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Developing a novel type of power system is an importantmeans of achieving the “dual
carbon” goals of achieving peak carbon emissions and carbon neutrality in the near
future. Given that the distribution network has access to a wide range of distributed
andflexible resources, reasonably controlling large-scale and adjustable resources is a
critical factor influencing the safe and stable operation of the active distribution
network (ADN). In light of this, the authors of this study propose a mixed-integer
second-order cone programming method for an active distribution network by
considering the collaboration between distributed, flexible resources. First, Monte
Carlo sampling is used to simulate the charging load of electric vehicles (EVs), and the
auto regressive moving average (ARMA) and the scenario reduction algorithms (SRA)
based on probability distance are used to generate scenarios of the outputs of
distributed generation (DG). Second, we establish an economical, low-carbon
model to optimize the operation of the active distribution network to reduce its
operating costs and carbon emissions by considering the adjustable characteristics of
thedistributed andflexible resources, such ason-load tap changer (OLTC), devices for
reactive power compensation, and EVs and electric energy storage equipment (EES).
Then, the proposed model is transformed into a mixed-integer second-order cone
programming (SOCP) model with a convex feasible domain by using second-order
cone relaxation (SOCR), and is solved by using the CPLEX commercial solver. Finally,
we performed an arithmetic analysis on the improved IEEE 33-node power
distribution system, the results show that ADN’s day-to-day operating costs were
reduced by 47.9% year-on-year, and carbon emissions were reduced by 75.2% year-
on-year. The method proposed in this paper has significant effects in reducing the
operating cost and carbon emissions of ADNs, as well as reducing the amplitude of
ADN node voltages and branch currents.

KEYWORDS

distributed flexible resource, active distribution network, collaborative optimization,
low-carbon economy, second-order cone relaxation

1 Introduction

With the development of technologies related to renewable energy and power
distribution networks, such distributed and flexible resources as DG, electric vehicles,
energy storage devices, and demand response have become more readily available in the
power grid, and pose new challenges to the operation and maintenance of the distribution
network (Kang and Huo, 2022). The traditional distribution network has gradually evolved
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into ADNs, which has the capacity for active regulation to control
and manage these distributed and flexible resources (Jiang et al.,
2022). Unlike the traditional distribution network, the ADN can
take efficient and intelligent measures to actively manage distributed
and flexible resources at all levels to enhance the flexibility and
controllability of the grid, and improve the synergy and interactions
among the source, network, load, and storage. Reasonably
controlling the large amount of distributed and flexible resources
in the ADN to ensure the low-carbon and economical operation of
the power system is a key concern for researchers in the area.

Many researchers have investigated the problem of the optimal
scheduling of the ADN. A robust and optimal model of operation of the
active distribution network was proposed based on the minimum
confidence interval of the beta distribution of distributed energy to
deal with the inevitably uncertainty in it (Luo et al., 2021). This involves
taking the minimum confidence interval of the output of distributed
energy as the interval of uncertainty for the robust optimization of the
ADN. This yields a robust two-stage model to optimize the ADN. The
results of assessments showed that this model is more representative of
the empirical scenario than the traditional robust optimization (TRO)
model. Pu et al. (2017) proposed a method of optimal scheduling based
on the consistency algorithm to improve the speed of convergence by
setting the coefficients of node weights, in response to the problems of
large amounts of data and complicated calculations when scheduling the
distribution network. However, this method can analyze only the
changes in the active power of the nodes without considering its
effects on the other parameters, such as the current and voltage of
the distribution network. Pamshetti et al. (2023) considered the effects of
the reconfiguration of the distribution network aswell as reductions in its
energy consumption and voltage to develop a cooperative operational
model of the ADNwith Soft Open Points (SOP) and distributed energy.
The results of calculations obtained by using this model showed that it
can improve the reliability of the system and reduce carbon emissions in
the distribution network. Ruan et al. (2020) proposed a model to control
the distributed voltage of the ADN by automatically partitioning it in an
optimal manner according to the number of decision variables and
constraints in the model, thereby reducing the complexity of
computations and improving the sensitivity of voltage control. Li
et al. (2022) modeled the problem of day-ahead optimal dispatch in
the ADN as a multi-level stochastic programming model, and used an
improved deep reinforcement learning algorithm to solve the problem of
fluctuations in the voltage brought about by uncertainty in the output of
renewable energy to the active distribution network. Verma and Padhy,
(2022) established a demand response-based optimal tide model of the
ADN that uses the characteristics of components of the symmetric
domain to combine the day-ahead dynamic tariff with constraints on the
operation of the ADN to plan the distribution network bymodifying the
optimal tide. However, the model considers only DGs and generators,
and loads due to the residential demand, and the types of energy supply
equipment and the types of energy loads included in the ADN are
relatively homogeneous. Mohd Azmi et al. (2022) talk about
communication technologies, applications, and communication
standards for ADNs, and analyze the issues and challenges faced in
the development of ADNs from an ICT perspective.

In terms of second-order cone programming algorithms, Zhang
et al. (2018) modeled and analyzed an integrated energy system
consisting of a power system, a natural gas system, and an energy
hub, and transformed the original nonconvex planning problem into a

convex planning problem using SOCP. Finally, a simulation study is
carried out on a modified IEEE 33 distribution network and a 15-node
natural gas network. Xiao et al. (2018) illustrated the important role
played by service restoration in improving the resilience and reliability
of distribution networks, proposed a mixed integer second-order cone
programming (MISOCP) model for distribution network service
restoration, considered the minimization of disconnected loads and
the total number of switching operations, and carried out simulations
on three experimental systems to validate the effectiveness of the
MISOCP method for distribution network service restoration.
Kayacık and Kocuk (2021) proposed an alternative mixed-integer
nonlinear programming formulation of the reactive optimal tidal
flow (ROPF) problem, utilized MISOCP to find the globally optimal
solution to the proposed formulation of the ROPF problem,
strengthened the MISOCP relaxation by adding convex envelopes
and cutting planes, and finally, through the design of experiments,
the MISOCP-based approach yielded promising results as compared to
the semi-deterministic programming-based approaches in the
literature.

The above summary of the literature shows that most studies in the
area have sought to control the active and reactive parameters of the
ADN as well as its voltage by using a single device or model. They have
neither adequately explored the potential of adjustable resources for
regulating the distribution network, nor considered cooperation
between different distributed and flexible resources for its optimal
scheduling. Moreover, most of the existing studies only considered
the active power of the distribution network without analyzing active
and reactive power as well as multiple power quality parameters such as
voltage and current at the same time. In addition, the objective functions
formulated in past research have emphasized reducing the cost of the
network while ignoring reductions in its carbon emissions.

To address the above issues, the authors of this paper propose a low-
carbon, economical model of optimal dispatch for active distribution
networks based on collaboration between distributed, flexible resources.
The main contributions of this study are as follows: 1) We simulate
changes in the load of the EV by using Monte Carlo simulations
according to a probability distribution function of the travel habits of
EV users.We also construct scenarios for the output of DG by using the
autoregressive sliding-average method, and apply the probabilistic
distance fast reduction method to reduce the number of scenarios.
2) In light of the adjustable characteristics of each distributed and
flexible resource in the ADN, we construct a low-carbon, economical
model to optimize the ADN, where the objective function is designed to
reduce the cost of its operation as well as its carbon emissions. 3)We use
the SOCR method to eliminate squared variables, such as those of
current and voltage, in themodel, transform the original problem into a
mixed-integer second-order cone programming problem, perform tidal
calculations on the IEEE 33-node distribution network, analyze changes
in the parameters at each node of the ADN under different scenarios,
and verify the impacts of its access to distributed and flexible resources
on its operating cost and carbon emissions.

2 Related work

In the study of optimal scheduling of distribution networks,
Zhang et al. (2021) proposed a research on two-level energy
optimized dispatching strategy of microgrid cluster based on
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IPSO algorithm. The first level takes microgrids as the research
object, and takes the highest economic benefit and the lowest
operational risk as the optimization objectives, constructs the
unit risk-economic benefit ratio screening solution set, and then
formulates the microgrid internal scheduling candidate strategies.
The second level determines the optimal internal scheduling strategy
for each microgrid with the optimization objective of minimizing
the interaction power between the microgrid cluster system and the
distribution grid. The line loss of the microgrid cluster system is also
considered to develop a microgrid cluster energy complementation
scheme. The method simultaneously coordinates the economic
benefits and operational risks of microgrids, reduces the
interactive power and fluctuations between the microgrid cluster
system and the distribution grid, and reduces the line losses.

In Zhang et al. (2022), considered the voltage fluctuations and
stability problems caused by intermittent photovoltaic (PV)
generation to the distribution network, a three-stage
hierarchically-coordinated voltage/var control method based on
PV inverters considering distribution network voltage stability
has been proposed. In the first stage, the OLTC is dispatched
1 day in advance. In the second stage, the reactive output of the
inverter is scheduled at 1 hour intervals. In the third stage, real-time
local voltage drop control of the inverter is realized. In order to
coordinate the interactions between these stages, the first two stages
are coordinated by interval optimization. Meanwhile, the last two
stages are coordinated hierarchically by simultaneously optimizing
the inverter base reactive power output and sag control functions.
Finally, the effectiveness of the method in reducing power losses and
bus voltage deviation in distribution networks is verified through an
arithmetic example.

Guo et al. (2019) proposed a model predictive control (MPC)
-based coordinated voltage regulation method for distribution
networks with distributed generation and energy storage system.
In this method, equipment types such as DG units, energy storage
systems, and on-load tap-changer are mainly considered. In order to
better coordinate the economic operation and voltage regulation
control of the distribution network, two control modes are designed
according to the operating conditions: in the preventive mode, the
DG units operates in the maximum power point tracking (MPPT)
mode, while optimizing the power outputs of the DG units and the
energy storage systems to keep the voltage within the specified range;
in the corrective mode, the curtailment of active power from the
distribution network is selected as an index for correcting the voltage
deviation.

In order to optimize the active power of the distribution
network, Li et al. (2018) proposed a three-layer cooperative
scheduling system consisting of a distribution network scheduling
layer, a microgrid centralized control layer and an energy Internet
local control layer, and then solved the distribution network
operation loss model by an improved branch current forward
generation method and genetic algorithm to realize the optimal
scheduling of active power in the distribution network.

In the distribution network robust optimization problem, in
order to effectively reduce the conservatism of the traditional robust
optimization model, Yang and Wu, (2019) proposed a
distributionally robust real-time power scheduling model, which
incorporates the two-phase scheme of economic scheduling and
corrective control into the model, where the economic scheduling

scheme optimizes the active power distribution of the distribution
network, and generates the corrective control strategy of active and
reactive power to eliminate the voltage overruns in the distribution
network.

In order to achieve optimal power flow and power loss
minimization in distribution networks, Zhang et al. (2016)
proposed a coordinated day-ahead reactive power dispatch
method in distribution network based on real power forecast
errors. This method utilizes the active power prediction error of
the DG units to estimate the probability distribution of the reactive
power capacity of the DG units. Meanwhile, considering different
output characteristics and constraints of reactive power sources, a
dynamic preliminary-coarse-fine adjustment method is designed to
optimize the outputs of the DG units and shunt reactive power
compensator, which first obtains the initial value through
preliminary optimization, and then iterates repeatedly between
coarse optimization and fine optimization, so as to achieve the
effect of reducing the power loss in the distribution network and
realizing the optimal distribution of reactive power.

Uncertain and intermittent power output due to large-scale PV
access in distribution networks can severely impair network operation,
leading to unexpected power losses and voltage fluctuations. To solve
the above problems, Li et al. (2023) proposed a multi-timescale affinely
adjustable robust reactive power dispatch (MTAAR-RPD) method, In
this approach, three levels of modeling covering multiple time scales of
“hour-minute-second” are developed to coordinate the control of
various devices in the distribution network. In the first stage,
capacitor banks and OLTC are dispatched every hour; in the second
stage, the basic reactive power output of PV inverters is dispatched every
15 min; and in the third stage, the reactive power output of inverters is
adjusted in real time adaptively based on an optimized Q-P sag
controller.

For the distribution network optimal dispatch problem, in terms
of model solving methods, Sun et al. (2021) proposed a two-time
scale robust optimization method for the multi-terminal soft open
point (SOP). The operating points of the SOP are optimized by a
semi-definite programming (SDP) model to minimize system losses
and mitigate voltage imbalances, and an improved iterative cutting
plane (ICP) method is utilized to enhance the accuracy of the SDP
level 1 relaxation.

Han et al. (2022) proposed a novel decentralized operation
strategy for a multi-terminal direct current (MTDC) link system
to control the power flow between interconnected distribution
networks. This strategy derives formulas for voltage and bus
losses in the network by applying curve/surface fitting techniques
to distribution network topology data. Subsequently, the active/
reactive power setpoints of the MTDC links are optimized to
minimize the network losses and balance the injected power
from the upstream grid. Finally, the optimization model with a
quadratically constrained quadratic problem is relaxed to a second-
order constrained planning model for solution.

3 Analyzing uncertainty in the load of
the source of ADN

Wind farms and photovoltaic power plants are connected to the
distribution grid in the form of distributed sources of power, where
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this causes the distribution grid to gradually evolve into an active
distribution grid. EV technology is quickly maturing, with new
energy vehicles having garnered 23% of the market by 2022. As they
are distributed and flexible resources, the output of DG and the
charging load of EVs are highly random, fluctuating, and
intermittent. An increase in DG and large-scale loads due to EVs
will inevitably lead to new problems and challenges regarding the
safe and stable operation of the distribution grid. Therefore, it is
important to analyze the influence of uncertainties in the output of
DG and the load due to EVs on dispatch in the ADN. We simulate
the load of EVs here by using the Monte Carlo method, and
represent uncertainty in the output of DG by using the ARMA
and the SRA based on probability distance.

3.1 Simulating EV load using Monte Carlo
method

The load of the EV is based on two factors: its daily mileage, and
the time at which charging begins (Wang et al., 2023).

3.1.1 Daily driving range
Assuming that EV users have the same driving habits as drivers of

vehicles that run on fossil fuels (Smadi and Shehadeh, 2023), the
probability density function of their daily mileage can be expressed as:

f x( ) � 1
x

1
σx

���
2π

√ exp − ln x − μx( )2
2σx2

( ) (1)

where x is the daily mileage of the EV, and σx and μx are its mean and
variance, respectively.

3.1.2 Time of initiation of charging
The probability density function of the time at which the EV

begins charging can be expressed as

f t( ) �
1

σt
���
2π

√ exp − t − μt( )2
2σt

2( ) μt − 12< t< 24

1
σt

���
2π

√ exp − t + 24 − μt( )2
2σt

2( ) 0< t< μt − 12

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(2)

where t is the time at which the EV begins charging, and σt and μt are
its mean and variance, respectively.

The Monte Carlo simulation is used to solve a variety of
problems (Li et al., 2021). We randomly chose the vehicle use-
related behavior of a large number of EV users through the Monte
Carlo method to simulate the load of EVs. The process is shown in
Figure 1.

3.2 Generating scenarios of DG based on
ARMA and SRA

The output of DG is somewhat uncertain. We use the ARMA
model to generate scenarios of this output (Dong et al., 2015):

xt � ∑a
i�1
λixt−i + αt −∑b

j�1
μjαt−j (3)

where xt is the time series at time t, λi is the auto regressive
parameter, μi is the moving average parameter, and αt is normal
white noise that has a mean of zero and a variance of σ2.

Given that an excessively large number of scenarios may
require significant computational resources and a long time, we
use the SRA to reduce the size of the set of scenarios S generated

FIGURE 1
Load of EVs simulated by the Monte Carlo method.

FIGURE 2
Reducing the number of scenarios of outputs of DG based on
the SRA.
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by the ARMA model (Growe-Kuska et al., 2003). The process is
shown in Figure 2.

4 Proposed model

Wind turbines (WT) and photovoltaic (PV) cells constitute the
majority of sources of DG in the ADN. Distributed flexible resources
involve active management equipment that can maintain the voltage
and power of the ADN, including OLTC, EVs, switchable capacitor
banks (SCBs), static var compensator (SVC), and EES. We establish the
low-carbon, economical model of optimization of the ADN based on
synergy between the distributed and flexible resources, and consider
reductions in cost carbon emissions as the objectives of optimization.

4.1 Goals of optimization

4.1.1 Optimizing operating cost
The operating cost of the ADN includes the costs of power

purchase, network loss, and EV regulation. The overall objective of
optimizing its cost can be expressed as

minF1 � Cgrid + Closs + Cev (4)
where F1 is the unit cycle operating cost of the ADN, Cgrid is the cost
of power purchase, Closs is the cost of network loss, andCev is the cost
of EV regulation.

1) Cost of power purchase:

Cgrid � ∑T
t�1
agrid,tpg,t (5)

where agrid,t is the price of power at time t and pg,t is the power
purchased at t.

2) Cost of network loss:

Closs � aloss∑T
t�1
Ploss,t � aloss∑T

t�1
∑
i,j( )∈φ

rijI
2
ij,t (6)

where aloss is the coefficient of network loss, Ploss,t is the active power
lost by the ADN at time t, rij is the resistance of branch (i,j), I2ij,t is the
square of the current in branch (i,j), and φ is the set of nodes of
the ADN.

3) Cost of EV regulation

EV users participate in the optimal scheduling of the ADN in the
form of flexible loads by signing an agreement with the operator.
According to its mode of regulation, the load of the EV can be divided
into a transferable load (TL) and a reducible load (RL). The TL can be
transferred within the allowable transfer time, while the RL is more
flexible, and can reduce its own power or interrupt its operation to
relieve the pressure of supply on the system within the allowable time:

Cev � cTLp
ev
TL,t + cRLp

ev
RL,t (7)

where cTL and cRL are the subsidies per unit of power for the
transferable and the reducible loads, respectively, pev

TL,t is the
magnitude of load of the EV transferred at time t, and pev

RL,t is
the magnitude of reduced load of the EV at time t.

4.1.2 Optimizing carbon emissions
The carbon emissions of the ADN are mainly due to CO2

emissions from the power purchased by it. We introduce a
carbon emission penalty to formulate the objective of optimizing
emissions:

minF2 � ∑T
t�1
ω · aCO2pg,t (8)

where F2 is the daily cost of treating carbon emissions by the ADN,
aCO2 is the penalty per unit of CO2 emissions, and ω is the carbon
emissions factor of the power supply of the grid.

4.1.3 Overall goal of optimization
We combine the two objectives explained above to obtain the

overall objective of optimization of the ADN:

minFc � F1 + F2 (9)

4.2 Constraints

4.2.1 Constraint on DG output

PDG
i,min ≤PDG

i,t ≤PDG
i,max i ∈ DGi, t ∈ T (10)

where PDG
i,t is the power output by the ith DG at time t, and PDG

i,max

and PDG
i,min are the upper and lower limits on the power output by the

ith DG, respectively.

4.2.2 EES constraint

Es,t � Es,t−1 + ηchPch,t − Pdis,t/ηdis (11)
0#Pch,t#bch,tPch

max (12)
0#Pdis,t#bdis,tPdis

max (13)
λ minEs#Es,t#λ maxEs (14)

bch,t + bdis,t#1 (15)
Es,0 � Es,T (16)

where Es,t is the capacity of the EES at time t and its rated capacity is
Es. ηch and ηdis are the efficiencies of charging and discharging of the
EES, respectively, Pch,t and Pdis,t are the powers of charging and
discharging of the EES at time t, respectively, Pch

max
and Pdis

max
are the

maximum charging and discharging powers of the EES, respectively,
and bch,t and bdis,t are variables in the range of zero to one. bch,t =
1 means that the EES is charging while bdis,t = 1 means that it is
discharging. λmax and λmin are the maximum andminimum states of
charge (SOC) of the EES, respectively. Eq. 14 indicates that the final
power stored by the EES in a scheduling cycle is equal to the power at
the initial time.
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4.2.3 OLTC constraint

U2
t � UBase( )2rt

rt � r min +∑
s

rsσOLTCs,t

⎧⎪⎨⎪⎩ (17)

where UBase is the voltage at the standard OLTC ratio, U2
t is the

squared voltage at time t, rt is the squared OLTC ratio at time t, rmin

is the square of the lower limit of the ratio of variation in the OLTC,
rs is the difference between the ratios of variations of gear s and the
square of gear s-1 of the OLTC, where this is an increase in adjacent
regulation, and σOLTCs,t is a variable in the range of zero to one.
σOLTCs,t = 1means that the OLTC adjusts stall. In light of the life of the
equipment and considerations of cost, the number of adjustments of
the OLTC are limited. We thus set a limit on the total number of
OLTC operations in multiple periods:

∑
t∈T

δOLTC,INt + δOLTC,DEt( )≤NOLTC,max (18)

where δOLTC,INt and δOLTC,DEt are identifiers of the ratio of stall
adjustment by the OLTC, and are in the range of zero to one. If
δOLTC,INt = 1, the stall value of the OLTC at time t is larger than that at
time t-1. δOLTC,DEt has a similar meaning. NOLTC,max is the upper
limit of the number of OLTC operations.

4.2.4 Constraints on powerless compensation
device
1) SCB constraint

QSCB
t � ySCB

t QSCB,step

ySCB
t ≤YSCB,max

{ (19)

where QSCB
t is the reactive power issued by the SCB at time t, and

ySCB
t is the number of SCB groups in operation. It is a discrete

variable. YSCB,max is the upper limit of the number of SCB groups
and QSCB,step is the compensation power of each SCB group. Given
such factors as the life of the equipment and economic
considerations, the number of adjustment to discrete reactive
power compensation is limited. We thus set a limit on the total
number of SCB operations in multiple periods:

∑
t∈T

ySCB
t − ySCB

t−1
∣∣∣∣ ∣∣∣∣≤NSCB,max (20)

whereNSCB,max is the upper limit of the number of SCB operations.

(2) SVC constraint

QSVC,min ≤QSVC
t ≤QSVC,max (21)

where QSVC
t is the reactive power emitted by the SVC at time t, and

QSVC,max and QSVC,min are the upper and lower limits of its reactive
power compensation, respectively.

4.2.5 EV constraint
1) Transferable load (TL) of EV

Let the period planned for the TL be [t−shif t, t+shif t]. We then set the
following constraint in order to ensure normal operating conditions
for the TL.

∑tbegin+tlast−1

t�tbegin
α � tlast (22)

Pt
TL � αLTL (23)

where tbegin and tlast are the start time of the transfer of load and its
duration, respectively, and LTL and Pt

TL are the powers before and
after transfer, respectively. α is a variable in the range of zero to one.
α = 1 indicates the transfer of TL to time slot t.

2) Reducible load (RL) of EV

Pt
RL � Lt

RL − μ · βtLt
RL (24)

0≤∑T
t�1
βt ≤ β max (25)

TRL
min ≤ ∑t+TRL−1

τ�t
βt ≤TRL

max (26)

where LtRL and Pt
RL are the powers before and after reductions in

load, respectively, μ is the coefficient of reduction of the RL, and βt is
a variable in the range of zero to one. βt = 1 means that load
reduction has occurred. τ is the period for which the load is reduced,
βmax is the maximum number of reductions based on the RL, Tcut is
the duration of load reduction, and TRL

min and TRL
max are the minimum

and maximum durations of load reduction, respectively.

4.2.6 Trend-related constraint
The ADN usually has a radial structure. The Distflow tidal

equation can be used to describe the tidal constraints on it:

∑
i∈u j( )

Pij − rijI
2
ij � ∑

k∈v j( )
Pjk + Pj (27)

∑
i∈u j( )

Qij − xijI
2
ij � ∑

k∈v j( )
Qjk + Qj (28)

V2
j � V2

i − 2 rijPij + xijQij( ) + I2ij r2ij + x2
ij( ) (29)

I2ij �
P2
ij + Q2

ij

V2
i

(30)
Pj � Pload,j + Pev,j + Pch,j − Pdis,j − PDG,j − PG,j (31)

Qj � Qload,j − QSCB,j − QSVC,j − QG,j (32)
where i ∈ u(j) and k ∈ v(j) are the set of branches with j as the end
branch and the first node, respectively, Pij and Qij are the active and
the reactive powers flowing from node i to node j, respectively, rij
and xij are the resistance and reactance of branch (i,j), respectively, Pj
and Qj are the equivalent active and reactive powers of node j,
respectively, V2

i is the square of the magnitude of voltage at node i,
I2ij is the square of the current flowing through branch (i,j), and
Pload,j, Pev,j, Pch,j, Pdis,j, PDG,j, and PG,j are the active power of the load
at node j, the charging power of the electric vehicle, the charging and
discharging powers of the energy storage device, respectively, the
output of the distributed power source, and active power from the
generator (power purchased from the grid), respectively. Qload,j,
QSCB,j, QSVC,j, and QG,j are the reactive power of the load at node j,
the reactive power output of the SCBs, the reactive power output of
the SVC, and the reactive power emitted by the generator,
respectively.

Frontiers in Energy Research frontiersin.org06

Wan et al. 10.3389/fenrg.2023.1259445

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1259445


4.2.7 Operational constraint

V min ≤Vj ≤V max

0< Iij ≤ I max
{ (33)

where Vmax and Vmin are the upper and lower limits of the voltage at
nodes of the ADN, respectively, and Imax is the upper limit of the
current allowed in the branch.

5 Low-carbon economical model of
optimization of ADN

Because the constraints imposed by the tidal current and the safe
operation of the ADN limit the squared terms, the proposed low-
carbon economical model of its optimization is a non-convex non-
linear programming model that cannot be directly solved. To
address this issue, we used SOCR on Eq. 30 by using ~Iij = ~Iij
and ~Vj = V2

j :

P2
ij + Q2

ij ≤ ~Iij ~Vij (34)

Further, the following equation can be derived:

2Pij( )2 + 2Qij( )2 + ~Iij − ~Vij( )2 ≤ ~Iij + ~Vij( )2 (35)

The above equation can be rewritten as:

2Pij

2Qij
~Iij − ~Vij

�����������
�����������
2

≤ ~Iij + ~Vij (36)

Then, Eqs 27–29 and 33 can be transformed into:

∑
i∈u j( )

Pij − rij~Iij � ∑
k∈v j( )

Pjk + Pj (37)

∑
i∈u j( )

Qij − xij
~Iij � ∑

k∈v j( )
Qjk + Qj (38)

~Vj � ~Vi − 2 rijPij + xijQij( ) + ~Iij r2ij + x2
ij( ) (39)

V 2
min ≤ ~Vj ≤V 2

max

0< ~Iij ≤ I 2
max

{ (40)

The SOCR transforms the squared variables in the constraint
into real variables, eliminates the phase angles of voltage and
current, and converts the original model from a non-convex,
non-linear programming model into a convex cone programming
model. Moreover, the presence of discrete variables in the model
changes the problem at hand into a mixed-integer second-order
cone programming (MISOCP) problem, which can be solved by a
commercial software or algorithm packages.

6 Examples for analysis

We programmed the proposed model by using the YALMIP
modeling toolkit in the MATLAB 2020b environment, and called
the Cplex 12.10 commercial algorithm for the calculations. The
computational system was an Intel i7-4790CPU 3.60 GHz, with
16 GB of RAM, and the Windows 10 64-bit operating system.

6.1 Model parameters

We modified the IEEE 33-node distribution system to test the
proposed model. Its network topology is shown in Figure 3. The
standard active load of the ADN was 3.715 MW, the standard
reactive load was 2.3 Mvar, the reference voltage was 12.66 kV
the reference power was 10 MVA, the range of voltage of the
nodes was 0.94–1.06 p. u., and the range of the square of the
branch current was 0–10 A.

The distributed power supply mainly consisted of power from
the WT and the PV cell. The WT was connected to nodes 17 and 32,
and the PV cell was connected to nodes 9 and 19. Both had a rated
power of 1.5 MW and a cost of power generation of 0.1 RMB/kWh.
The ADN was connected to the main network with the OLTC in the
range of voltage regulation of 0.94–1.05 p. u., a step size of 0.01 p. u.,
a total of 11 adjustable steps, and a daily limit of five adjustments for
load regulation. The cost of adjustment was 200 RMB each time. The
SCBs were installed at nodes 5 and 15, had a capacity of 100 kvar ×
5 groups, and its operating cost was 0.1 RMB/kvar-h. Nodes 5, 15,
and 32 were connected to SVCs with a capacity of −0.1 to 0.3 Mvar,
and an operating cost of 0.1 RMB/kvar-h. Nodes 15 and 32 were
connected to an EES with a capacity of 1 MWh, maximum charging
and discharging powers of 0.3 MW and 0.2 MW, respectively, an
efficiency of charging and discharging of 90%, and a cost of charging
and discharging of 0.1 RMB/kWh. The EV loads were connected to
node 22, and the adjustable EV load and the cost of compensation
are shown in Table 1. The penalty for carbon emissions was set to the
national average price used for carbon trading, 0.048 RMB/kg. The
carbon emission factor of electricity from the grid was set to
0.581 kg/kWh.

The ADN purchased electricity from the main grid at a time-of-
use tariff, the specific values of which are shown in Table 2.

We used the method detailed in Section 2.2, and applied the
ARMA (3,2) model to sample the initial scenarios. The
autoregressive parameters were set to φ1 = 0.8, φ2 = 0.15, and
φ3 = 0.15, the parameters of the sliding average were θ1 = 0.8 and θ2 =
0.2, σ = 2.5 was set for normal white noise, and the scenarios for the
outputs of powers of the WT and the PV cell were generated as
shown in Figures 4, 5, respectively.

We used the method described in Section 1.1 to randomly
choose 300 EVs. The battery capacity was set to 70 k Wh, the
charging power to 4 kW, and the number of Monte Carlo
simulations was set to 30. The curves of the load of the EV,
equivalent output of DG, and variations in load during a day are
shown in Figure 6. Where the equivalent outputs of the PV cell and
the WT are averaged from Figures 5B, D, respectively.

The 24 h load distribution of each node of ADN is shown in
Figure 7.

6.2 Results and analysis

To verify the effectiveness of the proposed model of the active
distribution network based on collaboration with distributed and
flexible resources, we considered the following three scenarios:

Scenario 1: There was no DG, or any access to distributed and
flexible resources. The load of the EV did not participate in grid
regulation.
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Scenario 2: While access to DG was available, the distributed
and flexible resources were inaccessible. The load of the EV did not
participate in grid regulation.

Scenario 3: Access to both DG, and the distributed and flexible
resources was available. The load of the EV participated in grid
regulation.

Curves of the amplitude of voltage at the nodes for all three
scenarios are shown in Figure 8.

Figure 8 shows that the voltage of each node in the three
scenarios was distributed in the range of 1–1.06 p. u., and no

voltage overrun was noted. A comparison between scenario 2 and
scenario 1 shows that the voltage at each node of the distribution
network in the former improved significantly due to access to
DG. The voltage of the system was smoother and deviations in it
were significantly reduced, indicating that access to DG enhanced
the system voltage and reduced the flow of reactive power. A
comparison between scenario 3 and scenario 2 shows that the
voltage of the distribution network improved even further in the
former due to access to DG as well as the distributed and flexible
resources. The system voltage was smoother in scenario 3, and
deviations in it were further reduced. The ratios of the peak-to-
valley difference in the magnitude of voltage at the nodes in
scenarios 1, 2, and 3 were 4.24%, 2.34%, and 1.79%, respectively.
Thus, the deviation in the peak-to-valley magnitude of the
voltage of the distribution network decreased by 2.45% once
DG as well as and the distributed and flexible resources had been
connected to it.

Curves of the amplitude of current at the branches in the three
scenarios are shown in Figure 9.

FIGURE 3
Improved IEEE 33-node active distribution grid.

TABLE 1 Parameters of the adjustable load of the EV.

EV type tbegin tlast/h [t−shift, t+shift] cTL/¥·kWh-1

TL 19:00 3 03:00–07:00 0.2

EV type TRL
min TRL

max βmax cRL/¥·kWh-1

RL 2 5 8 0.3

TABLE 2 Time-of-use tariff for power purchase by the ADN.

Type Period division Electricity price/(RMB/kWh)

Peak hours 11:00–15:00 h, 19:00–21:00 h 0.82

Normal hours 08:00–10:00 h, 16:00–18:00 h, 22:00–24:00 h 0.53

Valley hours 01:00–07:00 h 0.25

FIGURE 4
Generating and reducing the number of scenarios of the output of WT power. (A) Scenario generation of PV (B) Scenario reduction of PV
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Figure 9 shows that the current at each branch in all three
scenarios was distributed between 0 and 3.16 A, and there was no
overcurrent. The amplitude of current at each branch was
significantly lower in scenario 3 than in scenarios 1 and 2. This
was because the ADN had access to DG as well as the distributed and
flexible resources in this scenario, because of which fluctuations in
voltage between nodes significantly decreased. This in turn reduced
the current between branches and yielded the following advantages:

1) A reduction in the branch current reduced the loss of active power
in the line. 2) A reduction in the amplitude of the branch current
reduced the level of protection needed from the device to prevent
overcurrent, and led to economic benefits for the network.

The daily operating costs of the ADN in the three scenarios are
shown in Table 3.

Due to the lack of access to DG as well as the distributed and
flexible resources in scenario 1, the distribution network could
operate only by purchasing large amounts of electricity from the
grid. Moreover, the low amplitude of voltage of each node in this
scenario led to a significant loss of active power that yielded high
costs due to power purchase, carbon emissions, and network loss for
the distribution grid. As it could access DG in scenario 2, the
distribution grid used clean energy generated by the PV cell and
the WT. This reduced the costs due to power purchase and carbon
emissions, but not the cost of network loss owing to the high
amplitude of current in each branch. Access to DG further
reduced the costs of power purchase and carbon emissions of the
distributed network in Scenario 3. Moreover, its access to the
distributed and flexible resources led to a significant increase in
the system voltage owing to the reactive power provided by them,
where this significantly reduced the cost of network loss in the
distribution grid. However, the operating cost of each device was
high owing to the large-scale commissioning of distributed and
flexible resources.

FIGURE 5
Generating and reducing the number of scenarios of the output of WT power. (A) Scenario generation of WT (B) Scenario reduction of WT

FIGURE 6
Curves of the load, EV load, and distributed power output in
a day.

FIGURE 7
Load distribution at each node during the day. (A) Active load (B) Reactive load
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By taking scenario 3 as an example, the output of DG in the
ADN, and the 24-h operation of each distributed and flexible
resource are shown in Figure 10.

The outputs of the PV cell and the WT are shown in Figures
10A, B, respectively, and compared to the predicted values, the
actual energy utilization of the PV cell and the WT reached 83.8%
and 96.1%, respectively. The participation of the EVs in dispatch in
the distribution grid is shown in Figures 10C, D, where “rigid load”
refers to the load of the EV that did not participate in dispatch.
During the dispatch of EVs, the TL shifted from 19:00–21:00 to 05:
00–07:00 h, and the RL underwent a significant reduction in the
period 16:00–22:00 h. This is because the price of electricity peaked
in the period of 19:00–21:00 h. To avoid consuming electricity in this

period and reduce the operating cost of the ADN, the TL was shifted
to the valley of the price of electricity. The price of electricity was
normal in 16:00–22:00 h, the power of the WT was lower, and the
power supplied by the PV cell gradually decreased to zero at night.
At this time, RL performed peak shaving by reducing the power.

The ratios of operation of the OLTC and EES are shown in
Figures 10E, F, respectively. The initial gear of the OLTC was at
1.02 p. u., and was adjusted at 02:00, 06:00, 09:00, 16:00, and 24:00 h.
The range of voltage adjustment was 1.01–1.05 p. u., and is in line
with the constraints of normal operation. The EES had a positive
value while charging and a negative value while discharging. It was
charged at noon, when the capacity of the PV cell to supply power
was adequate, and was discharged at night when the load was at its
peak to give full play to the scheme of “peak shaving and valley
filling, and Store electricity when electricity prices are low and
discharge them when electricity prices are high.” The ratios of
operation of the SCB and SVC are shown in Figures 10G, H,
respectively. Both the SCB and the SVC performed regulation
based on reactive power compensation under a specified capacity
and constraints on the gears. This mitigated the deviations in
voltage, and reduced the network loss and the cost of operation.

7 Discussion and limitations

With the continuous breakthroughs in power line
communication technology in recent years, it has gradually
begun to be used in the field of smart grid, Internet of Things,
power distribution network and so on. The communication
architecture of the ADN proposed in this paper is shown in
Figure 11.

Existing power communication protocols include IEC101/104,
Modbus, DL/T645 and other protocols. IEC101/104 protocols are
generally used in the higher configuration of power distribution
terminals and automation masters, while Modbus and
DLT645 protocols are generally used in the lower power distribution
terminal equipment (Górski, 2022). The message queuing telemetry
transport (MQTT) protocol is an instant communication protocol
released by IBM in 1999, with the greatest advantage of providing
reliable transmission to remote devices with limited computing power
and low bandwidth (Zhao et al., 2023).

As can be seen in Figure 11, controller controls the reactive
power output of SVC and SCB. The power output information of PV
and wind power can be obtained through inverter. Converter
controls the charging and discharging power of EES, and the
charging power information of EV can be derived through
charging post. The convergence terminal collects power
information of various flexible resources in ADN through

FIGURE 8
Curves of the amplitude of voltage of each node under different
scenarios.

FIGURE 9
Curves of amplitude of current at each branch under different
scenarios.

TABLE 3 Daily operating costs of the ADN under different scenarios.

Scenario number Power purchase
cost/RMB

Cost of carbon
emissions/RMB

Net loss
cost/RMB

Running
cost/RMB

Total
cost/RMB

1 31967 1612 4521 0 38100

2 18245 944 4341 3698 27228

3 9275 400 307 9865 19847
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Modbus, DL/T645, RS485 and other communication protocols, and
delivers the collected information to the ADN cloud platform
through MQTT communication protocols, and generates the
optimal operation plan and sends it to various types of
equipments through the computation and analysis of the ADN
cloud platform, so as to complete the low-carbon and economic
operation of ADN.

In this paper, we propose a mixed-integer second-order cone
programming model for active distribution network. By coordinating
and complementing multiple distributed and flexible resources within
the ADN, it serves to reduce the operating costs and carbon emissions of
the ADN and improve the efficiency of energy utilization. The method
proposed in this paper has the following advantages.

1) Wide range of application: Mixed-integer second-order cone
programming can effectively deal with complex problems
containing multiple types of constraints such as linear
constraints, integer constraints, and second-order cone
constraints, and thus has a wider scope of application.

2) Global optimization capabilities: In some cases, mixed-integer
second-order cone programming can provide globally optimal
solutions, especially for nonconvex and nonsmooth problems,
where other intelligent optimization algorithms (e.g., genetic
algorithms, simulated annealing algorithms, etc.) may fall into
local optimality.

3) Solution efficiency: For specific types of problems, mixed-integer
second-order cone programming algorithms can find the

FIGURE 10
The 24-h operation of DG, and the distributed and flexible resources. (A) PV cell (B)WT (C) Before EV dispatch (D) After EV dispatch. (E)OLTC (F) EES.
(G) SCB (H) SVC
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optimal solution efficiently by optimizing the solver, which may
converge faster relative to some heuristic algorithms.

4) Algorithm stability: Compared with some intelligent
optimization algorithms, the convergence and stability of
mixed-integer second-order cone programming are
theoretically better guaranteed.

However, although mixed-integer second-order cone
programming has some advantages, it also has some limitations
and drawbacks, especially in specific cases.

1) Complexity: Mixed-integer second-order cone programming is a
complex mathematical problem whose solution process may be
relatively complex and time-consuming, especially for large-scale
problems, where the performance of the solver is degraded,
resulting in a potentially significant increase in solution time.

2) Feasible solutions are difficult to find: For some problems,
especially in the case of complex constraints or non-convex
problems, finding feasible solutions may be challenging, or it
may not even be possible to find feasible solutions, leading to
ineffective optimization results.

3) Effectiveness depends on problem characteristics: the performance
of mixed-integer second-order cone programming depends heavily
on the characteristics and constraints of the problem, and may not
work as well for some problems. In particular, when the problem
involves nonlinear constraints, appropriate transformations and
approximations are required, which may lead to complication of
the problem.

4) Unique solutions are not guaranteed: not all cases of mixed-
integer second-order cone programming provide a unique
optimal solution; there may be multiple optimal solutions or
unbounded solutions.

In summary, although mixed-integer second-order cone
programming shows advantages in some aspects, it is not suitable
for all types of optimization problems. In practical applications, it is

necessary to consider the characteristics and scale of the problem
and choose a suitable optimization algorithm to obtain better
optimization results.

8 Conclusion

In this study, the authors proposed a mixed-integer second-order
cone programmingmethod to reasonably control large-scale distributed
and flexible resources in active distribution networks by considering
collaboration between flexible and distributed resources. We tested the
proposedmethod on amodified IEEE 33-node distribution system. The
following conclusions can be drawn.

1) Synergistic optimization, by using DG as well as the distributed
and flexible resources, reduced the cost of daily operation of the
ADN by 47.9% and its carbon emissions by 75.2% year on year.

2) The proposed model reduced the peak-to-valley difference in the
magnitude of voltage at nodes of the ADN as well as the loss of
active power of the system while ensuring its optimal economic
performance.

3) The correlation between the powers of the PV cell and the WT
influenced the results of analysis, and further research is needed
on considering the correlation of outputs of the PV cell and the
WT when analyzing the optimal operation of the ADN.

4) With the extensive access of massive and decentralized 5G base
stations to the distribution grid, the self-provided energy storage
of 5G base stations provides the grid with flexibility resources
with considerable capacity and huge potential. How to
synergistically control these adjustable idle resources is of
great significance in promoting the consumption of
distributed power sources and smoothing the peak-to-valley
difference of the grid.

5) The soft open point (SOP) can exchange active power and
compensate reactive power between connected distribution
networks, realizing intelligent regulation of distribution

FIGURE 11
ADN communication architecture.
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network currents. How to control the SOPs to realize the
complementary energy between multiple interconnected active
distribution grids is an issue that needs to be focused on in the
subsequent research.
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