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With the rapid development of flexible DC distribution networks, fault detection
and identification have also attracted people’s attention. High-resistance
grounding fault poses a great challenge to the distribution network. The fault
current is very small and random, which makes its detection and identification
difficult. The traditional overcurrent protection device cannot identify and act on
the fault current. Therefore, this paper proposes a fault detection method based
on variational mode decomposition (VMD) combined with the convolutional
neural network (CNN) of the inception module. This method first uses VMD to
decompose the positive transient voltage. Second, it inputs the decomposed
signal into CNN for training to obtain the optimal parameters of the model. Finally,
the model performance is tested based on the PSCAD/EMTDC simulation
platform. Experiments show that the detection method is accurate and
effective. It can realize the accurate identification of seven different fault types.
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1 Introduction

The AC distribution network faces problems such as tight power supply corridor and
poor power quality. In recent years, medium-low voltage flexible DC distribution networks
are widely used in power systems, which have the advantages of small line loss, large
transmission capacity, and flexible operation mode. However, like the AC distribution
network, high-resistance grounding faults are prone to occur due to the complex operating
environment. The characteristics of faults are weak, thus making their detection impossible
using common fault detection techniques (Silva et al., 2018). If they run for a long time, they
will damage the wire insulation and pose a great threat to personal safety (Taheri and Razavi,
2018). On the other hand, the other faults and normal disturbances in the distribution
network can also cause changes in voltage and current, causing difficulties in detection and
identification. Therefore, how to accurately identify the faults is the focus of DC distribution
network operation.
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1.1 Previous and related work

At present, ground fault detection often uses signal processing
methods. The collected signal usually includes voltage, current,
magnetic field strength, and impedance. The commonly used
signal decomposition methods are Fourier transform (FFT),
empirical mode decomposition (EMD), and wavelet transform
(WT). The Fourier transform can transform a continuous signal
with a non-periodic time domain into a continuous signal with a
non-periodic frequency domain. However, this method can only
extract the information of the signal in the frequency component
and is only applicable to non-stationary signals (Liu, 2022). EMD is
a time-frequency processing method, which can reflect the local
characteristics of non-stationary signals; however, the phenomenon
of modal confusion occurs (Robertas et al., 2017). Adaptive noise-
complete ensemble empirical mode decomposition mitigates the
phenomenon of modal aliasing by adding Gaussian white noise to
the signal to be processed; however, it does not make the
phenomenon disappear completely and the added noise causes
some interference (Xu et al., 2021). WT has advantages of
processing non-stationary signals but requires artificial selection
of the mother wavelet (Sarwagya and Ranjan, 2020). Gautam and
Brahma (2013) used mathematical morphology-based methods that
rely on irregularities in the current waveforms as HIF inception
features. Satpathi et al. (2018) used short-time Fourier transform to
quantitatively study high-frequency components under transient
conditions and were able to distinguish between short-circuit faults
and transient cases of sudden load changes. Song et al. (2022) used
Minkowski distance measurement to measure the correlation of
wave impedance and construct a fault detection scheme. Yao et al.
(2019) proposed a feature extraction algorithm to extract scales with
the essential fault features and determined the coefficient of the
selected scale signal. Routray et al. (2015) presented a novel
S-transform-based approach to detect the high-impedance fault
in the distribution line. Xiang et al. (2019) extracted the high-
frequency components in transient voltages by wavelet transform
and proposed a fault identification method based on the difference
of square of transient voltages to identify the fault lines for DC grids
using overhead lines. Song et al. (2021) used the Hilbert–Huang
transform to extract the transient frequency and transient amplitude
of the DC voltage. The aforementioned signal extraction methods
face some problems, such as the need to construct criteria manually
and the lack of effective distinction between other types of faults and
normal interference. Reliability needs to be further improved.

With the sudden rise in the scale of power grid data and the
significant increase in computing power, the artificial neural
network intelligent algorithm shows great superiority. With
the enhancement of network depth, data dimension reduction
and processing capability are further improved. It can extract
useful information for fault identification accurately and
effectively under the influence of complex external and
internal environments. Chopdar and Koshti (2022) extracted
fault feature signals using wavelet transform and trained these
signals using the artificial neural network (ANN) to complete the
detection and classification; however, the accuracy of this
detection method for the normal state is only 90.8%, which
still needs further improvement. Zheng et al. (2021) used the
mean, standard deviation, information entropy, and kurtosis

values of the current to detect different fault locations and
used DBNs for training; however, whether the detection
method is resistant to noise interference has not been verified
yet. Fault detection and identification using the 1D CNN is
presented by Kiranyaz et al. (2019) on a four-cell, eight-switch
MMC topology (Bagheri et al., 2018). A four-cell is an application
of deep CNN for voltage dip classification in general, with results
showing the average classification rate as 97% and the false alarm
rate as 0.0526. Naidu (2022) described the novel technical results
in detecting and identifying all types of AC and DC faults in the
HVDC station by using a fully convolutional neural network
(FCNN) deep learning algorithm. Most of these models have the
problem of too many parameters and too much computation.
With the increase in network depth and width, overfitting is easy
to occur.

The disadvantages of existing methods are as follows:
The current fault detection methods rely on fixed basis functions

to capture various fault signals, which can lead to limitations in the
adaptability of the feature extraction process. This limitation can
hinder subsequent fault analysis and identification. Existing
methods, such as WT, S-transform, multiscale morphology
(MM), and Prony, rely heavily on the selection of basic
functions, which can significantly impact the quality of the
extracted features. Although the traditional Hilbert–Huang
transform (HHT) algorithm is self-adaptive, its intrinsic mode
function (IMF) components are vulnerable to modal aliasing.
This issue can introduce unwanted frequency components in
IMF components, which can further complicate the fault
diagnosis process.

1.2 Contributions

The contributions of this paper can be summarized as follows:

1) Feature extraction aspect: Aiming at the problems existing in
feature extraction of fixed basis functions, we proposed the
algorithm: VMD. VMD is used to extract time–frequency
features of fault voltage. This method has anti-interference
capability and can accurately describe fault features of the
original signal in the case of noise.

2) Detection criterion aspect: CNN is used to identify the modal
components after VMD. It can distinguish small impedance fault
(SIF), middle impedance fault (MIF), high-impedance fault
(HIF), pole-to-pole fault (PPF), load switch (LS), AC-side
symmetrical fault (symmetrical fault, SF), and AC-side
asymmetrical fault (ASF). The validity of this proposed
criterion is tested by the flexible DC distribution network.

2 Theoretical analysis

2.1 Variational modal decomposition

VMD is a time–frequency analysis algorithm, which can
decompose the original signal into a series of IMFs by
redefining a signal that can adjust the amplitude and
frequency. It can construct and solve the variational problem
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and extract the useful components in the frequency domain. The
mode overlap and endpoint effect can be overcome. The
algorithm has certain anti-interference capability, which can
decompose the fault signal comprehensively. It can also obtain
the hidden feature information of the signal and obtain the
optimal solution to the variational problem (Sharma et al., 2022).

The VMD algorithm has two constraints: 1) the sum of the
modes is equal to the input signal f. The central frequency and
bandwidth of each decomposition component are obtained by
iteratively searching for the optimal solution of the model under
this constraint. 2) By constructing and solving the variational
problem, the sum of the estimated bandwidths of the center
frequencies uk (t) is minimized. The calculation steps are as follows:

(1)For the eigenmode components obtained after the
decomposition, the resolved signal of uk (t) is calculated by the
Hilbert transform.

δ t( ) + j

πt
[ ]*uk t( ). (1)

(2)By estimating the center frequency ωk of each analytic signal,
the unilateral spectrum obtained using Eq. 1 is multiplied by an
exponential signal. The frequency spectrum of each analytic signal is
converted into the base frequency band.

δ t( ) + j

πt
( )*uk t( )[ ]e−jωkt. (2)

(3)The signal is demodulated by Gaussian smoothing to prevent
overfitting. The bandwidth of each mode function is estimated, and
the final constraint variational problem can be expressed as follows:

min
uk{ }, ωk{ }

∑
k
∂t[δ t( ) + j

πt]*uk t( )]e−jωkt

�������
�������
2

2

{ },
s.t∑

k

uk � f,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where uk{ } � u1, ..., uk{ } denotes the decomposed kmodal functions.
ωk{ } � ω1, ...,ωk{ } denotes the center frequency corresponding to
each IMF component. f denotes the signal before decomposition.

(4)The solution to this constrained variational problem requires
the introduction of a quadratic penalty term α and the Lagrange
multiplicative operator λ(t). Constrained issues are transformed
into unconstrained issues. The specific expression is as follows:

L uk{ }, ωk{ }, λ( ) � α∑
k
∂t[δ t( ) + j

πt]*uk t( )]e−jωkt

�������
�������
2

2

+ f t( ) − ∑
k
uk t( )

��������
��������
2

2

+ 〈λ t( ), f t( ) −∑
k

uk t( )〉.

(4)

2.2 Convolutional neural network

CNN is a type of supervised machine learning, which has been
widely used in image recognition, object detection, and fault
recognition. The main learning process is divided into the
forward propagation (FP) process and backward propagation
(BP) process. FP mainly includes the convolution layer, pooling
layer, and dense layer. The basic model structure is shown in
Figure 1. This process can realize the extraction and pre-
classification of the pre-processed signal. BP can compare the
pre-classification results with the expected results and
automatically adjust the parameters of the model to achieve
accurate classification of fault categories.

2.2.1 Forward propagation process
The convolutional neural network processes the output of the

previous layer as the input of the next layer and constructs multiple
filters capable of extracting input features. It can achieve the
extraction of multi-sensitive features of hidden data. The essence
is a mapping relationship between the input and output. The
mathematical model is expressed as follows:

xl
j � f ∑

i∈Mj

xl−1
i *ωl

ij + blj⎛⎝ ⎞⎠, (5)

where xl
j is the output of the jth neuron of the layer l; x

l−1
i is the input

of the ith neuron of the layer l − 1; Mj is the input feature map; l is
the network of the layer l; ω is the weight matrix; blj is the bias of the
jth neuron network of the layer l; and f is the activation function. In
this paper, a non-linear function—ReLU—is used as the activation
function. The expression is given as follows:

f x( ) � max 0, x( ). (6)

FIGURE 1
Basic model structure of CNN.
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If the input is greater than 0, return the input value directly. If
the output is less than or equal to 0, return 0. In contrast to the
activation function tanh and sigmoid, ReLU can speed up the
training of the model. It can reduce the difficulty in the
calculation and has strong robustness. The gradient
disappearance problem is solved to some extent.

The pool sampling layer extracts the local features. It can detect
the same features under different locations with better spatial and
structural invariance. There are two common sampling methods:
maximum pooling and average pooling. This paper adopts the
maximum pooling method. The mathematical model of the pool
sampling layer is as follows:

xl
j � f βljdown xl−1

j( ) + blj( ), (7)

where down() is the pool sampling function; β is the network bias.
The features owned by the sampling and convolutional layers
remain the same in number but decrease in size by a factor of n
after pool sampling.

After several convolution and pooling oparations, a fully
connected layer is used to connect the neuron weights. Softmax
is used as the activation function to place the probability of each
output in [0,1]. Different features are classified.

2.2.2 Backward propagation process
For classification problems, it is important to minimize the loss

function of the model and improve the accuracy of the model as
much as possible. The selection of the loss function is very
important. The common loss functions are the root mean square
error function, mean absolute error function, and cross-entropy cost
function. In this paper, the cross-entropy function is selected as the
loss function with the following expression:

E � −1
n
∑n
k�1

yk ln tk[ + 1 − yk( ) ln 1 − tk( )⎤⎦, (8)

where n is the total number of samples of the input data; t is the
predicted value; and y is the actual value. In the backward
propagation process, the gradient descent method is commonly
used to continuously update the iterative process. The first derivative

of Eq. 8 is obtained so that the network parameters can be adjusted
specifically as follows:

ω′ � ω − η
∂E
∂ω

, b′ � b − η
∂E
∂b

, (9)

where ω′ is the updated weight; b′ is the updated bias; ω is the weight
before update; b is the bias before update; and η is the learning rate
parameter to control the step size of the weight update.

2.2.3 Inception module
The increase in network depth or width leads to two problems in

the convolutional network: 1) network parameters will increase with
the increase in the number of network layers, which inevitably leads
to the overfitting problem; 2) with the increase in training
parameters, the training speed of the model will decrease, which
makes the application of the convolution model challenging in
practical engineering.

The inception module is introduced into the convolutional
network. The core idea of this module is to combine different
convolutional layers by parallel connection, as shown in Figure 2.
Inception V1 extensively uses the convolution kernel of 5 × 5 and
3 × 3 and introduces the convolution kernels of 1 × 1. It can increase
the depth and width of the network, reduce the data dimension,
transform the fully connected structure into sparse connections,
effectively reduce the number of parameters, and significantly
improve the accuracy of the model.

2.2.4 Fault identification process
The flow of CNN-based distribution network fault identification

is shown in Figure 3.
The steps for fault identification are as follows:

(1) Distribution network simulation data acquisition

Training of CNN models requires a large number of fault
samples. In real life, two ways are commonly used to obtain the
required data: 1) obtaining the recorded wave data of the actual
distribution network according to its operation. 2) Simulating the
structure of the actual distribution network and building the

FIGURE 2
Diagram of the inception model.
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simulation model. Since distribution network faults do not occur
often and the flexible DC distribution network is still in the
demonstration stage, the actual engineering recorded wave data
are relatively small. The first way is more difficult to obtain data to
meet the required sample size. It is also more difficult to provide
comprehensive coverage of various faults due to the different
probabilities of occurrence of different faults. The second way
can simulate the corresponding operating conditions as needed,
which is a strong complement to the first way. The relevant literature
proves its reliability and accuracy (de Toledo Silva et al., 2020;
Krishna, 2022). The simulation test enables comprehensive multiple
simulations for different faults and solves the problem of sample
imbalance. PSCAD is a widely used electromagnetic transient
simulation software application and has been used in a large
number of simulation studies for running simulations in many
types of power systems. Therefore, this paper takes the approach
of obtaining the required fault waveforms by performing PSCAD
simulations on the scenarios.

(2) Sample set classification

CNN training requires a large amount of data. The training
samples are generally divided into the training set and test set by
means of stratified sampling. All the input data are classified
according to the unified division standard. The ratio of the
training set to test set is generally 1:4–1:2, and the ratio used in
this paper is 3:7.

(3) Time window selection

The power electronic device has limited ability to withstand
inrush current. The system converter blocking time is generally
2~5 ms. The fault time in this paper is set to 1 ms before and after the

fault point, and the size of the time window is 2 ms. The fault is set to
occur at 2 s, and the system sampling frequency is 20 kHz.

(4) Pre-processing of the sample set

To speed up the model solution and enable the model to
converge, the eigenmodal components decomposed by VMD
need to be normalized. In this paper, we use min–max
normalization to map the input data into [0,1].

xnorm � x −Min

Max −Min
. (10)

Define different fault labels for seven different fault types. Set
different fault labels [l1, l2, l3, l4, l5, l6, l7] for the output of this
network. The specific label classification is shown in
Supplementary Exhibit S1.

(5)Building and training of the CNN model

Before training the model, the weights and biases of the
convolutional kernel need to be set, with the initial value set to 0.
Using the feedback from the training set results, parameters such as
the number of layers, training times, and learning rate of the
network are adjusted. The 1D convolutional neural network
structure in this paper includes one input layer, five
convolutional layers, seven pooling layers, two inception layers,
two dense layers, and one output layer. The step size of
convolution is set to 2, the number of training times is 300, the
size of the convolutional kernel is 4, and the learning rate is 0.02.
Dropout is set to 0.2. The basic idea is to let each layer of neurons
randomly discard part of the training, so that these discarded parts
are not activated. The next network is used as the target of this
update. With each iteration, the sub-networks are updated

FIGURE 3
CNN fault identification process.
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continuously. The probability of repeated training is greatly reduced,
making the model more robust.

The optimizer can calculate the gradient of the loss function in
each iteration and update the parameters so that the loss function is
minimized. In this paper, the adaptive moment estimation (Adam)
optimization function is used, which is suitable for non-smooth
objectives and has an intuitive interpretation.

(6)Construction of the confusion matrix and evaluation index

The confusion matrix is a visualization tool in deep networks to
compare the predicted data with the real results. The matrix can
visually characterize the accuracy of the model. Each column of this
matrix characterizes the predicted category of different faults. Each
row characterizes the actual fault category represented by the data, as
shown in Figure 4.

In this structure, true positive (TP) indicates that the actual value
is positive and the predicted value is also positive, and true negative
(TN) indicates that the actual value is negative and the predicted
value is also negative. In these cases, the identification is correct.
Wrong Positive (WP) indicates that the actual value is negative, but
the model prediction is considered positive. False negative (FN)
indicates that the actual value is positive, but the model
identification is considered negative. In these cases, the
identification is incorrect.

The total number of samples of the model = TP + FP + TN + FN,
and the correctness (accuracy), precision (precision), recall (Recall),
and F1 score of the CNN model recognition results are expressed as
follows:

Accuracy � TP + TN

TP + TN + FP + FN
,Precision � TP

TP + FP
,

Recall � TP

TP + FN
, F1Score � 2PR

P + R
,

(11)

where p denotes precision and R denotes recall.
Accuracy can represent the proportion of the predicted

value of all the correct results in the classification model.
Precision represents the proportion of correct values in the
results where the model prediction is positive. Recall represents
the proportion of correct values that the actual value is positive.
The F1 score metric combines precision and recall outputs and
ranges from 0 to 1. The F1 score index comprehensively
considers the result of accuracy and recall rate output,
ranging from 0 to 1. The closer the F1 score index is to 1,
the better the model output.

3 Model building

The PSCAD/EMTDC simulation platform is used to build
the ±10 kV DC distribution network structure (Figure 5). The
AC-side voltage is 10 kV. The AC-side transformer adopts the Δ/
Yn type via large resistance grounding. The system frequency is
50 Hz. The bridge arm reactance is 10 mH. The sub-module
capacitance is 4500 uF. The number of sub-modules is 50. The
cable is connected to the AC grid through a multilevel
converter (MMC).

The system is a small-current grounding system. When a
single-pole ground fault occurs in a DC line, the fault current
has no ground circuit. The DC line current is still rated. The
system zero potential shift occurs. The grounding pole line
voltage drops to 0. Non-grounding pole line voltage rises to
twice the original voltage. Inter-pole voltage remains
unchanged. The system can still run for 2 hours after a
single-pole ground fault.

Compared to the single-pole ground fault, the inter-pole
short-circuit fault in the DC distribution network is more
serious. This fault will cause the current to rise sharply, and
the positive and negative voltage of the ground pole will drop to
0 rapidly. The inter-pole voltage will also drop to 0. After the
converter is locked, if the fault cannot be removed in time, the
system will remain in this state. It will cause damage to
distribution network equipment and pose a threat to personal
safety (Zheng et al., 2019).

The zero-sequence voltage component in the asymmetric
fault of the AC side will cause the power frequency common
mode fluctuation of the positive and negative voltage of the DC
side (Baoguo et al., 2021). The transient characteristics are
similar to those of the DC high-resistance ground fault.

The fault line selection method based on the transient
component can overcome the shortcomings of low
sensitivity and poor reliability in the case of an intermittent
ground fault. Due to the weak transient fault characteristics,
the existence of unstable fault arc, internal and external
random factors, and modern signal processing technology is
widely used. Signal processing technology can be used to
improve the identification and extraction ability of weak
features.

Since the process of positive and negative voltage change is
similar, only the positive voltage of the grounding pole is used as the
characteristic pre-processing quantity in this paper.

FIGURE 4
Diagram of the confusion matrix structure.
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4 Result analysis

Build the system simulation as shown in Figure 1, and obtain
200 groups of data for each fault type. For a single-pole ground fault,
set the fault type to SIF, MIF, and HIF. The resistance value of SIF is
set between 0 and 100 Ω. The resistance value of MIF is set between
100 Ω and 1000 Ω (Wang et al., 2014). When the HIF fault occurs,
the fault point will appear as arc extinguishing and re-ignition. The
arc current fluctuates at high frequency, and the grounding line pole
voltage also oscillates at high frequency. It cannot be simulated by
simply increasing the resistance of the grounding resistor to simulate
the fault situation. The Emanuel model is widely used to accurately
describe the characteristics of the HIF arc (Gautam and Brahma,
2013). This paper uses the Emanuel arc model to simulate the HIF.
The specific model structure is shown in Figure 6.

The model consists of two DC voltage sources Vm and Vn, two
diodes Dm and Dn, and two variable resistors Rm and Rn. The model
can simulate the characteristics of the arc under HIF. The zero rest
time of the arc voltage can be adjusted by changing the value of the
DC voltage. The diodes are used to reflect the different cycles of the
waveform on and off. Variable resistors are used to simulate the
asymmetry of the current under the fault. In this paper, the

parameters are set as follows: Vm varies randomly between
0.5 and 0.8 kV, Vn varies randomly between 0.9 and 1.1 kV, Rm

and Rn vary randomly between 450Ω and 1000Ω, and R is obtained
between 800 and 3000 Ω.

For the inter-pole fault, the transition resistance is set to vary
from 0 to 5Ω. Considering that there will be a large load disturbance
in the distribution network, it is necessary to take the load switching
as one of the conditions. In this paper, the capacity of LS is set from
0 to 10 MW. In addition, the impact of the AC-side fault on the DC-
side voltage should be considered, so two types of symmetrical and
asymmetrical faults are also required on the AC side.

The seven operating conditions of the ground positive voltage
fault waveforms under the selected time window are shown in
Figure 7, where the fault occurs at the 0 ms moment.

The line positive voltage drops to 5.63 kV and then slowly
decreases when SIF occurs, as shown in Figure 7A. The line
positive voltage fluctuates, the high-frequency component
appears in the waveform, and then the voltage value slowly
decreases when MIF occurs, as shown in Figure 7B. The
sudden change is not so drastic when HIF occurs compared
with SIF and MIF, as shown in Figure 7C. The line positive
voltage under the fault has a more obvious oscillation

FIGURE 5
Structure of the 10-kV flexible DC distribution network.

FIGURE 6
Emanuel arc model circuit diagram.
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FIGURE 7
Positive voltage waveform of the grounding line under different fault conditions.

FIGURE 8
IMF1 after VMD.
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characteristic, and the fluctuation is small and random. The line
positive voltage drops to 0 kV instantaneously, and thereafter it is
consistently maintained at 0 kV when PPF occurs, as shown in
Figure 7D. The power transfer between converters stops. The
voltage value undergoes an abrupt change when LS disturbance
occurs, as shown in Figure 7E. Thereafter, it shows a steady-state
response state. The voltage and current on the AC side of the
converter will have a negative sequence component when the AC
asymmetric fault occurs, as shown in Figure 7G, which will cause
an even number of non-characteristic harmonics on the DC side,
resulting in fluctuations in the voltage at the ground terminal.
The simulation results remain consistent with the theoretical
analysis.

4.1 VMD algorithm decomposition

To further differentiate the fault categories, VMD is used to
decompose the grounding pole positive voltage to obtain the
eigenmodal components IMFs. Figure 8 and Figure 9 show the
IMF1 and IMF2 waveforms after VMD, respectively.

As shown in Figure 8, the similarity of waveforms under
different working conditions is high, such as SIF and MIF, PPF,
and LS. Furthermore, there is a possibility of confusion in the
subsequent model training. The decomposed results are fed into
the CNN training model, and the accuracy is 90.48%. The
recognition accuracy is not high, so it is not suitable to use
IMF1 as the input of the training model.

As shown in Figure 9, the difference between the fault waveform
and amplitude under IMF2 is high. These differences are suitable for
constructing detection criteria, so IMF2 is chosen as the input data
for the CNN in this paper.

4.2 CNN model training results

In order to further clarify the effectiveness and superiority of the
proposed algorithm, the t-SNE method is used for visualization. The
original data, the characteristic modal component IMF2 after VMD,
and the CNN model training results are visualized by t-SNE. The
experimental results are shown in Figure 10. Categories 0, 1, 2, 3, 4,
5, and 6 represent SIF, MIF, HIF, PPF, LS, SF, and ASF, respectively.
Figure 10A shows the distribution of the original data. Due to the
redundancy of the original data, various categories are difficult to
distinguish and easy to confuse. Figure 10B shows the
dimensionality reduction result of the characteristic modal
component IMF2 after VMD, which is further distinguished
from the original data. However, there is still a large overlap
between categories 2, 4, and 5. Figure 10C shows the
visualization of classification results after CNN model training. It
can be seen that each category is clearly distinguished, which verifies
that the proposed algorithm has a high fault recognition rate.

The pre-processed data are fed into the network. The parameters
of the CNN are adjusted using the network error loss values. The
total sample is randomly sampled. Figure 11 shows the CNN
recognition results.

FIGURE 9
IMF2 after VMD.
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From this confusion matrix and Supplementary Exhibit S2,
the CNN trained model has 100% correctness, 100% accuracy,
100% recall, and 100% F1 score. The actual and predicted values
under different faults remain the same. The probability of the
detection error or omission is 0. Using the model training
established in this paper, various fault types can be accurately
and effectively identified.

5 Validation

5.1 Identification results after EMD

The results of using EMD to extract the characteristic modes for
the seven working conditions are shown in Figure 12. The results
show that although EMD can also extract the corresponding high-
frequency components, the resulting modal components contain

more noise components, which has some interference in the
subsequent recognition accuracy.

The results of EMD were fed into the CNN model for training.
The results are shown in Figure 13, with an accuracy of 87.62%. It is
not accurate and not suitable for using the eigenmodal components
decomposed by EMD as the input to the CNN model.

5.2 Different fault locations

To test the applicability of the algorithm proposed in this
paper at different faults, the situation of different faults among
SIF, MIF, HIF, LS, PPF, SF, and ASF occurring at 6 km from the
cable line is simulated (Figure 11 shows the training results at the
fault location of 10 km). The training results at this fault location
are shown in Supplementary Exhibit S3. The figure shows the
training model at different fault locations. The accuracy of the
training model at different fault locations is 100%. It shows that
the discrimination method proposed in this paper can be
applied to discriminate different fault types at different fault
locations.

5.3 Adding strong noise

To verify the applicability of the algorithm proposed in this
paper during strong noise, white Gauss noise with a signal-to-
noise ratio of 1 db is added to the DC line pole voltage. Taking the
single-pole high-resistance grounding fault as an example, the
waveform of the positive voltage decomposed by VMD after
adding strong noise is examined and shown in Figure 14. The
addition of noise causes a certain degree of waveform fluctuation,
which has some interference with the training recognition of the
model.

FIGURE 10
Visualization of feature learning at different stages. (A)
Distribution of raw data samples. (B) Sample distribution after VMD
feature extraction. (C) Distribution of raw data samples.

FIGURE 11
CNN recognition results.
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The feature components after adding noise are fed into the CNN
for recognition, and Figure 15 shows the recognition results with
99.76% recognition accuracy. The results show that the CNN
discriminative model accuracy is still reliable under the
interference of strong noise.

FIGURE 12
IMF2 after EMD.

FIGURE 13
Training results of IMF2 under EMD.

FIGURE 14
Waveform after adding noise.

FIGURE 15
Recognition accuracy under 1 dB noise.
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5.4 Change in the time window

The setting of the time window directly affects the amount of
data. The more the time windows of the data, the more the test
samples contained. Based on the system’s converter blocking time,
the selected time window is now changed to 2 ms before and after
the fault for testing. Figure 16 shows the results after VMD under the
selected time window. The results are input into the CNN for
training. The accuracy achieved 100%. It can be seen that the
proposed discrimination method in this paper can be applied to
discriminate different fault types under different time windows.

5.5 Different sampling frequencies

To verify the accuracy of the proposed algorithm, a system
sampling frequency of 10 kHz is adopted. The model recognition
results are shown in Figure 17. It can be seen that the proposed
algorithm is still accurate and reliable under different sampling
frequencies.

5.6 Comparison with the unimproved CNN

To verify the performance of the CNN model proposed in this
paper, each feature modal component decomposed by VMD is now
fed into the improved inception–CNN model and the traditional
CNN model. The recognition accuracy is shown in Supplementary
Exhibit S4.

Supplementary Exhibit shows that the different eigenmodal
components as the input of the improved CNN model proposed
in this paper have significantly improved the accuracy rate
compared with the traditional CNN. Overall, the accuracy rate
and recall rate have also been improved. The F1 score is closer to
1 in the improved CNN model. These features indicate that the
output effect of the improved inception–CNN model is more
effective and is even better than the unimproved CNN performance.

6 Conclusion

In this paper, a DC distribution network fault identification
scheme based on VMD and inception–CNN is proposed. It is

FIGURE 16
Different data window tests.

FIGURE 17
Recognition accuracy at 10 kHz sampling frequency.
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simulated and verified in the PSCAD platform. The following
conclusions can be obtained:

(1)The proposed scheme uses variational modal decomposition to
process the simulation data. The processed eigenmodal components
are used as the input of the training model, which has good
generalization capability and anti-interference capability against
noise. It also has an excellent reliability performance in different
application scenarios.
(2)The proposed training model can not only identify single-
pole, double-pole, and AC-side faults but also effectively
discriminate the fault types with different resistance changes
under single-pole faults. It has high recognition accuracy.
(3)The complex structure of the CNNmodel makes it possible to
abstract the feature signal and effectively identify the weak
changes under the high-resistance ground fault.
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