization for specific problems; its solution speed
becomes uncontrollable as the problem size increases.
Moreover, its global optimality and algorithm convergence
cannot be adequately demonstrated.

2) The existing academic literature mainly focuses on dealing with
continuous optimization problems, but only some studies on
mixed-integer optimization problems are represented by DNP.
Only one study in the existing literature addresses the
transmission network planning problem using Benders
Decomposition for DC power flow constraints (Liu et al., 2021).
Still, this method cannot be transferred to distribution network
planning problems with nonlinear power flow constraints.
Consequently, more research should be conducted on mixed-
integer optimization problems related explicitly to DNP.

To fill the above gaps, this paper focuses on the DNP method
based on integrating operation and planning and coordinated with
the transmission network.

1) An integrated optimization mathematical model is proposed for
coordinated operation and planning of the distribution and
transmission networks. This model aims to minimize the
investment and construction cost of the distribution network,
along with the generation cost, load shedding cost, and
renewable energy curtailment cost of the transmission and
distribution networks (Lotfi, 2020; Lotfi, Ghazi and Naghibi-
Sistani, 2020; Lotfi and Ghazi, 2021). The model incorporates
heterogeneous DC power flow and distflow constraints in the
transmission and distribution networks to achieve this
optimization.

2) A heterogeneous decomposition of optimization models for both
the transmission and distribution networks was performed,
using substations as boundaries. A concise HGD algorithm
was employed to achieve distributed solving of the
optimization models containing continuous variables. This
approach allows for efficient convergence within a limited
number of steps.

3) For integer variables, due to their association with the
distribution network topology, a correlation matrix is
introduced to describe the distribution network topology. A
convolutional neural network is employed to learn and extract
topological features, enabling the efficient fitting of the non-
linear relationship between integer variables and optimization
objectives. This significantly reduces the overall computational
complexity of the process.

The proposed DNP method has been tested on a benchmark
power system constructed of IEEE CASE 30 and CASE 69,
including the comparative study with a global optimization
algorithm, since there are few relevant studies. The results
indicate that, within the allowed precision of the DNP problem,
the proposed DNP method achieves optimization results
consistent with global optimization algorithms and efficiently
completes the optimization process.

FIGURE 1
Structure diagram of power transmission and distribution
network.
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2 Specific DNP model in synergy with
the transmission network

As shown in Figure 1, the power grid is divided into three parts:
the transmission network, the substation, and the distribution
network. The substation nodes serve as the boundaries between
the transmission and distribution networks.

2.1 Objective function

A DNP model should be built with objective functions
constructed from both planning and operation perspectives to
establish a coordinated transmission and distribution model for
planning and operation. The aim of the planning function should
be based on the investment and construction cost of the
distribution grid. In contrast, the operation objective function
should consider the operating costs of both the transmission grid
and the distribution grid. The operational costs of the
transmission and distribution grid should include the cost of
power generation, the penalty for load shedding, and the cost of
renewable energy curtailment. The objective functions can be
expressed as follows:

min δIC + δOPT,c + δOPT,l + δOPT,r + δOPD,c + δOPD,l + δOPD,r (1)

The symbols in the equation represent the following costs: δIC

represents the investment and construction cost for the distribution
network; δOPT,c represents the conventional generation cost for the
transmission network; δOPT,l represents the loss of load penalty cost
for the transmission network; δOPT,r represents the curtailment cost of
renewable energy for the transmission network; δOPD,c represents the
conventional generation cost for the distribution network; δOPD,l

represents the loss of load penalty cost for the distribution
network; δOPD,r represents the curtailment cost of renewable energy
for the distribution network.

1) Investment and construction costs for the distribution network
δIC.

δIC � ∑
c∈CIC

uIC,cbc (2)

The symbols in the equation are defined as follows: uIC,c is the
investment cost for building cable in the distribution network; bc is
the decision variable for investing and constructing cables in the
distribution network, which is a 0-1 variable and indexed by the
index of the cable to be built; CIC is the set of lines to be invested and
constructed.

2) Conventional generation cost for the transmission network δOPT,c.

δOPT,c � ∑
s∈S

γs,c ∑
∀t∈T

∑
i∈NT

cci,sP
c
i,t,s (3)

In the equation, S represents the set of scenarios; s is the index of
the scenario; γs,c is the weight of the conventional generator
scenario; T represents the set of time sections; t is the index of
the time section; NT represents the set of nodes in the transmission
network; i is the index of the node; cci,s represents the unit generation

cost of the conventional generator at node i under scenario s; and
Pc
i,t,s represents the output of the conventional generator at time t

under scenario s.

3) Loss of load penalty cost for the transmission network δOPT,l .

δOPT,l � ∑
s∈S

γs,l ∑
∀t∈T

∑
i∈NT

cli,sP
l
i,t,s (4)

In the formula, γs,l represents the weight of the loss scenario, c
l
i,s

represents the unit loss cost at the node i under the scenario s, and Pl
i,t,s

represents the amount of loss at the moment t under the scenario s.

4) Curtailment cost of renewable energy for the transmission
network δOPT,l .

δOPT,r � ∑
s∈S

γs,r ∑
∀t∈T

∑
i∈NT

cri,s Pr,max
i,t,s − Pr

i,t,s( ) (5)

In the equation, γs,r represents the scenario weight for renewable
energy, cri,s represents the unit abandonment cost of renewable energy
for the node i in the scenario s, Pr,max

i,t,s represents the maximum output
of renewable energy at the node i during the time period t in the
scenario s, and Pr

i,t,s represents the output of renewable energy at the
node i during the time period t in the scenario s.

5) Conventional generation cost for the distribution network δOPD,c.

δOPD,c � ∑
s∈S

γs,c ∑
∀t∈T

∑
i∈ND

cci,sP
c
i,t,s (6)

In the equation, ND is the set of distribution network nodes.

6) Loss of load penalty cost for the distribution network δOPD,l .

δOPD,l � ∑
s∈S

γs,l ∑
∀t∈T

∑
i∈ND

cli,sP
l
i,t,s (7)

7) Curtailment cost of renewable energy for the distribution
network δOPD,r.

δOPD,r � ∑
s∈S

γs,r ∑
∀t∈T

∑
i∈ND

cri,s Pr,max
i,t,s − Pr

i,t,s( ) (8)

2.2 Constraints

The transmission constraints are described below.

1) Power balance equation for transmission network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s � ∑

l∈Lhi

Pf
l,t,s +Di,t,s, i ∈ NT,∀t,∀s (9)

In the equation, Lei represents the set of lines connected to node i as
the ending point, Lhi represents the set of lines connected to node i as the
starting point,Pf

l,t,s represents the flow on line l,Di,t,s represents the load
at node i, and the subscript l represents the index of the line.

2) Power flow equation of transmission network.

Pf
l,i,t,s � Bl θ

h
t,s − θet,s( ), l ∈ LT,∀t,∀s (10)
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In the equation, Pf
l,i,t,s represents the flow of line l, Bl is the

reciprocal of the reactance of line l, θht,s and θet,s are the phase angles
of the starting node and the ending node of line l, respectively. LT is
the set of transmission lines in the power grid.

3) Transmission network line capacity constraints.

Pf,min ≤Pf
l,i,t,s ≤Pf,max, l ∈ LT, i ∈ NT,∀t,∀s (11)

Where: Pf,max and Pf,min are the upper and lower limits of the
line transmission power.

4) Generation output constraints in transmission network.

Pc,min
i ≤Pc

i,t,s ≤P
c,max
i , i ∈ NT,∀t,∀s (12)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ NT,∀t,∀s (13)
Pr,min
i ≤Pr

i,t,s ≤P
r,max
i , i ∈ NT,∀t,∀s (14)

Where: Pc,max
i and Pc,min

i are the upper and lower limits of
conventional generation output at node; ϑ+ and ϑ− are the maximum
change ranges of conventional generation output within a time
interval, expressed as a percentage of unit capacity; Pr,max

i and Pr,min
i

are the upper and lower limits of renewable generation output.

5) Transmission network load shedding constraint.

0≤Pl
i,t,s ≤Pl. max

i,t,s , i ∈ NT,∀t,∀s (15)

In the equation, Pl. max
i,t,s represents the maximum load shedding

capacity at node i.
The distribution constraints are described below.

1) Power balance equation for distribution network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s − rlιl,t,s( ) � ∑

l∈Lhi

Pf
l,t,s, i ∈ ND,∀t,∀s

(16)
Qc

i,t,s + Qr
i,t,s + ∑

l∈Lei

Qf
l,t,s − xlιl,t,s( ) � ∑

l∈Lhi

Qf
l,t,s, i ∈ ND,∀t,∀s (17)

ιl,t,s � Il,t,s
∣∣∣∣ ∣∣∣∣2,∀l ∈ LD,∀t,∀s (18)

In the equation: Qc
i,t,s and Qr

i,t,s are the reactive power output of
conventional generators and renewable energy generators,
respectively; Qf

l,t,s is the reactive power flow on the line; rl and xl

are the resistance and reactance of the line, respectively; Il is the
current on the line; LD is the set of distribution network lines; l is the
line index.

2) Distribution network node voltage equation.

vel,t,s � vhl,t,s − 2 rlP
f
l,i,t,s + xlQ

f
l,i,t,s( ) + r2l + x2

l( )ιl,t,s,∀l ∈ LD,∀t,∀s

(19)
vl,t,s � Vl,t,s

∣∣∣∣ ∣∣∣∣2,∀l ∈ LD,∀t,∀s (20)

In the equation, vhl,t,s and vel,t,s represent the squared voltage
magnitudes at the starting and ending nodes of line l,
respectively.

3) Power flow equation of transmission network.

ιl,t,s �
Pf
l,t.s( )2 + Qf

l,t.s( )2
vl,t,s

,∀l ∈ LD,∀t,∀s (21)

4) Upper and lower voltage limits for distribution network nodes.

V min ≤Vl,t,s ≤V max,∀l ∈ LD,∀t,∀s (22)
Where: V max and Vmin are the upper and lower limits of the

distribution network node voltage, respectively.

5) Distributed generation output constraints in transmission
network.

Pc,min
i ≤Pc

i,t,s ≤P
c,max
i , i ∈ ND,∀t,∀s (23)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ ND,∀t,∀s (24)
Pr,min
i ≤Pr

i,t,s ≤P
r,max
i , i ∈ ND,∀t,∀s (25)

6) Distribution network load shedding constraint.

0≤Pl
i,t,s ≤Pl. max

i,t,s , i ∈ ND,∀t,∀s (26)

The substation constraints are described below.

1) Power balance equation for substation network nodes.

Pc
i,t,s + Pl

i,t,s + Pr
i,t,s + ∑

l∈Lei

Pf
l,t,s � ∑

l∈Lhi

Pf
l,t,s +Di,t,s, i ∈ NS,∀t,∀s (27)

Where: NS represents the set of substation nodes.

2) Local generation output constraints in substation network.

Pc,min
i ≤Pc

i,t,s ≤Pc,max
i , i ∈ NS,∀t,∀s (28)

ϑ−Pc,max
i ≤Pc

i,t,s − Pc
i,t−1,s ≤ ϑ+Pc,max

i , i ∈ NS,∀t,∀s (29)

3 Solution method

3.1 Construction of a collaborative operation
model for transmission and distribution

In traditional DNP, the transmission network and substations are
treated as infinite power sources. In collaborative planning between the
transmission and distribution networks, a network model is established
for the transmission network, including line flows, distributed generation
units, and renewable energy, to reflect the real-time operating status of the
transmission network. To achieve optimized calculation of the
collaborative operation between transmission and distribution, variable
exchange is required at the transmission-distribution boundary to achieve
the optimal dispatch under the given planning scheme. The construction
of the collaborative operation optimization model between transmission
and distribution is shown in the following equation:

minOc
T cvT, x

v
T, x

v
S( ) + Oc

D cvD, x
v
D, x

v
S( )

gT cvT, x
v
T, x

v
S( )≥ 0 → μT

hT cvT, x
v
T, x

v
S( ) � 0 → λT

gD cvD, x
v
D, x

v
S( )≥ 0 → μD

hD cvD, x
v
D, x

v
S( ) � 0 → λD

gS cvS, x
v
S( )≥ 0 → μS

hS cvD, x
v
D, x

v
T, x

v
S( ) � 0 → λS

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(30)
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In the equation,Oc
T(cvT, xv

T, x
v
S) represents the operational cost of

the transmission network, corresponding to Eqs 2–4;
Oc

D(cvD, xv
D, x

v
S) represents the operational cost of the distribution

network, corresponding to Eqs 5–7; g and h respectively correspond
to inequality constraints and equality constraints; μ and λ

correspond to Lagrange multipliers for inequality constraints and
equality constraints. cv and xv represents control variables and
represents state variables.

Operating model, the “node splitting” concept is used, and
auxiliary functions for the injection of power from substations
into the distribution network ySD , the injection of power from
the transmission network region into the substation region fTS ,
and the injection of power from the substation region into the
distribution network region fSD are introduced. Therefore, Eq.
27 can be decomposed into the power constraint for the injection
of power from the transmission network region into the
substation region Eq. 32 and the power constraint for the
injection of power from the substation region into the
distribution network region Eq. 33. The abstract expression of
Eq. 27 is shown in Eq. 31.

hS cvD, x
v
D, x

v
T, x

v
S( ) � 0 (31)

fTS cvS, x
v
T, x

v
S( ) � ySD (32)

fSD xv
T, x

v
S( ) � ySD (33)

The Lagrange function of Eq. 30 can be expressed as

L � Oc
T cvT, x

v
T, x

v
S( ) + Oc

D cvD, x
v
D, x

v
S( ) + μTTgT

+λTThT + μTDgD + λTDhD + μTS gS

+λTTS fTS − ySD( ) + λTSD ySD − fSD( ) (34)
Further, the Karush Kuhn Tucher (KKT) condition can be

expressed as.

1) The partial derivative of each variable is equal to 0;
2) Satisfying equality and inequality constraints;
3) The complementary relaxation condition is satisfied.

3.2 Solution for the collaborative operation
model for transmission and distribution

The planning model algorithm utilizes the HGD algorithm for
solving. The solving approach is as follows:

The coordinated operation model of transmission and distribution
(30) can be decomposed into the sub-model of transmission network
operation optimization and the sub-model of distribution network
operation optimization with the aid of auxiliary functions. The
auxiliary functions are used to ensure that the optimization
objectives of the two sub-models after decomposition are consistent
with the optimization objective of the original model.

Specifically, the sub-model of transmission network operation
optimization can be represented by Eq. 35, and the sub-model of
distribution network operation optimization can be represented by
Eq. 36.

minOc
T cvT, x

v
T, x

v
S( ) + AT

s.t. cvT, c
v
S, x

v
T, x

v
S( ) ∈ DT(ySD

* ) (35)

minOc
D cvD, x

v
D, x

v
S*( ) + AD

s.t. cvD, x
v
D, ySD( ) ∈ DD xv

S*( ) (36)

In the equations: DT(y*
SD) represents the feasible domain of the

sub-model of transmission network operation optimization while
ySD � ySD

* ;DD(xv
S*) represents the feasible domain of the sub-

model of distribution network operation optimization while
xv
S � xv

S*; AT and AD are auxiliary functions introduced into the
decomposed optimization model to ensure the optimality condition
of the original model is satisfied.

To satisfy the optimality condition, the auxiliary function should
satisfy the following equation:

AT xS( ) � hTBDxS

AD ySD( ) � λTTSySD
{ (37)

Where:

hSD � ∂Oc
D

∂xv
S

+ ∂hTD
∂xv

S

λD + ∂gT
D

∂xv
S

μD + ∂fT
SD

∂xv
S

λSD (38)

The HGD algorithm solves the operation optimization models
of transmission and distribution networks alternately through
iterations until the physical quantities related to the boundary
region converge. The specific steps for solving the coordinated
operation model of transmission and distribution using the HGD
algorithm are shown in Figure 2.

3.3 Construction and optimization of DNP
agent model for coordinated operation of
transmission and distribution based on
convolutional neural network

CNN is one of the classical algorithms in deep learning. Its
internal structure uses weight sharing and local connectivity,
which enables CNN to effectively extract deep-level features
contained in data while reducing algorithm complexity. CNN
mainly consists of a convolutional layer that performs
convolution calculation on the data and extracts potential
features and a pooling layer that downsamples and compresses
network parameters. The alternating use of convolutional and
pooling layers can effectively extract the potential features of the
input data and reduce the errors caused by manual feature
extraction. The structure diagram of one-dimensional CNN is
shown in Figure 3.

The construction and solution of the coordinated operation
model for the transmission and distribution system described in
Section 3.1, Section 3.2 can output the optimal operating cost for
a given planning scheme. Combined with the investment and
construction cost of the distribution network corresponding to
the planning scheme, as shown in Eq. 2, the total cost of the
scheme can be obtained. In practical engineering problems, the
feasible planning schemes for the stock planning of the
distribution network are generated from a planning problem
library accumulated over some time. Therefore the number of
feasible planning schemes is often limited. In addition,
considering the large scale of the distribution network, the
introduction of nonlinear constraints in the distribution
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network power flow, and the growth in the number of operating
scenarios, calculating the total cost for each feasible planning
scheme and seeking optimization will increase the time and space
complexity. However, each planning scheme corresponds to a
topological structure of the distribution network, which an
adjacency matrix can intuitively represent. Therefore, a
convolutional neural network can be introduced to map the
topological structure of the distribution network to the total
cost, constructing a proxy model for the complex coordinated
operation model of the transmission and distribution system and
achieving rapid optimization of the total cost for a limited
number of planning schemes.

4 Case study

4.1 Case construction

The IEEE transmission network test case CASE 30 and IEEE
distribution network test case CASE 69 are concatenated.
Specifically, node 30 of CASE 30 is connected to the root node
of CASE 69 via a single substation node. The voltage amplitude
upper and lower limits for each node in the distribution network are
1.1 p. u. and 0.9 p. u., respectively. In the transmission network test
case CASE 30, nodes 1, 2, 22, 23, and 27 are connected to
conventional thermal power generation units, while nodes 3, 4,

FIGURE 2
HGD algorithm flowchart.

FIGURE 3
CNN structure diagram.
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and 6 are connected to renewable energy generation units. In the
distribution network test case CASE 69, some nodes are connected
to local conventional power generation units and distributed
renewable energy sources, whose parameters are listed in Table 1.
The costs are showed in Table 2. The load coefficients and renewable
energy unit output coefficients are shown in Figures 4, 5. All
calculations are performed by Gurobi 10.0.2 API for Python on
an Intel Core I7 11700F 2.5 GHz processor.

4.2 Example results and analysis

The proposed lines to be built in this case study are (24–50),
(24–52), (16–50), (16–65), (16–69), (50–65), (30–52), (28–60),
(50–60), and (18–67), which can generate a total of
1024 planning schemes through permutation and combination.

The total costs of some planning schemes, calculated by the
model described in Chapter 3, are shown in Table 3.

From Table 3, it can be seen that three planning schemes can be
generated by selecting Line (16–35) and Line (24–50), among which
the planning scheme that only constructs Line (24–50) has the
lowest total cost. The planning scheme that constructs both Line
(16–35) and Line (24–50) is the second cheapest, followed by the
planning scheme that only constructs Line (16–35). In the four
typical scenarios constructed in this paper, operating costs account
for a relatively large proportion of the total cost of the planning
scheme. As the number of typical scenarios inputted further
increases, the proportion of operating costs in the total cost of
the planning scheme will also increase. Theoretically, the more
typical scenarios are inputted, the more the planning scheme can
reflect its impact on the actual operating costs of various levels of
power grids.

Considering the number of typical scenarios increases and the
granularity of a single scenario in practical engineering applications
as the transmission and distribution network scale increases, the
time and space complexity of a single operation of the HGD
algorithm, which is mainly based on iterative calculations, will
increase significantly. Reducing the calls to the HGD algorithm
in the solution algorithm is a vital optimization direction. At this
point, the transmission and distribution coordinated operation
model has a clear input-output relationship with the planning
scheme-total cost. Building a convolutional neural network proxy
model can simplify the planning model by “making the complicated
simple.”

Selecting the planning schemes to form the training and testing
sets, the two-dimensional description of the adjacency matrix
corresponding to the planning scheme is extracted as the carrier
form of the input of the convolutional neural network. The
comparison of the computation speed and accuracy between the
trained convolutional neural network proxy model and the original
model is shown in Table 4. Both the directly solved optimal
construction scheme and the optimal construction scheme found
by the neural network proxy model are to invest in line (24–50) and
(24–52). Furthermore, the computation time for individual
optimization is provided, demonstrating an advantage in
computation time. However, its results lack reference value.

As seen from Table 4, the DNP model that coordinates with the
transmission network for optimization will consume a significant
amount of time and computing power, even for small-scale network
models. However, training a convolutional neural network proxy
model makes it possible to achieve optimal planning solutions that
meet the required precision by calling multi-iteration solving
algorithms on a small scale. Using a convolutional neural
network proxy model can effectively capture the topological

TABLE 1 Distributed renewable energy parameters for distribution network.

Node Maximum active power
output/MW

Minimum active power
output/MW

Maximum reactive power
output/MVar

Minimum reactive power
output/MVar

12 3.0 0 1.0 0

26 2.0 0 1.0 0

42 3.0 0 1.0 0

TABLE 2 Construction and operation costs.

Project Cost

Investment and construction costs 2 M per line

Conventional Generation Cost 0.463 M/MW

Loss of load penalty 0.34 M/MW

Curtailment cost of renewable energy 0.25 M/MW

FIGURE 4
Load factor.
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characteristics corresponding to the planning solutions, map them
to the total cost with high precision, and quickly optimize the
exponential number of planning solutions composed of
numerous lines to be constructed. The optimal solution
corresponds to the boundary node line flow of the substation, as
shown in Figure 6.

Based on Figure 6, it can be seen that the objective function is
constructed with the abandoned energy cost of renewable energy
sources. This is reflected in the optimization results by the low power
flow values at the boundary nodes of the substation, indicating that
the active power injected into the distribution network from the
transmission network is relatively low. As a result, the distribution
network load is mainly provided by local units and distributed
renewable energy output.

In order to validate the applicability of the algorithm, a
comparison between centralized and distributed algorithms was
conducted in the given case study. The distributed algorithms

included the ADMM and the APP (Auxiliary Problem Principle)
methods. Additionally, a comparison of optimization results was
performed using a collaborative optimization model involving
continuous variables in transmission and distribution systems.
The iteration counts for algorithms with varying convergence
accuracy are depicted in Figure 7, while the optimization results
for different algorithms are presented in Figure 8.

From Figures 7, 8 it is evident that the HGD algorithm exhibits
a robust convergence performance compared to other
commonly used decomposition algorithms. The iteration
count of the HGD algorithm is minimally affected by the
convergence accuracy. On the other hand, the iteration
counts of the ADMM and APP algorithms are significantly
influenced by the convergence accuracy; under higher
convergence accuracy requirements, their iteration counts are
much greater than those of the HGD algorithm employed in this
study. When considering the directly solved centralized
algorithm as a benchmark, the HGD algorithm demonstrates
a more minor computational error by up to 2.34%.

Furthermore, decomposition algorithms like ADMM and APP
necessitate the tuning of several constant parameters, the selection of
which directly impacts the algorithm’s convergence performance.
The optimization and tuning of these parameters also require
manual adjustments. In comparison, the HGD algorithm
eliminates the need for parameter setting, resulting in stable
convergence performance.

FIGURE 5
Renewable energy output coefficient.

TABLE 3 Planning schemes and total costs.

Planning scheme Lines construction Total cost/Million

Scheme 1 (16–65) × 1 7.2809

Scheme 2 (24–50) × 1 7.0814

Scheme 3 (16–65) × 1, (24–50) × 1 7.1110

TABLE 4 Comparison of solution methods.

Solution methods time (s) Total cost corresponding to the optimal scheme/Million (error)

Direct solution 677.7 704.84 (−)

Solving surrogate model 380.1 706.11 (0.18%)

Independent optimization 34.2 -
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5 Conclusion

To adapt to the scenario of high-penetration renewable
energy integration into the power grid, where the source-load
roles in the operational perspective of transmission and
distribution networks are blurred, and to conduct DNP with
greater precision, this paper proposes a distribution network
planning method based on the integration of operation and
planning and coordinated with the transmission network. This
method constructs operational models for both the transmission
and distribution networks and substation, as well as a planning

model for the distribution network. The optimization model with
continuous variables is decomposed and solved using the HGD
algorithm. To overcome the challenges of optimizing models
with integer variables, this paper constructs a distribution
network correlation matrix to represent its topological
connections for the integer part optimization model and
employs a CNN surrogate model for global optimization.

Results from case studies constructed using IEEE 30 and IEEE
69 indicate that the proposed solving method reduces computation
time by 43.91% compared to direct solving using centralized
algorithms, with an error of only 0.18% from the direct solving
results. The HGD algorithm used in this study, when compared to
other distributed algorithms like ADMM and APP, achieves
convergence with significantly fewer iterations while maintaining
the same accuracy level. Additionally, the optimization results using
HGD algorithm show a reduction in computation error by 2.34%
compared to the mentioned distributed algorithms. The proposed
method improves solving efficiency and reduces computation errors
to a certain extent, demonstrating its value for engineering
applications.
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