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Introduction: In recent years, with the rapid development of renewable energy
generation, the stability of the power grid has been greatly reduced. In response to
this problem, integrating the user side transferable load into the power market has
become the key to the development of future power grid. At present, large
transferable loads have entered the electricity market in some pilot areas of
China, but the relevant research on small and medium-sized transferable users
entering the electricity market is still few.

Methods: This paper proposes the concept of generation load aggregators. A
two-stage generation load aggregator robust optimization model is developed to
obtain the scheduling scheme with the lowest operating cost under the worst
scenario. The model consists of distributed renewable power, transferable load,
self-provided power, energy storage, etc. Uncertainties of renewable energy and
load are introduced in the model. By using the column constraint generation
algorithm and strong pairwise theory, the original problem is decomposed into the
main problem and sub-problems to be solved alternately, so as to obtain the
scheduling scheme with the lowest operating cost in the worst scenario under
different conservatism.

Results: The solved results are compared with those without the generation load
aggregator, illustrating the role of the generation load aggregator in relieving peak
and valley pressure on the grid from the load side, reducing the cost of electricity
for loads, and promoting the consumption of renewable energy. The comparison
with the deterministic optimization algorithm shows a significant decrease in the
total cost and validates the performance of the selected solution algorithm. The
boundary conditions for the use of energy storage by generation load aggregators
for peak and valley reduction under the time-sharing tariff mechanism are also
derived.

Discussion: This study can provide reference for the investors of generation load
aggregators when planning whether to install energy storage or the scale of
energy storage, and also help the power market management department to
design a reasonable incentive mechanism.
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1 Introduction

In recent years, with the rapid development of wind power,
photovoltaic, and other renewable energy generation, the
intermittent volatility of renewable energy generation has posed
an increasing challenge to the power grid, and the problem of
curtailed wind and PV caused by the balance of supply and
demand power has become increasingly prominent. In addition,
the gradual increase in the peak-to-valley load difference and the
continuous growth of peak loads have reduced the stability of the
safe operation of the power market (Li and Wang, 2021; Wu et al.,
2022b; Sambodo et al., 2022). In response to the aforementioned
problems, incorporating customer-side transferable loads into the
power system has become the key to future grid development.
Transferable loads are loads that actively respond to price signals
and incentives to change the behavior of the original electricity
consumption pattern (Chen et al., 2021). At this stage, large
transferable loads have entered the power market in some pilot
areas in China and are dispatched by the grid company. Research
related to the access of small- and medium-sized transferable users
to the power market remains scarce. To solve this problem, the
concept of generation load aggregators is proposed in this paper.
Small- and medium-sized transferable users sign agency contracts
with generation load aggregators, and users participate in the
electricity market through generation load aggregators. The
generation load aggregator is mainly a load aggregator, which
also aggregates distributed energy, energy storage, electric
vehicles, self-provided generator on the load side, etc. Load
aggregators are able to consolidate dispersed adjustable potential
to form the scalable user-adjustable capacity that the market needs
and respond to the grid’s price signals for profit (Li et al., 2022).
When power consumption peaks or other periods of high electricity
prices, power sources, and energy storage in generation load
aggregators choose to operate at high power, at the same time,
the transferable loads therein operate at as low a power as possible.
When the power supply runs at a low power or even shuts down
during low hours or other periods of lower electricity prices, the
energy storage will charge and the transferable load will use
electricity at a higher power at this time. The generation load
aggregator participates in the market bidding for load regulation
behavior as a demand response product, and the winning load
resource is compensated with the corresponding market clearing
price. The difference between generation load aggregators and
electric power companies is that they do not make money in the
same way. Electric power companies primarily make money by
buying low and selling high. Generation load aggregators earn
grid regulation fees primarily by regulating electricity use. The
difference between generation load aggregators and microgrids is
in the integrity of the system. Microgrids are smaller,
decentralized, stand-alone systems that can be operated
individually for extended periods. The generation load
aggregators rely mainly on purchasing power in the electricity
market, where the captive power supply is not sufficient to
support the load for a long period. The difference between
generation load aggregators and virtual power plants is their
different roles in the electricity market. The virtual power plant
belongs to the generation side, and the generation load
aggregator is effectively an adjustable electricity consumer.

Economic scheduling of aggregators is a hot issue in research
related to aggregators, generally intending to minimize operating
costs. Smaller operating costs with constant revenues imply higher
profits (Iria et al., 2020; Kim et al., 2022). Zhang et al. developed a
two-stage optimization model for industrial load aggregators
considering the uncertainty of load response and the satisfaction
of users (Zhang et al., 2018). Xu et al. established an optimal
scheduling model for an electric vehicle charging aggregator to
solve the profit maximization of the aggregator by genetic
algorithm (Xu et al., 2020). With the development of distributed
energy sources, energy storage, etc., aggregators contain not only
industrial and residential loads but also distributed power output
from photovoltaic, wind power, etc., and the stochastic nature of
load power consumption brings challenges to the operation of
aggregators (Sheikhahmadi et al., 2018). How to effectively cope
with the uncertainties within the aggregator and achieve reliable and
economical operation has become the key to the study of the
economic scheduling problem of aggregators (Xu et al., 2020).
For such problems, stochastic programming is often used to
model uncertain variables and simulate the impact of uncertainty
on the operation of aggregators’ stochastic programming which uses
random variables to describe uncertain information and optimizes
to obtain the scheduling solution with the minimum expected cost
(Kim et al., 2021). The key to stochastic programming is to model
uncertain variable properties with a limited number of scenarios
(Wang and Nie, 2022). Vahid-Ghavidel proposed a hybrid
stochastic optimization model to deal with electricity market
price and consumer participation rate uncertainty (Vahid-
Ghavidel et al., 2021). Vatandoust described the joint
optimization of electric vehicles and energy storage aggregators
in the day-ahead electricity market to improve the profitability of
the aggregators with a stochastic mixed integer linear programming
model considering the uncertainty of energy and frequency
regulation prices (Vatandoust et al., 2019). Since stochastic
programming methods seek the solution set with the maximum/
minimum expected value of the objective function, the risk of
irrational decision making exists for a certain scenario. Nguyen
combined stochastic programming and conditional value-at-risk
constraint methods so that the expected return in the
corresponding scenario is not lower than the given confidence
level, thus reducing the system risk (Nguyen and Le, 2015).
However, both stochastic programming and scenario analysis
methods require deterministic probability curves to generate
scenarios, which may lead to models that are not accurate
enough to reflect the actual situation (Wang et al., 2015a).

Compared with the aforementioned methods, robust
optimization replaces the exact probability distribution of
random variables with an uncertainty set and obtains the
scheduling solution of the system under the “worst-case”
scenario through optimization, which is more suitable for
practical engineering needs (Alvim et al., 2021). Lu
considered the uncertainty of charging and discharging of EV
aggregators, built a two-stage robust optimization model, used
distributed robust optimization to improve the average
economic performance of the model, and applied Farkas’
Lemma and robust optimization to ensure the safety of the
distribution system operation (Lu et al., 2021). Najafi
proposed a hybrid decentralized robust optimization-
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stochastic programming (DRO-SP) model based on the
multiplicative alternating direction method to coordinate the
optimization of load aggregators, using a stochastic
programming approach to model the uncertainty of the
electric vehicle model and a robust optimization approach to
model the uncertainty of the location marginal price (Najafi
et al., 2021). Wang proposed a distribution uncertainty model
where the probability distribution of load power can vary around
a given reference distribution (Wang et al., 2015b). However, the
robust models in the aforementioned literature do not allow for
flexible adjustment of the conservativeness of the scheduling
scheme.

The main contributions of this research can be summarized as
follows.

1. To solve the problem that small- and medium-sized adjustable
users on the load side are difficult to enter the electricity market,
this paper proposes the concept of generation load aggregators
for the first time. The basic framework of the generation load
aggregator is built, and a robust optimization model of a two-
stage generation load aggregator with a min–max–min structure
is established.

2. The model considers the coordinated control of PV power
sources, load uncertainty, energy storage, two types of
industrial transferable loads, and distributed power sources
within the generating load aggregator. Using a column-
constrained generation algorithm and strong pairwise theory
obtains an economic dispatch scheme for the worst-case

scenario under different conservatisms. Uncertainty
adjustment parameters have been added to the scheme to
provide flexibility in choosing the degree of conservatism in
the scheduling scheme.

3. The solved results are compared with other sets of results to
determine that the generation load aggregator model has the
effect of relieving the peak and valley pressure on the grid,
reducing the cost of electricity for loads, and promoting the
consumption of renewable energy. The dispatch program
obtained can withstand the risk of real-time market price
fluctuations in electricity. We derive the boundary conditions
for the analytical model to use energy storage for peak shaving
and valley filling under the time-of-day tariff mechanism, which
will provide a theoretical basis for the future construction
planning of generation load aggregators as well as the entry of
small- and medium-sized adjustable users into the electricity
market.

The main study of this paper is as follows. The first part, as the
introductory part of the article, briefly introduces the background of
the study as well as the research progress on the issues related to
generation load aggregators in recent years. The second part builds
the framework of the generation load aggregator system. The third
part is to develop a two-stage robust optimization model for
generation load aggregators. The fourth part is the numerical
simulation and the related discussion and analysis of the results.
The fifth part is the summary of the paper and the prospect of future
research.

FIGURE 1
Structure of generation load aggregators.
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2 Materials and methods

2.1 Generation load aggregator system
framework

Figure 1 shows the basic framework of a generation load
aggregator, which consists of a collection of distributed PV, self-
provided generator, energy storage, transferable load, and other
components. The transferable load can be divided into the start/
stop time delay-type transferable load and power sizing-type
transferable load due to the actual needs of the industry.
Generation load aggregators provide an opportunity for small-
and medium-sized customers to participate in the regulation of
the electricity market. Small- and medium-sized customers do
not reach the minimum level of load elasticity to participate in
demand response and cannot find a way to participate in power
trading. As an intermediary, a generation load aggregator can
integrate customer demand response resources and bring them
into the market for trading, making idle load resources useful
while relieving the pressure on the power system from the load
side during special times such as peak and valley. On the other
hand, power generation load aggregators fully explore the
potential of load demand response, under the help and
guidance of power generation load aggregators, and form a
scientific and economic way of electricity consumption, to
reduce the cost of electricity for users. The generation load
aggregator needs to summarize the electricity consumption
curve of the load on D-1, the generation curve of each power
source, and the curve of the need to buy or sell electricity from the
external grid before day D. If the reported curve is different from
the actual curve, it needs to buy or sell electricity from the
external grid.

2.1.1 Self-provided generator
The self-provided generator of the generation load aggregators

are mainly micro-gas turbines, and the cost of micro-gas turbine
generation Ct

G can be expressed as a linear function (Wang et al.,
2015b).

Ct
G � aPt

G + b[ ]Δt, (1)
where a and b are cost coefficients; Pt

G is the output power of the
micro-gas turbine in time slot t; and Δt is the scheduling step, which
takes the value of 1 h. The power response time of the micro-gas
turbine is negligible compared to the hourly scheduling step, so the
ramping constraint of the micro-gas turbine is not considered and
only the output power constraint is considered.

PG
min ≤Pt

G ≤PG
max, (2)

where PG
max and PG

min denote the maximum/minimum output
power of the micro-gas turbine, and the maximum/minimum
output power is limited by its rated power and minimum load
factor, respectively.

2.1.2 Energy storage
The cost of energy storage Ct

S is mainly composed of the
investment cost, operation cost, and maintenance cost of energy

storage (Xu et al., 2010), and the average charging and discharging
cost at time t during the payback period can be expressed as

Ct
S � KS

Pt,dis
S

η
+ Pt,ch

S η[ ]Δt, (3)

where KS is the unit charge/discharge cost of energy storage after
considering investment cost, operation cost, and maintenance cost;
Pt,ch
S and Pt,dis

S denote the charge/discharge power of energy storage
in time t; and η is the charge/discharge efficiency of energy storage,
respectively. The constraints to be satisfied during the operation of
energy storage include

0≤Pt,dis
S ≤ αtSPS

max, (4)
0≤Pt,ch

S ≤ 1 − αtS[ ]PS
max, (5)

η∑N
t�1

Pt,ch
S Δt[ ] − 1

η
∑N
t�1

Pt,dis
S Δt[ ] � 0, (6)

ES
min ≤E0

S + η∑N
t�1

Pt,ch
S Δt[ ] − 1

η
∑N
t�1

Pt,dis
S Δt[ ]≤ES

max. (7)

Equation 4 and Equation 5 are the charging/discharging
power constraints of energy storage, which are the maximum
charging/discharging power of energy storage, mainly limited
by the capacity of the grid-connected inverter, respectively. αtS
indicates the charging/discharging state of energy storage, αtS �
1 indicates that energy storage is discharged in time t and αtS � 0
indicates that energy storage is charged in time t. Equation 6 is
the constraint to ensure that the power stored in energy storage
at the beginning and end of the dispatch cycle is equal, which is
conducive to the cyclic scheduling of energy storage, and N is
the scheduling cycle and takes the value of 24. Equation 7
indicates the power constraint of energy storage in each time,
E0
S is the power of energy storage at the initial moment of

scheduling, and ES
max and ES

min are the maximum/minimum
power allowed for energy storage during the scheduling process,
respectively, and the main purpose of this constraint is to
prevent energy storage from overcharging or over
discharging to prolong its service life.

2.1.3 Transferable load
Industrial loads have some differences in control and

scheduling methods due to different factors such as industry,
production shift system, and operation of power-using
equipment. Most industrial transferable loads can be divided
into two categories: start–stop time delay and power size
regulation (Kumar et al., 2022).

2.1.4 Start–stop time delay transferable load
The start–stop time delay of transferable load is a more

common type of transferable load. Except for the start–stop
periods, the start–stop time delay class of transferable loads
consumes relatively flat power for most of the work cycle.
And with thermal inertia, starting after a short delay does not
affect production. However, the load curve must shift in time as a
whole, as shown in Figure 2A.

The power consumed by the start–stop time delay type of
transferable loads is shown as follows:
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Pt
QT �

0 t≤ ton
Pt
e

Δtup
t − ton( ) ton ≤ t≤ ton + Δtup

1 + δ t( )( )Pt
e ton + Δtup ≤ t≤ toff − Δtdown,

Pt
e

Δtdown
toff − t( ) toff − Δtdown ≤ t≤ toff

0 t≥ toff

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)

where Pt
QT is the actual dispatch power of the generation load

aggregator for the transferable load at time t; ton is the power-on
time of transferable load; and Δtup is the time it takes from power-on
to stability. Δtdown is the time required to shut down the equipment
until the power is 0; toff is the moment when the power is 0; Pt

e is the
rated power of transferable load; and δ(t) is the fluctuating power
coefficient when the transferable load reaches the steady-state
operation, usually 5%–20%.

Considering the case where the generation load aggregator
contains a start–stop time delay type of transferable load, its
electricity consumption characteristics in providing load
regulation services can be expressed by the following constraint:

∑N
t�1
Pt
QTΔt � DQT, (9)

Dt,min
QT ≤Pt

QTΔt≤Dt,max
QT , (10)

where DQT is the total electricity demand of the transferable load
during the dispatch cycle and Dt,max

QT and Dt,min
QT are the maximum/

minimum electricity demand of the transferable load at time t,
related to the customer’s requirements for its efficiency, respectively.

Since the daily load of the start–stop time delay transferable load
is relatively stable, the starting and interruption time of each
start–stop time delay transferable load is relatively fixed. The
power plan of the transferable load can be adjusted, and the
regulation of the transferable industrial load can be achieved by
appropriately advancing or delaying the start/stop time. However,
the change in the schedule will affect the industrial customers’
habitual use of electricity. Therefore, the generation load

aggregator needs to be compensated appropriately, and the
dispatch cost Ct

QT can be expressed as

Ct
QT � KQT Pt

QT − P′,tQT
∣∣∣∣∣ ∣∣∣∣∣Δt, (11)

where KQT is the unit dispatch cost of the start–stop time delay
transferable load and P′,tQT is the expected power of the start–stop
time delay transferable load at time t. The absolute value term in Eq. 11
represents the deviation between the actual power and the desired
power, which can be reduced to the linear form shown in Eq. 12 by
introducing auxiliary variables Pt

QT1 and P
t
QT2 and constraints (13–14).

Ct
QT � KQT Pt

QT1 + Pt
QT2[ ]Δt, (12)

Pt
QT1 − P′,tQT1 + Pt

QT2 − P′,tQT2 � 0, (13)
Pt
QT1 ≥ 0, Pt

QT2 ≥ 0. (14)

2.1.5 Power sizing transferable load
Power sizing transferable load is another common type of

regulated industrial load. This type of load reduces the peak-to-
valley load difference and reduces operating costs by transferring the
power size during peak hours to other load hours, as shown in
Figure 2B.

The power of the transferable load of the power sizing type can
be expressed by the following equation:

Pt
TJ � P′

e + αtPe max
′, (15)

where Pt
TJ is the actual power dispatched by the generation load

aggregator to the transferable load in time t and P′
e is the average

power consumption of power size regulation transferable load.
Pe max
′ is the maximum regulation power. αt is the participation

adjustment factor, when αt > 0, power increases and when αt < 0,
power reduces. To ensure that the efficiency of work does not
change, the power size adjustment type can transfer the load to
increase and reduce the total amount of power used equally.

Considering the case of a generation load aggregator that
contains a transferable load of the power sizing regulation type,
its electricity consumption characteristics during the provision of

FIGURE 2
(A) Schematic diagram of start–stop time delay transferable load and (B) schematic diagram of power sizing transferable load.
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load regulation services can be expressed by the following
constraint:

∑N
t�1
Pt
TJΔt � DTJ, (16)

Dt,min
TJ ≤Pt

TJΔt≤Dt,max
TJ , (17)

where DTJ is the total demand of the transferable load in a dispatch
cycle andDt,max

TJ andDt,min
TJ are the maximum/minimum demand of

the transferable load in time t, respectively.
The power sizing transferable load can also flexibly adjust the

demand response load schedule, but the generation load aggregator
also needs to compensate the transferable load enterprise, and the
dispatch cost Ct

TJ required for time t can be expressed as

Ct
TJ � KTJ P

t
TJ − P′,tTJ

∣∣∣∣ ∣∣∣∣Δt, (18)

whereKTJ is the unit dispatch cost of the power sizing load and P′,tTJ is
the expected power consumption of the power sizing load at time t. The
absolute value term in Eq. 18 is used to represent the deviation between
the actual dispatched power and the desired power consumption, which
can be reduced to the linear form shown in Eq. 19 by introducing
auxiliary variables Pt

TJ1 and Pt
TJ2 and constraints (20–21).

Ct
TJ � KTJ Pt

TJ1 + Pt
TJ2[ ]Δt, (19)

Pt
TJ1 − P′,tTJ1 + Pt

TJ2 − P′,tTJ2 � 0, (20)
Pt
TJ1 ≥ 0, Pt

TJ2 ≥ 0. (21)

2.1.6 External grid-interactive power
When the self-provided generator, renewable energy, and energy

storage within the generation load aggregator cannot meet the load
demand, it needs to purchase power from the external grid;
conversely, the generation load aggregator can sell the surplus
power to the external grid to obtain revenue (Jiang et al., 2021).
The interactive power between the generation load aggregator and
the external grid is subject to the following balancing constraints:

Pt,buy
M − Pt,sell

M � Pt,ch
S + Pt

QT + Pt
TJ + Pt

L − Pt
G − Pt,dis

S − Pt
PV, (22)

where Pt,buy
M and Pt,sell

M are the power of the generation load
aggregator to buy or sell electricity to the external grid in time t,
respectively. Wind power is rarely located in industrial areas due to
large land areas and other factors. Therefore, in this paper, only
renewable power sources are considered for photovoltaic power
generation. Pt

PV is the PV output power of the generation load
aggregator in time t. Pt

L is the conventional load power in time t.
The interactive power between the generation load aggregator

and the external grid needs to satisfy

0≤Pt,buy
M ≤ αtMPM

max, (23)
0≤Pt,sell

M ≤ 1 − αtM[ ]PM
max, (24)

where PM
max is the maximum value of the power exchanged between

the load aggregator and the external grid, which is determined by
considering the capacity of the transformer at the connection
between the external grid and the load aggregator and the
specific policies. αtM is the purchase and sale status of the load
aggregator to the external grid, αtM � 1 is the purchase of power by

the load aggregator to the external grid, and αtM � 0 is the sale of
power by the load aggregator to the external grid. In time t,
interaction cost Ct

M between the load aggregator and the external
grid can be expressed as

Ct
M � λt Pt,sell

M − Pt,buy
M[ ]Δt, (25)

where λt is the day-ahead traded tariff of the external grid.

2.2 Two-stage robust optimization model

The generation load aggregator model has the minimum daily
operating cost as the optimization objective, as shown in Eq. 22, and
the model constraints include Eq. 2, Eq. 4–Eq. 7, Eq. 9–Eq. 14, Eq.
16–Eq. 21, and Eq. 23–Eq. 24.

minC � ∑N
t�1

Ct
G + Ct

S + Ct
QT + Ct

GL + Ct
M[ ]. (26)

When the uncertainties of PV and load are not considered, the
deterministic optimization model for the aforementioned
generation load aggregator economic dispatch problem can be
formulated in a compact form as

min
x,y

cTy

s.t.Ay ≥ d
Ky � 0
Gx + Ey ≥ h
Iuy � u

�
,

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(27)

where x and y are optimization variables, and the specific
expressions are

x � Ut
S, U

t
M[ ]T

y � Pt
G, P

t,ch
S , Pt,dis

S , Pt
QT, P

t
TJ, P

t,buy
M , Pt,sell

M , Pt
PV, P

t
L[ ]T, t � 1, 2/N( ),

⎧⎨⎩ (28)

where c is the objective function (26) column vector coefficients; A, K ,
G, E, and Iu are the coefficient matrices of the variables under the
corresponding constraints; and d and h are constant column vectors. In
Eq. 27, the first row of the constraints represents the inequality
constraints in the generation load aggregator model, including Eq. 2,
7, Eq. 10, Eq. 14, Eq. 17, and Eq. 21. The second row is the equality
constraint, including Eqs. 6 and 9, Eq. 12, Eq. 13, Eq. 17, Eq. 19, and Eq.
20. The third row corresponds to Eq. 4 and Eq. 5 and Eq. 23 and Eq. 24.
Line 4 indicates that in the deterministic optimization model, the PV
and load take the corresponding predicted values in time t, where

u� � u
�t

PV, u
�t

L[ ]Tt � 1, 2/N( ), (29)

where u
�t
PV and u

�t
L denote the predicted values of PV output and load

power in time t, respectively.
The aforementioned model is a mixed-integer linear

programming problem, which can be solved by deterministic
optimization methods, and the optimal solution depends on the
accuracy of the predicted values. However, generation load
aggregators are affected by many stochastic factors, which
makes it difficult to guarantee prediction accuracy. In
summary, deterministic optimization schemes often appear to
be too “risky."
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Therefore, in practice, the impact of uncertainty on the model
needs to be accounted for. The box uncertainty set U considers the
fluctuation range of PV output and load power.

U �
u � ut

PV, u
t
L[ ]T ∈ R N( )×2, t � 1, 2/N

ut
PV ∈[u�t

PV − Δut,max
PV , u

�t

PV + Δut,max
PV

ut
L ∈ u

�t

L − Δut,max
L , u

�t

L + Δut,max
L[ ],

⎧⎪⎪⎨⎪⎪⎩ (30)

where utPV and utL are uncertain variables introduced into PV as well
as load after adding uncertainty and Δut,max

PV and Δut,max
L are the

maximum fluctuation deviation allowed for PV output and load
power, respectively, both of which are positive.

The objective of the two-stage robust optimization model for
generation load aggregators constructed in this paper is to find the
economically optimal scheduling solution for the worst-case scenario of
uncertain variablesuwithin anuncertain setU , having the following form:

min
x

max
u∈U

min
y∈Ω x,u( )

cTy{ }
s.t. x � x1, x2,/, x2 × N( )T
xi ∈ 0, 1{ },∀i ∈ 1, 2,/2 × N( ),

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (31)

where the outer layer is minimized to the first stage master problem
with the optimization variable x and the maximum minimization of
the inner layer is the second stage subproblem with optimization
variables u and y. The second stage minimization problem is
equivalent to the objective function of Eq. 26, which represents
the minimum operating cost. The expressions for x and y are shown
in Eq. 28. Ω(x, u) denotes the feasible domain of the optimization
variables (x, u) given a set of y. The specific expressions are as
follows:

Ω x, y( ) �
y
∣∣∣∣

Ay ≥ d → γ
Ky � 0 → λ

Gx + Ey ≥ h → ]
Iuy � u

� → π

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
, (32)

where γ, λ, ], π denote the pairwise variables corresponding to each
constraint in the minimization problem of the second stage.

For each set of uncertain variables u, a deterministic
optimization model shown by Eq. 26 can be obtained, and the
purpose of the max-structure in the robust optimization model is to
find the worst-case scenario.

2.3 Column constraint generation algorithm

For the aforementioned two-stage robust optimizationmodel of the
generation load aggregator, the column constraint generation algorithm
(C and CG) is chosen to solve the model (Fanzeres et al., 2020). The C
and CG algorithm is similar to the Benders decomposition algorithm in
that the problem is first decomposed into a master problem and a
subproblem and solved alternatively to obtain the optimal solution to
the original problem (Alvarez et al., 2020). The difference between the
two algorithms is that the C and CG algorithm continuously introduces
variables and constraints related to the subproblems in the process of
solving the master problem to obtain more compact lower bounds on
the objective function values, thus reducing the number of iterations
(Shi et al., 2020).

The decomposition of Equation 31 yields a master problem of
the form

min
x

β

s.t. β≥ cTyl
Ayl ≥ d
Kyl � 0
Gx + Eyl ≥ h
Iuyl � u*

l

∀l≤ k,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

where k is the current number of iterations; yl is the solution of the
subproblem after the lth iteration; and u*l is the value of the
uncertain variable u under the worst-case scenario obtained after
the lth iteration.

The decomposed subproblem takes the form

max
u∈U

min
y∈Ω x,u( )

cTy. (34)

From the aforementioned analysis, the inner minimization of
Eq. 34 is a linear problem for a given set of (x, y). According to the
strong dual theory and the correspondence of Eq. 32, the problem
can be transformed into the max problem and combined with the
outer max problem to obtain the dual problem as shown in the
following equation:

max
u∈U,γ,λ,],π

dTγ + h − Gx( )T] + uTπ

s.t.ATγ + KTλ + ET] + ITuπ ≤ c
γ≥ 0, ]≥ 0, Iu ≥ 0,

⎧⎪⎪⎨⎪⎪⎩ (35)

where there exists a bilinear term uTπ. According to the conclusions
of the literature (Bertsimas et al., 2013), u* corresponding to the
optimal solution of this pairwise problem is a pole of the uncertainty
set U ; that is, Eq. 35 takes its maximum value when uncertain
variable u should be taken to be the boundary of the fluctuation
interval described by Eq. 30. In the generation load aggregator, the
operating cost of the generation load aggregator is the largest when
the PV output is the minimum value and the load power is
maximum, which is more consistent with the definition of the
“worst-case” scenario. Therefore, Eq. 30 is rewritten in the
following form:

U �

u � ut
PV, u

t
L[ ]T ∈ R N( )×2, t � 1, 2/NT

ut
PV � u

�t

PV − Bt
PVΔut,max

PV

∑N
t�1
Bt
PV ≤ ΓPV

ut
L ∈ u

�t

L − Δut,max
L , u

�t

L + Δut,max
L[ ]

∑N
t�1
Bt
L ≤ ΓL,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(36)

where B � [Bt
PV, B

t
L]T is a binary variable, and a value of 1 indicates

that the uncertain variable is the boundary of the interval at the
ecoupled into main time t. ΓPV and ΓL are the “uncertainty
regulation parameters” for PV and load, respectively (Wang
et al., 2016), which are integers in the range of 0–N and
represent the total number of periods in which PV and load take
the boundary values of the fluctuation interval in a scheduling cycle.
After substituting the expression for the uncertain variables in Eq. 36
into Eq. 35, it will appear in the form of a product of binary and
continuous variables, which is linearized by introducing auxiliary
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variables and associated constraints (Pistikopoulos, 1998) to obtain
the following equation:

max
u∈U,γ,λ,],π

dTγ + h − Gx( )T] + u
�T
π + ΔuTB′

s.t. ATγ + KTλ + ET] + ITuπ ≤ c
0≤B′≤ �πB
π − �π 1 − B( )≤B′≤ π

∑N
t�1
Bt
PV ≤ ΓPV

∑N
t�1
Bt
L ≤ ΓL,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(37)

where Δu � [Δut,max
PV ,Δut,max

L ]T and B′ � [B′,tPV, B′,tL]T are
continuous auxiliary variables and �π is the upper bound of the
pairwise variables and is a sufficiently large positive real number.

After the aforementioned derivation and transformation, the
two-stage robust optimization model for the generation load
aggregator is decoupled into the main problem and subproblem
with a mixed integer linear form, and the model is solved by the C
and CG algorithm, shown in Figure 3.

1) The uncertain variable u is set as the initial worst-case scenario,
the lower bound LB � −∞, the upper bound UB � +∞, and the
number of iterations k � 1.

2) The first stage of a two-stage robust optimization: The master
problem in Eq. 33 for the optimal solution (x*k, β*k, y1*,/, yk*) is
solved according to the worst-case scenario u1*, with the value of the
master problem objective function as the new lower bound LB � β*k.

3) The second stage of a two-stage robust optimization: The
solution x*k of the master problem is substituted into the

FIGURE 3
Flow chart of the two-stage robust optimization model.
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subproblem in Eq. 37 to obtain the objective function value
f *k(x*k) of the subproblem and the uncertain variables u � uk+1*

and the upper bound UB � min UB, f *k(x*k){ } are updated.
4) The convergence threshold is set to ε. IfUB − LB≤ ε, the iteration

is stopped and the optimal solutions x*k and y*k are returned.
Otherwise, the variable yk+1 and the following constraint are
added:

β≥ cTyk+1
Ayk+1 ≥ d
Kyk+1 � 0
Gx + Eyk+1 ≥ h
Iuyl � uk+1* .

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(38)

Let k � k + 1, and we skip to 2) until the algorithm converges.

3 Results and discussion

The generation load aggregator shown in Figure 1 is used as an
example for this study. The simulation analysis includes three
aspects: economic scheduling of generation load aggregator,
comparison among optimization models, and boundary
conditions of energy storage scheduling.

3.1 Economic dispatch scheme for
generation load aggregators

In the economic scheduling scheme of the generation load
aggregator, the uncertainty regulation parameter of the load
power is set to 12, which means that the load power will reach
the maximum value of the forecast interval for at most 12 periods
during the scheduling optimization process (Liu et al., 2018). The
uncertainty regulation parameter of the PV output is set to 6, which

means that the minimum value of the forecast interval will be
reached for at most six periods during the optimization process
and the rest of the periods will be equal to the forecast value. The
operating parameters of the generation load aggregator during the
simulation are shown in Table 1(Li, 2020).

In practice, the maximum allowed fluctuation deviation of load
power and PV output within the generation load aggregator can be
set based on the historical forecast deviation in the past. This article
takes as an example a typical weekday on a sunny spring day in
Yongqiang Industrial Park in Shenyang, Liaoning Province, China.
The predicted curves and actual curves of its load power and
photovoltaic output are shown in Figures 4A,B, respectively.
Also, the shaded parts are the uncertainty sets considered in this
paper with values of 10% and 15% of the predicted values of load
power and PV output (China, National Education Association,
2013). The residential electricity step tariff of a city in China is
used as the day-ahead trading tariff for power exchange between the
external grid and the generation load aggregator, as shown in
Figure 4C.

The two-stage robust generation load aggregator scheduling
optimization process used in this example is shown in Figure 5A,
and it stabilized in the 2nd iteration.

The scheduling results are shown in Figures 5A-E. Figure 5B
shows the overall results of the two-stage robust generation load
aggregator optimized scheduling. Figure 5C shows the micro-gas
turbine output power and the power purchased and sold by the
generating load aggregator to the external grid, taking negative
values when the generating load aggregator purchases power
from the external grid. Figure 5D shows the energy storage
charging and discharging power, negative when charging and
positive when discharging. Figure 5E shows the start–stop time
delay transferable load actual and desired power usage schedule.
Figure 5F shows the power sizing transferable load actual and
desired power usage schedule.

As shown in Figure 5B, in 1–7 h and 19–24 h, the PV output is
0, and the load of the generation load aggregator relies entirely on
the micro-gas turbine, energy storage, and external grid supply.
At this time, when the day-ahead traded tariff of the external grid
is lower than the unit power generation cost of the micro-gas
turbine, the micro-gas turbine operates at the minimum output
power, as shown in Figure 5C for 1–7 h and 24 h. During the rest
of the period, the micro-gas turbine outputs maximum power,
reducing the purchased power to the external grid (e.g., 8 h,
12–22 h, and 24 h) and selling power to the external grid during
peak tariff hours (e.g., 9–11 h and 23 h), thus reducing operating
costs.

As can be seen in Figure 5D, under the time-sharing tariff
mechanism and the periodic conditions of PV output, the
charging of energy storage units during lower tariff hours or
PV output hours, such as 5–6 h, 16–18 h, and 24 h, and
discharging during peak tariff hours, such as 9–11 h and
21–23 h, can achieve not only peak shaving and valley filling
but also lower operating costs. As shown in Figure 5E, the
expected electricity consumption plan for the start–stop time
delay type of transferable load is not much different from the
peak and valley values of the load compared to the conventional
load due to the three shifts. However, the system reformulates the
production plan without affecting the conditions of production,

TABLE 1 Operating parameters of generation load aggregators.

Unit Parameter Value

Micro-gas turbine PG
max/kW 1,000

PG
min/kW 100

a/b(yuan/kW.h) 0.72/0

Energy storage Ps
max/kW 1,200

Es
max/kW.h 4,500

Es
min/kW.h 800

Es(0)/kW.h 2,500

Ks/(yuan/kW.h) 0.62

η 0.95

Transferable load Start/stop time delay type KQT/(yuan/kW.h) 0.55

DQT/kW.h 6,480

Power size adjustment type KGL/(yuan/kW.h) 0.58

DGL/kW.h 2,140

External grid interactive power PM
max/kW 6,000
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advance, or stagger part of the load. The system will arrange as
many loads with large power as possible during the period of low
electricity prices, such as transferring part of the electricity power
from 11–13 h to 6–8 h and transferring part of the electricity
power from 18–23 h to 24–5 h. Because the system works 24 h a
day, the operational space for load shifting is not very large. This
observation was also made by Chen (2020). As shown in
Figure 5F, the desired electricity consumption schedule for the
power sizing type of transfer loads is similar to that of
conventional loads, with electricity consumption mainly
concentrated in peak tariff hours. Under the premise of
satisfying the total electricity demand and the electricity
consumption constraint of each period, the power
consumption in the 11–24 h period is reduced and the power
consumption in the 1–10 h period is increased, thus reducing the
power that the generation load aggregator needs to purchase in
the peak tariff period.

3.2 Comparison of the system with and
without generation load aggregators

In the absence of a generation load aggregator, small- and
medium-sized transferable loads can only be purchased from the
external grid as non-regulated loads, without subsidies for peak
and valley shifting, because their electricity consumption and
regulation do not meet the requirements for participation in the
electricity market. Power generation and energy storage cannot
participate in power market trading due to the small installed
capacity, and the electricity generated will not be sold to the
external grid and can only be used as a self-provided generator for
the load (Khan et al., 2021; Wu et al., 2022a). Its daily operating
cost is shown in Eq. 39, with constraints as in Eq. 2, Eq. 4–Eq. 7,
and Eq. 23.

minC′ � ∑N
t�1

Ct
G + Ct

S + Ct
L + Ct

M[ ], (39)

FIGURE 4
(A) Forecast/actual load power curve of a typical working day at Yongqiang Industrial Park in Shenyang, (B) forecast/actual PV output curve for a
typical working day at Yongqiang Industrial Park in Shenyang, and (C) external grid day trading tariff.
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FIGURE 5
(A) Two-stage robust generation load aggregator scheduling optimization process, (B) power of each component within the generation load
aggregator after two-stage robust optimization, (C)micro-gas turbine output power and generation load aggregation commercial power purchase and
sale, (D) energy storage charging and discharging power, (E) start/stop time delay type transferable load actual/desired power consumption plan, and (F)
power sizing-type transferable load actual/desired electricity usage plan.

TABLE 2 Comparison of operating costs of systems optimized with and without generation load aggregators.

With generation load aggregator Without generation load aggregator

Day-ahead operating cost/$ 5,124 5,249
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where Ct
L is the cost of electricity for the load. The operating costs of

the optimized system with and without generation load aggregators
are shown in Table 2, which shows that the operating costs of the
system with generation load aggregators are significantly lower than
those without generation load aggregators because generation load
aggregators sell electricity when prices are high and buy it when
prices are low through price differentials. The comparison of load
purchases from the grid in the case of generation load aggregators
and the traditional dispatch mode is shown in Figure 6. If no
generation load aggregator exists, although each load has its own
distributed PV, which can reduce the load during the noon hour, the
electricity consumption period of 19–22 h is still a peak. If a
generation load aggregator exists, the internal transferable load
can participate in the power market through the generation load
aggregator to shift the peak and fill the valley in exchange for
subsidies and reduce the cost of electricity. The generation and
storage facilities can participate in the power market through the
generation load aggregator as a power source to supply electricity to
the external grid to gain profit. In addition, in the presence of a
generation load aggregator, the load gets a certain degree of rise
during the trough period of electricity consumption in the external
grid, and in some areas where renewable energy is more
concentrated, the generation load aggregator can promote the
consumption of renewable energy. In contrast, during the peak
periods of the external grid, the demand of the generation load
aggregator to purchase power from the outside is low, and it can
even serve as a temporary power source to supply the external grid.
Also, during peak periods on the external grid, as can be seen in the
9–13 time period, although the system’s electricity consumption is at
its peak, the generating load aggregator has a very low need to

purchase power from the outside world and is even able to act as a
temporary source of power to the external grid when the price of
electricity is high. Generation load aggregators have a peak shifting
effect, shifting the high point of the evening peak of the required
purchased power from the 20–22 time period to the 16–17 time
period. Electricity prices are low during the 6–17 time period
because it is not the peak of electricity consumption on the
external grid. Reducing the cost of electricity consumption also
contributes to mitigating peak-to-valley differences in the external
grid. So, power prices are low, reducing the cost of electricity while
also contributing to the external grid to mitigate peak-to-valley
differences. In summary, generation load aggregators can relieve
peak and valley pressure on the external grid from the load side.

Table 3 shows the comparison of the cost of electricity
consumption for each type of load with and without
generation load aggregators. The costs of electricity
consumption for the start/stop time delay-type transferable
load, power sizing-type transferable load, and the non-
regulated load are $696, $229, and $3,796, respectively, in the
absence of a generation load aggregator. With load aggregators,
the cost of electricity drops to $563, $84, and $3,786, respectively.
Power sizing-type transferable load has the largest percentage
reduction in electricity costs due to its deeper involvement in
peak shaving and valley filling. The non-regulated load does not
participate in peak and valley reduction, but the cost of electricity
consumption is reduced due to the presence of generation and
storage components. In summary, the rationale for the
participation of each type of load in the generation load
aggregator and the function of the generation load aggregator
to reduce the cost of electricity for the load can be demonstrated.

FIGURE 6
Comparison of power purchased from the grid by loads with and without generation load aggregator.
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3.3 Comparison of optimization models

The two-stage robust generation load aggregator optimization
model proposed in this paper and the deterministic optimization
model (Hansen et al., 2015) are compared in two dimensions: the
effectiveness of determining the worst-case scenario and the
performance of the chosen method.

The two-stage robust generation load aggregator optimization
model is based on the uncertainty regulation parameters ΓL � 12
and ΓPV � 6. The worst-case scenario is that the load power takes the
maximum value of the prediction interval 12 times from 7 to 13 h
and 18–22 h, and the PV output takes the minimum value of the
interval six times from 10 to 14 h and 16 h. The deterministic
optimization model for the control group is shown in Equation
23 and is solved using a mixed integer linear programming
approach. To verify that the scenarios taken from the robust
optimization model scheduling scheme selected in the paper are
the worst-case scenarios. Several times were randomly selected as the
boundary of the prediction interval in the model. It is shown in
Table 4 for the following three comparative scenarios.

The two-stage robust generation load aggregator
optimization model and three deterministic optimization
models were used to solve the day-ahead operating costs of
the generation load aggregators, and the results are shown in
Table 4. In Scenario 1, the load power is taken to all peak hour
tariff periods as the maximum period of the forecast interval. In

Scenario 2, the PV output minimum period of the deterministic
optimization model increases the peak tariff period by 9 h
compared to the robust model. However, the day-ahead
operating costs of both scenarios are lower than the results of
Scenario 3. The time selected for Scenario 3 is the same as that for
the deterministic optimization model, and the day-ahead
operating cost is also the same.

To verify the flexibility of the two-stage robust generation load
aggregator optimization model to adjust the conservativeness of the
scheduling scheme, five sets of uncertainty regulation parameters, as
well as a set of deterministic optimization models, are selected to
compare the results. The parameter settings, corresponding day-
ahead operating costs, purchased power, and sold power are shown
in Table 5.

As can be seen from Table 6, the results of the uncertainty
robust optimization model are the same as those of the
deterministic optimization model with a day-ahead operating
cost of $4,575 for the uncertainty adjustment parameter. As the
uncertainty in the regulation parameters increases, the operating
cost of the generation load aggregator increases as well,
amounting to $5,346 for groups ΓL � 24 and ΓPV � 12. In other
words, the more the generation load aggregator considers the
uncertainty of the load power and PV output when developing
the day-ahead dispatch planning scheme, the more conservative
the scheme obtained and the higher the operating cost. The
change in operating costs is mainly due to the change in
power purchased and sold by the generation load aggregator
to the external grid. The larger the value of the uncertainty
parameter Γ, the greater the number of periods in which the
load power is taken to the maximum value of the forecast interval
and the PV output is taken to the minimum value of the forecast
interval. Therefore, the higher the surplus power of the load
aggregator, the higher the total purchased power.

The operating cost of the generation load aggregator using
the deterministic optimization model in Table 6 is smaller than
that of the robust optimization model, but this does not mean
that the deterministic optimization model is “better” than the
robust model. The generation load aggregator needs the
corresponding generation and consumption plan submitted in
the day-ahead market, and the inequality between the planned
generation and the actual volume on day 2 caused by the forecast
error needs to be purchased in the real-time market
(Lankeshwara et al., 2022). Electricity purchase prices in the
real-time market are generally higher than those in the day-ahead
market, and electricity sales prices are generally lower than those
in the day-ahead market (Agrawal, 2022), so forecast errors can
lead to higher final transaction costs. In summary, the scheduling

TABLE 3 Comparison of electricity costs for various types of loads with and without generation load aggregators.

Mode Cost of electricity consumption/$

Start/stop time delay-type transferable
load

Power sizing-type transferable
load

Non-regulated
load

Without generation load
aggregator

696 229 3,796

With generation load aggregator 563 84 3,786

TABLE 4 Parameterization of deterministic optimization models in three
scenarios.

Scenario Load power Photovoltaic power output

1 9–12,16–23h 10–14h,16h

2 7–13h,18–22h 9–14h

3 7–13h,18–22h 10–14h,16h

TABLE 5 Comparison of operation cost between the robust optimizationmodel
and deterministic optimization model.

Optimization method Previous operating cost/$

Robust optimization 5,124

Scenario 1 5,086

Scenario 2 5,034

Scenario 3 5,124

Frontiers in Energy Research frontiersin.org13

Zhang et al. 10.3389/fenrg.2023.1258689

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1258689


scheme obtained from the robust optimization model has
stronger robustness and the ability to resist the risk of real-
time market price fluctuations. To verify the aforementioned
conclusions, the performance of the two-stage robust
optimization method and the deterministic optimization
method proposed in this paper is compared with ΓL � 12 and
ΓPV � 6 as examples. The electricity purchase price in the real-
time market is assumed to be 1.5 times the price of the
corresponding period in the previous day’s market, and the

electricity sale price is assumed to be 0.5 times the price of the
previous day’s market. The final operating costs for the robust
optimization method and the deterministic optimization method
are shown in Table 7, using the actual and predicted values of
load and PV shown in Figures 5A,B as references. The balancing
operating comparison is shown in Figure 7, with positive values
indicating the additional power that the generation load
aggregator needs to purchase in the real-time market and
negative values indicating the additional power sold by the

TABLE 6 Day-ahead operating costs and purchased/sold power for generation load aggregators with different uncertainty regulation parameters.

Uncertainty parameter Previous operating cost/$ Purchased power/kWh Sold power/kWh

Deterministic optimization 4,575 27,958 1,392

ΓL � 0, ΓPV � 0 4,575 27,958 1,392

ΓL � 6, ΓPV � 3 4,903 28,489 1,368

ΓL � 12, ΓPV � 6 5,124 28,983 1,174

ΓL � 18, ΓPV � 9 5,178 29,432 1,082

ΓL � 24, ΓPV � 12 5,346 30,803 908.2

TABLE 7 Comparison of the final operating costs of the system after optimization by robust and deterministic optimization methods.

Robust optimization Deterministic optimization

Day-ahead operating cost/$ Equilibrium cost/$/$ Total cost/$ Day-ahead operating cost/$ Equilibrium cost/$ Total cost/$

5,124 287 5,411 4,575 1,285 5,860

FIGURE 7
Imbalance power generated by real-time power markets.
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generation load aggregator. The power purchased in the real-time
market by the day-ahead scheduling scheme using robust
optimization is much less than that of the deterministic
optimization method. This results in an equilibrium cost of
$287, which is much lower than the equilibrium cost of
$5,411 for the deterministic optimization method, thus
reducing the final operating cost from $5,860 to $5,411.

3.4 Energy storage scheduling boundary
conditions

The time-sharing tariff mechanism between the generation
load aggregator and the external grid shown in Figure 7 allows the
generation load aggregator to use energy storage to utilize the
power purchased in the valley hours in the peak hours under the
condition that the energy storage portion of the generation load
aggregator needs to meet the constraint (Agrawal, 2022). Based
on this premise, the boundary conditions for the use of energy
storage for peak shaving by generation load aggregators can be
further deduced; in other words, generation load aggregators will
use energy storage only under the condition that energy storage
can reduce the operating cost of the system. The dispatch cost of
energy storage is less than or equal to the difference between the
revenue from power sales during peak hours and the cost of
power purchases during valley hours (Yang et al., 2020).

η∑N
t�1
Pt,ch
S Δt + 1

η
∑N
t�1
Pt,dis
S Δt⎡⎣ ⎤⎦KS ≤ σ2∑N

t�1
Pt,dis
S Δt − σ1∑N

t�1
Pt,ch
S Δt, (40)

where σ1 and σ2 are the traded tariffs for the valley and peak
hours, respectively. According to Eq. 6, Eq. 41 can be further
simplified as

KS ≤
ησ2 − σ1/η

2
. (41)

Equation 41 is the boundary condition for the use of energy
storage for peak and valley reduction by generation load
aggregators, and its value depends on the relationship between

the unit charge and discharge cost of energy storage and the peak
and valley tariffs (Talluri et al., 2021). Using the parameters in
Table 1 as an example, the generation load aggregator dispatches
energy storage boundary conditions as shown in Figure 8A.
When the value of KS is below the plane shown in Figure 16,
the generation load aggregator schedules energy storage to reduce
the total operating cost; conversely, the generation load
aggregator will not schedule the charging and discharging of
energy storage.

In the time-sharing tariff mechanism shown in Figure 6, the
peak hour tariff is $0.194/(kW·h) and the valley hour tariff is
$0.069/(kW·h), and the boundary condition for energy storage
dispatched by the generation load aggregator can be obtained
from Eq. 41 asKS is not greater than $0.057/(kW·h). To verify the
validity of the aforementioned conclusions, the ratio of the total
amount of electricity charged or discharged by the generation
load aggregator to the rated capacity of the energy storage during
a dispatch cycle is defined as lth (Karimi and Kwon, 2021).

θ � η∑N
t�1
Pt,ch
S Δt⎡⎣ ⎤⎦/CS, (42)

whereCS is the rated capacity of the energy storage. AsKS varies, the
variation curve of energy storage usage by generation load
aggregators is shown in Figure 8A.

As can be seen in Figure 8B, when the unit charge/discharge cost of
energy storage is greater than $0.057/(kW·h), the generation load
aggregator will no longer charge/discharge energy storage. In other
words, in practical application, if the unit charging and discharging cost
of energy storage is higher than the boundary condition of energy storage
dispatch under the corresponding time-sharing tariffmechanism, energy
storage can be installed without other incentive mechanisms.

4 Conclusion

In this paper, the concept of generation load aggregator is proposed
to address the problem that small- and medium-sized regulating
customers have fewer ways to participate in the electricity market. A

FIGURE 8
(A) Generation load aggregator scheduling energy storage boundary conditions and (B) energy storage utilization.
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generation load aggregator framework is established that can internally
include self-provided generator, energy storage, renewable distributed
power, two types of transferable loads, and non-regulated loads.
Considering the uncertainty of renewable power sources and loads
within the generation load aggregator, this paper establishes a two-stage
robust generation load aggregator model to optimize its economic
dispatch. To relieve the pressure on the power system from the load side
during special hours such as peak and valley and to provide a theoretical
basis for future investment and construction planning by generation
load aggregator investors and for small- and medium-sized adjustable
users to enter the electricity market, the results are analyzed as follows:

(1) The proposed model of generation load aggregator considering
uncertainty can be solved by column constraint generation
algorithm to obtain the most economical scheduling scheme
under the “worst-case” scenario. In this scheme, the generation
load aggregator can make full use of self-provided generator,
energy storage, and transferable load to reduce the power cost of
the system.

(2) A comparison of the results with and without generation load
aggregators illustrates the rationality of the generation load
aggregator framework by relieving peak and valley pressure on
the external grid from the load side, reducing the cost of electricity
for loads, and promoting the consumption of renewable energy.

(3) The optimization method used in this paper reduces the operating
cost from $5,860 to $5,411 compared to the deterministic
optimization method, and the resulting day-ahead scheduling
scheme is more robust and resilient to the risk of real-time
market price fluctuations. Also, the optimization algorithm used
in this paper can adjust the conservativeness of the generation load
aggregator optimization scheme by varying the uncertainty
regulation parameters to accommodate the use of generation
load aggregator operators with different mental risk-taking
capabilities. The power generation load aggregators with weak
psychological risk-taking ability choose the scheme with high
conservative type and the uncertainty regulation parameters are
larger.

(4) The scheduling plan for energy storage by the generation load
aggregator depends on the relationship between the peak tariff, the
valley tariff, and the unit charge/discharge cost of energy storage
under the time-sharing tariff mechanism. By analyzing the
utilization rate curve of energy storage, the energy storage will
no longer be meaningful for generation load aggregators when the
unit charge/discharge cost of energy storage is greater than $0.057/
(kW·h) under the existing tariff conditions. The findings can
provide a reference for generation load aggregator investors
when planning whether to install energy storage or the scale of

energy storage installation and also help the power market
management to design reasonable incentive mechanisms.
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