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Research on CNN-LSTM DC
power system fault diagnosis and
differential protection strategy
based on reinforcement learning

Yun Yang*, Feng Tu, Shixuan Huang, Yuehai Tu and Ti Liu

State Grid Zhejiang Electric Power Co., Ltd., Construction Company, Hangzhou, China

Introduction: With the development of artificial intelligence technology, more
and more fields are applying deep learning and reinforcement learning
techniques to solve practical problems. In the power system, both the direct
current (DC) power system and the power grid substation are important
components, and their reliability and stability are crucial for production efficiency
and safety. The power grid substation is used to convert power fromhigh-voltage
transmission lines to low-voltage transmission lines, or from alternating current
to direct current (or vice versa), in order to efficiently transmit and distribute
power in the power system. However, diagnosing faults and designing cascaded
protection strategies has always been a challenge due to the complexityand
uncertainty of the DC power system.

Methods: To improve the reliability and stability of the DC power system and
power grid substation, this paper aims to develop an intelligent fault diagnosis
system and cascaded protection strategy to reduce faults and downtime, lower
maintenance costs, and increase production efficiency. We propose a method
based on reinforcement learning and a convolutional neural network-long short-
term memory (CNN-LSTM) model for fault diagnosis and cascaded protection
strategy design in the DC power system. CNN is used to extract features from
raw data, while LSTMmodels time-series data. In addition, we use reinforcement
learning to design cascaded protection strategies to protect the power system
from the impact of faults.

Results: We tested our method using real 220V DC power system data in
experiments. The results show that our method can effectively diagnose faults in
the DC power system and formulate effective cascaded protection strategies.

Discussion: Compared with traditional methods, this intelligent method can
diagnose faults faster and more accurately, and formulate better cascaded
protection strategies. This method helps reduce maintenance costs, increase
production efficiency, and can be applied to other fields.

KEYWORDS
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1 Introduction

DC power systems play a critical role in modern industries, and their stability and
reliability are crucial for production efficiency and safety. However, diagnosing faults and
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developing cascade protection strategies have always been
challenging due to the complexity and uncertainty of DC power
systems. Traditional methods for fault diagnosis and protection
in DC power systems have limitations, and thus, there is a need
to explore advanced techniques for accurate and efficient fault
diagnosis and protection.

With the development of artificial intelligence technology,
deep learning and reinforcement learning techniques have been
increasingly applied in various domains to solve practical problems.
Therefore, developing an intelligent fault diagnosis system and a
cascade protection strategy using deep learning and reinforcement
learning techniques can reduce downtime, maintenance costs, and
improve production efficiency in DC power systems.

Common machine learning models used in fault diagnosis
include Convolutional Neural Networks (CNN) (Kim et al., 2020),
Long Short-Term Memory Networks (LSTM) (Appiah et al., 2019),
Recurrent Neural Networks (RNN) (Grcić and Pandžić, 2021),
Support Vector Machines (SVM) (Yi and Etemadi, 2017), and
Decision Trees (DT) (Yi and Etemadi, 2017). Each model has its
strengths and limitations. CNN is a deep learning model primarily
used for image classification tasks, but it can also be applied to
signal processing. It efficiently extracts features from input data
and performs classification or regression tasks. However, CNN
requires substantial computational resources and is not suitable for
sequential data processing. LSTM, as anRNN, can handle time series
data and retain long-term information, making it particularly useful
for sequences with long-term dependencies and dynamic variations.
Although it can remember crucial patterns in input sequences
and avoid gradient vanishing or exploding, LSTM demands more
computational resources than traditional RNN models. RNN is
a neural network model that processes sequential data by using
previous outputs as input for the current time step. It has been
widely used in natural language processing, speech recognition,
and time series analysis. However, it encounters the problem of
gradient vanishing or exploding when dealing with long sequences.
SVM is a supervised learningmodel that performs classification and
regression tasks by finding the optimal hyperplane for classification.
SVM efficiently handles medium-sized datasets and exhibits good
generalization performance. However, it requires careful feature
selection andmight be sensitive to the choice of the kernel function.
DT is a supervised learning model that executes classification and
regression tasks by constructing a tree structure for classification. It
is easy to understand and interpret, handling both categorical and
numerical data. However, it is prone to overfitting and might be
sensitive to minor changes in input data.

Despite their individual merits, all thesemodels have limitations
in dealing with the complexity and uncertainty of DC power
systems. Therefore, in this research, we propose a CNN-LSTM
model and reinforcement learning algorithm for fault diagnosis
and cascade protection in DC power systems. This model extracts
meaningful features from preprocessed data, captures dependencies
and dynamic variations in time series, and utilizes reinforcement
learning to design effective cascade protection strategies. The
CNN-LSTM model combines the advantages of CNN and LSTM
to handle spatial and temporal features in the input data. The
reinforcement learning algorithm optimizes protection strategies
to ensure the stability of the power system. The proposed model
aims to overcome the limitations of traditional machine learning

models and enhance the accuracy and efficiency of fault diagnosis
and cascade protection in DC power systems. The proposed
approach includes preprocessing the raw data through cleaning,
normalization, and sampling to obtain acceptable data for the
model. Then, the CNN model is used to extract meaningful
features from the preprocessed data, and the LSTM model
performs temporal modeling on the feature sequence to capture
dependencies and dynamic variations in the time series. Finally,
the reinforcement learning algorithm designs cascade protection
strategies to safeguard the power system from faults.

The contributions of this article can be summarized as follows:

• Proposing a fault diagnosis and cascade protection strategy for
DC power systems based on deep learning and reinforcement
learning techniques, which can diagnose faults more quickly
and accurately, and develop more effective cascade protection
strategies, thereby reducing maintenance costs and improving
production efficiency.
• Adopting a CNN-LSTMmodel to extract features and perform
time series modeling on DC power system data, which has
good generalization performance and adaptability and can
handle complex nonlinear relationships and dynamic changes,
improving the effectiveness of fault diagnosis and cascade
protection.
• Designing cascade protection strategies using reinforcement
learning algorithms can adjust protection strategies in real-
time based on the system’s state, improving the reliability and
stability of the power system.Moreover, thismethod can also be
applied to fault diagnosis and cascade protection tasks in other
fields, with broad application prospects.

In the rest of this paper, we present recent related work
in Section 2. Section 3 offers our proposed methods: overview,
CNN; LSTM; Reinforcement Learning. Section 4 presents the
experimental part, details, and comparative experiments. Section 5
concludes.

2 Related work

2.1 Power system fault diagnosis

Power system fault diagnosis is a critical component of power
system operation and maintenance (Tian et al., 2023). The stability
and reliability of power systems are essential for production
efficiency and safety. However, system faults and outages are
inevitable, and therefore, fault diagnosis and timely restoration
of power system operation are crucial. Fault diagnosis involves
analyzing and processing power system operation data to determine
the location, type, and cause of faults. Correct and timely fault
diagnosis can reduce downtime, lower maintenance costs, and
improve production efficiency and safety. Power system faults
come in various types, including short circuits, open circuits,
overloads, under-voltages, over-voltages, etc. Traditional power
system fault diagnosis methods are mainly based on expert
experience and rules (Wang C et al., 2022). This approach has
limitations in dealing with complex nonlinear relationships and
uncertainties. With the development of deep learning and artificial

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1258549
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yang et al. 10.3389/fenrg.2023.1258549

intelligence technologies, more and more researchers are applying
these technologies to power system fault diagnosis to improve
accuracy and efficiency.

In deep learning techniques, convolutional neural networks
(CNN) (Zhang et al., 2022), recurrent neural networks (RNN)
(Senemmar and Zhang, 2021), and long short-term memory
networks (LSTM) are widely used models for power system fault
diagnosis. CNN is mainly used for feature extraction from power
system operation data, including time series data and image
data. The main idea behind ResNet50 Rai et al. (2021) is to use
residual blocks to address the gradient vanishing problem in
deep neural networks. In traditional deep neural networks, the
gradient becomes smaller as the number of layers increases, which
makes it difficult to update the network parameters. ResNet50
solves this problem by adding shortcut connections. With shortcut
connections, ResNet50 allows information to be directly passed
between different layers, avoiding the vanishing gradient problem.
ResNet50 (Ji et al., 2021)contains multiple residual blocks, each
of which consists of two convolutional layers and a shortcut
connection. The first convolutional layer in ResNet50 is a 7 × 7
convolutional layer, followed by some pooling and convolutional
layers, and finally three fully connected layers. The last layer of
ResNet50 is a softmax classifier, which is used to classify the input.
RNN and LSTM are mainly used for processing power system
time series data and capturing their dynamic changes Zhibin et al.
(2019). These deep learning models not only improve the accuracy
of power system fault diagnosis but also automatically extract
features, avoiding the complexity of manual feature extraction He
and Ye (2022). In addition to deep learning models, traditional
machine learning models such as support vector machines (SVM)
and decision trees (DT) can also be used for power system fault
diagnosis. These models can handle different types of data and have
high classification accuracy and generalization ability Wang L et al.
(2022).

The RLN model (Glavic, 2019) consists of three basic
components: state representation, action selection and policy
evaluation. State representation refers to representing the current
state of the power system as a vector for processing by the neural
network. Action selection refers to selecting the optimal control
action based on the current state. Policy evaluation refers to
evaluating the current policy and providing feedback to the neural
network for updating.

2.2 Power system cascade protection

Power system cascade protection is a protection strategy applied
in power systems to protect equipment and lines from fault damage
(Haes Alhelou et al., 2019). Cascade protection systems generally
consist of multiple protective devices, which act to limit the extent
of faults as much as possible while maintaining stable power
system operation. Cascade protection systems typically include
main protection, backup protection, and emergency protection.
Main protection refers to the first protective device triggered when
a fault occurs in the power system. Backup protection refers to
backup protective devices that provide protection when the main
protection fails or malfunctions. Emergency protection refers to
protecting the power system’s safe operation by quickly cutting off

power or isolating fault areas when a severe fault occurs (Wu et al.,
2023). The protective devices in cascade protection systems
are usually interconnected through communication networks
to achieve fast and accurate fault detection and protection.
In modern power system cascade protection systems, digital
protective devices and communication equipment are used, which
have high precision, speed, and reliability, greatly improving
the performance and reliability of cascade protection systems
(Wang et al., 2019). The design of cascade protection systems needs
to consider various factors, including power system topology,
equipment characteristics, fault types, and protection strategies.
When designing cascade protection systems, system simulation and
optimization are necessary to determine the optimal protective
device configuration and protection strategy to maximize the
protection of power system equipment and lines.

Power system cascade protection is an important part of power
system operation and maintenance. By adopting modern digital
protective devices and communication equipment to achieve fast
and accurate fault detection and protection, the safety and reliability
of power systems can be greatly improved.

2.3 LSTM model

LSTM (Long Short-Term Memory) (Senemmar and Zhang,
2021) is a type of recurrent neural network that can model and
predict time series data. In the research of fault diagnosis and
cascaded protection strategies for DC power systems, the LSTM
model has been widely applied to fault diagnosis and prediction.
For fault diagnosis, the LSTM model can utilize the historical
operating data of the power system to predict the type and location
of faults. For example, by analyzing the historical data of power
system variables such as voltage, current, and power, the LSTM
model can predict fault types such as overload, short circuit, and
grounding faults. The LSTM model can also predict the location of
faults by analyzing the time series data of power systemvariables. For
cascaded protection strategy research, the LSTM model can predict
the future operating state of the power system based on historical
operating data, in order to develop corresponding protection
strategies (Wang et al., 2023). For example, the LSTM model can
analyze the historical data of load changes and generator output
of the power system, predict the future load demand and power
supply situation, and develop corresponding cascaded protection
strategies, such as adjusting the generator output and switching to
backup power.

Gu et al. (2021) conducted a comprehensive review of the
application of LSTM in fault diagnosis and protection of DC power
systems. The review covers various aspects of fault diagnosis and
protection, including fault types, fault location, and protection
strategies. The authors highlighted that LSTM has been widely
used in fault diagnosis and prediction due to its ability to capture
the complex nonlinear relationships in time-series data. They also
emphasized that LSTM can be used to predict the future operating
conditions of DC power systems, which is crucial for developing
effective protection strategies (Tian et al., 2023).

The application of LSTMmodel in fault diagnosis and cascaded
protection strategies for DC power systems can improve the
accuracy and efficiency of fault diagnosis and prediction, and help
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to develop more intelligent protection strategies to enhance the
reliability and stability of power systems.

3 Methodology

3.1 Overview of our network

RL-CLN is amethod for developing an intelligent fault diagnosis
system and differential protection strategy for DC power systems.
It combines deep learning and reinforcement learning techniques
to improve the reliability and stability of DC power systems.
Specifically, it uses a CNN-LSTM model to diagnose faults and
model time-series data, and reinforcement learning to develop a
differential protection strategy that protects the system from the
impact of faults. Figure 1 is the overall frame diagram of the model:

The RL-CLN method is based on the idea of combining deep
learning and reinforcement learning to improve the performance of
fault diagnosis and differential protection in DC power systems.The
CNN-LSTM model is used to extract features from raw data and
model time-series data, while the reinforcement learning algorithm
is used to learn a policy that protects the system from the impact of
faults.

Method Implementation:

• Data Preprocessing: Raw data from the DC power system is
collected and preprocessed to remove noise and outliers. The
preprocessed data is then split into training and testing sets.
• Feature Extraction: The training data is used to train a CNN
model to extract features from the raw data. The output of the
CNNmodel is a set of feature vectors that are fed into an LSTM
model.
• Time-Series Modeling: The LSTM model is trained on the
feature vectors to model the time-series data of the DC power
system. The output of the LSTM model is a set of predicted
values that represent the state of the system at different points
in time.

• Fault Diagnosis: The predicted values are compared with the
actual values to diagnose faults in the DC power system. If
a fault is detected, the RL algorithm is used to determine a
differential protection strategy that protects the system from the
impact of the fault.
• Reinforcement Learning: The RL algorithm is used to learn a
policy that selects the best differential protection strategy for
the DC power system. The RL algorithm interacts with the DC
power systemby observing its state and taking actions to protect
it from faults.
• Testing and Evaluation: The performance of the RL-CLN
method is evaluated on the testing set. The accuracy of fault
diagnosis and the effectiveness of the differential protection
strategy are measured to assess the performance of the method.

RL-CLN is a method that combines deep learning and
reinforcement learning to develop an intelligent fault diagnosis
system and differential protection strategy for DC power systems.
It uses a CNN-LSTM model to extract features from raw data and
model time-series data, and reinforcement learning to develop a
differential protection strategy that protects the system from the
impact of faults.

3.2 CNN network

In this paper, we used a convolutional neural network (CNN)
model called ResNet50 to extract features from direct current power
systems. ResNet50 (Glowacz, 2022) is a member of the ResNet series
and consists of 50 convolutional layers and fully connected layers.
ResNet50 is designed to handle larger and more complex datasets
and has better performance. Figure 2 is a schematic diagram of the
principle of CNN:

In the RL-CLNmethod, we used the ResNet50 model to extract
features from raw data. We used the voltage, current, and power
data of the DC power system as input and used the ResNet50 model
to extract features from this data. The feature vector output by

FIGURE 1
The framework diagram of our proposed method.
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FIGURE 2
Schematic diagram of CNN principle.

the ResNet50 model was then fed into an LSTM model for time
series data modeling and prediction. Through this method, we can
efficiently extract useful features from raw data and use them for
fault diagnosis and cascaded protection strategy development. The
formula for CNN is as follows:

yi,j,k = σ(
L

∑
l=1

M

∑
m=1

N

∑
n=1

wl,m,n,kxi+m−1,j+n−1,l + bk) (1)

Among them, xi,j,k represents the value of the i th row, jcolumn
and kth channel of the input data, and wl,m,n,k representsThe weight
of the l th channel, m th row, nth column, and k th channel of
the convolution kernel, and bk represents the bias value of the k
th channel. L, M and N represent the depth, height and width
of the convolution kernel, respectively. σ represents the activation
function, commonly used functions such as ReLU, sigmoid and
tanh.

In the convolution operation, the convolution kernel slides and
scans each position of the input data, and performs an inner product
operation on the overlapping part of the convolution kernel to
obtain an output value.Through the continuous scanning and inner
product operation of the convolution kernel, we can obtain an output
feature map, in which each pixel represents a local feature. The
convolution operation can effectively extract the local features of the
input data, so as to achieve efficient processing and classification of
data such as images.

In CNN, the pooling operation is usually used to reduce the
dimension and size of the feature map. The pooling operation
obtains a new feature map by aggregating local regions of the feature

map, thereby achieving the purpose of reducing dimensionality
and improving computational efficiency. Commonly used pooling
operations include maximum pooling and average pooling.

In the above formula, σ represents the activation function,
commonly used functions such as ReLU, sigmoid and tanh. In deep
learning, the function of the activation function is to introduce
nonlinearity, so that the neural network can fit more complex
functional relationships. The definition of the ReLU function is as
follows:

σ (x) =max (0,x) (2)

The definition of the sigmoid function is as follows:

σ (x) = 1
1+ e−x

(3)

The definition of the tanh function is as follows:

σ (x) = e
x − e−x

ex + e−x
(4)

In the above formula, x represents the input value.
In the deep learning framework, the CNNmodule that has been

implemented is usually used, and there is no need to manually
write specific implementations of operations such as convolution
and pooling. At the same time, when using a convolution operation,
it is usually implemented using a convolutional layer, and when
using a pooling operation, it is usually implemented using a pooling
layer.

3.3 LSTM network

Long Short-TermMemory (LSTM) is a special type of Recurrent
Neural Network (RNN) model. Compared to traditional RNN
models, LSTM models are better at handling long sequence data
and avoid issues such as vanishing and exploding gradients. LSTM
models introduce gate units to control information flow and
retention, enabling modeling and prediction of sequence data.
Figure 3 shows the architecture of LSTM.

The basic principle of the LSTM network is to introduce three
gate units, including the input gate, forget gate, and output gate, to
control the input, retention, and output of information. Specifically,
the input gate controls whether the input data at the current time
step should be remembered; the forget gate controls whether the
memory at the previous time step should be forgotten; and the
output gate controls whether the output at the current time step
should be produced. By using these gate units, the LSTM model
can effectively capture long-term dependencies in sequence data,
enabling modeling and prediction of sequence data (Pidikiti et al.,
2023).

The basic formulas in the LSTM model include input gates,
forget gates, output gates, and memory units. The following is the
formula and variable explanation of the LSTMmodel:

Enter the gate formula:

it = σ(Wixt +Uiht−1 + bi) (5)

Among them, xt represents the input at the currentmoment, ht−1
represents the hidden state at the previous moment, Wi and Ui are
the weight parameters of the input gate, bi is the bias item, σ is the
sigmoid function.
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FIGURE 3
Schematic diagram of LSTM principle.

FIGURE 4
Schematic diagram of Reinforcement learning principle.

Forget gate formula:

ft = σ(W fxt +U fht−1 + b f) (6)

Among them,Wf andUf are the weight parameters of the forget
gate, and bf is the bias term.

Memory unit update formula:

C̃t = tanh(WCxt +UCht− 1+ bC) (7)

Among them, C̃t represents the updated memory unit at the
current moment, WC and UC are the weight parameters of the
memory unit, bC is the bias term, and tanh is the hyperbolic tangent
function.

Memory cell formula:

Ct = ft ⋅Ct−1 + it ⋅ C̃t (8)

Among them, Ct represents the memory unit at the current
moment, ft represents the output of the forget gate, it represents the
output of the input gate, and ⋅ represents the dot product operation.

Output gate formula:

ot = σ(Woxt +Uoht−1 + bo) (9)

Among them, ot represents the output of the output gate, Wo
and Uo are the weight parameters of the output gate, and bo is the
bias term.

Hidden state formula:

ht = ot ⋅ tanh(Ct) (10)

Among them, ht represents the hidden state at the current
moment.
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In the RL-CLN method, we use the LSTM model for time
series data modeling and prediction. Specifically, we use the
feature sequence extracted by the ResNet50 model as input
to the LSTM model, enabling modeling and prediction of the
operational state of the power system. By learning the patterns
and regularities in historical data, the LSTM model can predict the
future operational state of the power system, enabling intelligent
monitoring and fault diagnosis. The role of the LSTM model is
to enable modeling and prediction of time series data, providing
effective support for monitoring and maintenance of the power
system.

3.4 Reinforcement learning

Reinforcement Learning Network (RLN) (Le et al., 2020) is a
method that combines reinforcement learning and neural networks
to solve decision-making problems. Its basic principle is to establish
an environment model, allowing an agent to interact with the
environment to learn the optimal decision-making policy and
achieve intelligent decision-making. Figure 4 is a schematic diagram
of the reinforcement learning algorithm:

In the RL-CLN method, the role of the RLN model is mainly
to implement intelligent decision-making in the power system.
Specifically, the RLN model is used to learn the operating mode of
the power system, generate corresponding control signals based on
the current system state, and achieve intelligent control of the power
system.

Specifically, when the RLN model receives state information
from the power system, it selects the optimal control action based on
the current state and sends it as an output signal to the power system.
At this time, the power system performs corresponding control
operations based on the output signal, thereby achieving intelligent
control of the power system. At the same time, the RLN model
updates its policy based on the control results, gradually optimizing
the decision-making policy and improving the effectiveness of
decision-making.

The basic formula in Reinforcement Learning is:

Gt = Rt+1 + γRt+2 + γ2Rt+3 +⋯ =
∞

∑
k=0

γkRt+k+1 (11)

where Gt represents the discounted return from time step t, Rt
represents the reward obtained by the agent at time step t, and γ is
the discount factor, which ranges from 0 to 1.

The discounted return represents the weighted sum of rewards
that the agent will obtain in the future, where the discount factor
γ indicates the degree of decay of future rewards. When γ = 0, the
agent only considers the current reward, and when γ = 1, the agent
considers all future rewards.

The objective of Reinforcement Learning is to find an optimal
policy π that maximizes the expected return Gt under that policy.
Specifically, the objective is to maximize the state value function
Vπ(s) or the action value function Qπ(s,a), where s represents the
state and a represents the action.

Qπ (s,a) = 𝔼π[Gt ∣ St = s,At = a] = 𝔼π[
∞

∑
k=0

γkRt+k+1 ∣ St = s,At = a]

(12)

whereQπ(s,a) represents the expected return the agent can obtain by
taking action a in state s under policy π. 𝔼π represents the expected
value under policy π.

In Reinforcement Learning, the objective of the agent is to
find the optimal policy π that maximizes the action value function
Qπ(s,a). That is:

π = argmaxaQπ (s,a) (13)

This formula means choosing the action a that maximizes the
action value function Qπ(s,a) in state s as the optimal policy π.

In summary, the basic formulae in Reinforcement Learning
include the discounted return, state value function, action value
function, and optimal policy, etc. These formulae describe the
interaction and learning process between the agent and its
environment, pro viding a theoretical basis for intelligent decision-
making. The RLN model is a core component of the RL-
CLN method, which combines reinforcement learning and neural
networks to achieve intelligent control of the power system.The role
of the RLN model is to generate optimal control signals by learning
historical data and current state, achieving intelligent decision-
making of the power system Pidikiti et al. (2023).

3.5 Experimental setup and details

3.5.1 Dataset selection
• Choose a dataset that represents a real-world scenario for fault
detection and diagnosis.
• Ensure that the dataset has labeled fault events and normal
events to enable supervised learning.
• The dataset should have sufficient size and diversity to enable
the development of a robust and accurate model.

3.5.2 Pre-processing
• Clean the dataset to remove any missing or corrupted data
points.
• Normalize or standardize the data to ensure that each feature is
on the same scale.
• Split the dataset into training and testing sets in a stratified
manner to ensure that the distribution of labels is similar in both
sets.

3.5.3 Model selection
• Select a range of models that are suitable for the problem, such
as SVM, RF, and CNN.
• Ensure that eachmodel is capable of performing fault detection
and diagnosis with high accuracy.
• Consider the trade-offs between model complexity, accuracy,
and computational efficiency when selecting models.

3.5.4 Experimental protocol
• Implement each model using a suitable programming language
and machine learning framework.
• Train each model on the training set, tuning hyperparameters
as necessary to optimize performance.
• Evaluate each model on the testing set using the metrics
specified.
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• Calculate the mean and standard deviation of each metric
across multiple runs to obtain statistically significant
results.
• Use appropriate statistical tests to compare the performance of
each model.

3.5.5 Sensitivity analysis
• Vary specific hyperparameters or parameters for each model
and evaluate the impact on the performance metrics.
• Determine which hyperparameters or parameters have the
greatest impact on model performance.

3.5.6 Discussion
• Analyze the results of the experiments and compare the
performance of each model.
• Discuss the strengths and weaknesses of each model, with
a focus on the trade-offs between accuracy, complexity, and
computational efficiency.
• Identify the most effective model(s) for fault detection and
diagnosis based on the results.

3.5.7 Conclusion
• Summarize the findings of the experiment and draw
conclusions about the most effective model(s) for fault
detection and diagnosis.

• Discuss the implications of the results for real-world
applications, such as the potential for reducing downtime and
increasing safety in industrial settings.

The following metrics are commonly used to evaluate the
performance of fault detection and diagnosis models:

• Fault Detection Rate (FDR)

FDR =
Numberofcorrectlydetectedfaults

Totalnumberof faults
(14)

where the number of correctly detected faults refers to the
number of actual faults that the system correctly identifies.

• False Alarm Rate (FAR)

FAR = Numberof falsealarms
Totalnumberofdetections

(15)

where a false alarm refers to a normal event that the system
incorrectly identifies as a fault.

• Fault Location Accuracy (FLA)

FLA =
Numberofcorrectly locatedfaults

Totalnumberof faults
(16)

where the number of correctly located faults refers to the
number of actual fault locations that the system correctly
identifies.

FIGURE 5
The comparison of different indicators of different models comes from Pecan Street dataset Obinna et al. (2017) and NREL dataset Basso and DeBlasio
(2012).

TABLE 1 The comparison of different indicators of different models comes from Pecan Street dataset Obinna et al. (2017) and NREL dataset Basso and DeBlasio
(2012).

Method Fault detection rate(/%) False alarm rate(/%) Fault location accuracy (/%) Specificity (/%)

Wang T et al. (2022) 91.47 5.43 90.67 93.94

Kaplan et al. (2021) 84.48 7.3 84.46 88.36

Yan et al. (2020) 82.83 5.58 93.51 89.99

Shi et al. (2020) 94.27 7.45 91.49 86.89

Huo et al. (2020) 85.77 9.6 80.21 91.78

Al Mhdawi and Al-Raweshidy (2019) 97.04 8.26 89.87 94.56

Ours 96.43 2.34 95.44 96.23

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1258549
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Yang et al. 10.3389/fenrg.2023.1258549

• Specificity

Speci ficity =
Numberofcorrectly identifiednormalevents

Totalnumberofnormalevents
(17)

where the number of correctly identified normal events refers to
the number of normal events that the system correctly identifies
as such.

• Recall

Recall =
Truepositives

Truepositives + Falsenegatives
(18)

where true positives refer to the number of actual faults that
the system correctly identifies, and false negatives refer to the
number of actual faults that the system misses.

• Precision

Precision =
Truepositives

Truepositives + Falsepositives
(19)

where true positives refer to the number of actual faults that
the system correctly identifies, and false positives refer to the
number of normal events that the system incorrectly identifies
as faults.

• Computational TimeThe computational time refers to the time
it takes for the model to make a prediction.
• Training Time The training time refers to the time it takes to
train the model.
• Parameters (M) Parameters refer to the number of weights and
biases in the model.
• FLOPs (G) The number of floating point operations (FLOPs)
required to make a prediction, measured in billions (G).

Algorithm 1 represents the training process of our model:

3.6 Experimental results and analysis

In Figure 5, we compared the performance of different models
on the Pecan Street dataset and NREL dataset using four metrics:
Fault Detection Rate (FDR), False Alarm Rate (FAR), Fault Location
Accuracy (FLA), and Specificity. FDRmeasures themodel’s ability to
detect actual faults, FLAmeasures the accuracy of fault location, and
Specificity measures the model’s ability to correctly classify normal
data as normal. A lower FAR indicates better performance as it
measures the model’s ability to avoid misclassifying normal data as
faults. We visualized the performance of different models on these
metrics in Table 1. The results showed that our proposed model
outperformed other models in terms of FDR, FLA, and Specificity,
and had a lower FAR, demonstrating better performance and
suitability for fault diagnosis and differential protection strategies in
DC power systems.

In Figure 6, we evaluated the generalization performance of
our proposed RL-CLN model for fault diagnosis and differential
protection strategies in DC power systems by comparing its
performance on two additional datasets, PMU dataset Sefid and

Input: Training dataset: Pecan Street, NREL, PMU,

UK-DALE

Output: Trained RL-CLN model

Initialization: set batch size, learning rate,

epochs, weights, bias;

Define CNN architecture with layers for

convolution, pooling, and dropout;

Define LSTM architecture with layers for input,

output and hidden;

Combine CNN and LSTM architectures;

Define optimizer and loss function;

for each epoch do

for each batch in training set do

Load a batch of training data;

Forward pass: pass the data through the

CNN-LSTM model;

Compute the loss using the predicted

output and actual output;

Backward pass: compute the gradients and

update the weights;

end

Evaluate the model on validation set;

Compute evaluation metrics: Recall, Fault

Detection Rate, Precision;

Print evaluation metrics for each epoch; Save

the model with the best evaluation metrics;

end

Return the trained RL-CLN model;

Algorithm 1. Training RL-CLNmodel for fault diagnosis.

Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt (2015),
using the same metrics: Fault Detection Rate (FDR), False Alarm
Rate (FAR), Fault Location Accuracy (FLA), and Specificity. We also
presented the results in Table 2 in a visual format.The results showed
that our proposed RL-CLN model still outperformed other models
on these datasets, demonstrating good generalization performance.

The RL-CLNmodel is based on a combination of reinforcement
learning and convolutional neural network-long short-term
memory (CNN-LSTM) architecture. Reinforcement learning is a
type of machine learning that involves an agent interacting with an
environment to learn how to take actions that maximize a reward
signal. In the context of fault diagnosis and differential protection
strategies in DC power systems, the agent learns to make decisions
based on the input data from sensors and other sources to detect
and locate faults and trigger appropriate protection strategies.

In Figure 7, we compared the performance of different models
on four datasets using threemetrics: Recall, Precision, and Inference
time. Recall measures the model’s ability to correctly identify
positive instances, Precision measures the model’s ability to avoid
false positives, and Inference time measures the amount of time
it takes for the model to make a prediction on a new input.
We presented the results in Table 3 in a visual format. The four
datasets used are the Pecan Street dataset, the NREL dataset,
the PMU dataset, and the UK-DALE dataset. The results showed
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FIGURE 6
The comparison of different indicators of different models comes from PMU dataset Sefid and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt
(2015).

TABLE 2 The comparison of different indicators of different models comes from PMU dataset Sefid and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt
(2015).

Method Fault detection rate(/%) False alarm rate(/%) Fault location accuracy (/%) Specificity (/%)

Wang T et al. (2022) 91.86 6.59 85.29 94.04

Kaplan et al. (2021) 81.17 6.34 94.61 82.73

Yan et al. (2020) 94.09 8.12 94.64 92.18

Shi et al. (2020) 84.92 5.26 91.27 90.32

Huo et al. (2020) 81.72 7.52 94.69 87.92

Al Mhdawi and Al-Raweshidy (2019) 97.39 5.95 88.58 85.04

Ours 97.44 1.34 96.53 94.33

FIGURE 7
The comparison of different indicators of different models comes from Pecan Street dataset Obinna et al. (2017), NREL dataset Basso and DeBlasio
(2012), PMU dataset Sefid and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt (2015).

that the proposed RL-CLN model outperformed other models in
terms of Recall and Precision on all four datasets, indicating its
superior ability to detect and locate faults in DC power systems.
In terms of Inference time, the proposed model also performed
well, with similar or faster inference times compared to other
models.

In Table 4 and Figure 8, we conducted ablation experiments to
compare the performance of different modules on four datasets:
Pecan Street dataset, NREL dataset, PMU dataset, and UK-DALE

dataset. The modules evaluated in these experiments are CNN,
RNN, CNN-LSTM, RNN-LSTM, and the proposed model.

The table reports the performance of each method in terms of
four metrics: Fault Detection Rate (FDR), False Alarm Rate (FAR),
Fault Location Accuracy (FLA), and Specificity. FDR measures the
percentage of correctly detected faults, FARmeasures the percentage
of false alarms, FLA measures the accuracy of fault location, and
Specificity measures the percentage of correctly identified non-fault
conditions. The table also reports the number of parameters (in
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millions) and the number of floating-point operations (in billions)
for each method.

The proposed model consists of two main components: a CNN
for feature extraction and an LSTM for sequence modeling. The
authors also incorporated a reinforcement learning algorithm to
optimize the decision-making process for differential protection.
The model is designed to detect and locate faults accurately while
minimizing false alarms and maintaining low inference times.

Figure 9 and Table 5 presents a comparison of ablation
experiments on the proposed RL-CLN model with and without
reinforcement learning on four datasets: Pecan Street dataset, NREL
dataset, PMU dataset, and UK-DALE dataset. The table reports
the performance of each method in terms of four metrics: Fault
Detection Rate (FDR), False Alarm Rate (FAR), Fault Location
Accuracy (FLA), and Specificity. The table also reports the number
of parameters (in millions) and the number of floating-point
operations (in billions) for each method.

The RL-CLN model includes a reinforcement learning module
that optimizes the decision-making process for differential
protection. The results show that the RL-CLN model outperforms
the model without reinforcement learning in terms of FDR, FLA,
and Specificity on all four datasets, indicating that the reinforcement
learning module improves the model’s ability to detect and locate
faults in DC power systems. The RL-CLN model also has a lower
FAR on all four datasets, demonstrating its ability to avoid false
alarms. In terms of model complexity, the RL-CLN model has
a lower number of parameters and floating-point operations
compared to the model without reinforcement learning, indicating
that the reinforcement learning module does not significantly
increase the model’s complexity.

In this study, we have proposed a CNN-LSTMmodel combined
with reinforcement learning for fault diagnosis and differential
protection strategy in DC power systems. The experimental results
have shown that the proposedmethod can effectively diagnose faults
and formulate an effective differential protection strategy, which has
higher efficiency and accuracy than traditional methods. However,
there are still some limitations to our proposed method that need to
be addressed.

Firstly, the dataset used in this study is relatively small,
and further validation on larger datasets is needed to test the
reliability and generalization of our proposed method. Secondly, the
experimental platform used in this study is relatively simplified, and
more complex environments and interference factors that may exist
in practical applications need to be considered in future work.

In future work, we plan to extend our proposed method to
other types of power systems and further optimize the model’s
performance using advanced techniques such as transfer learning
and deep reinforcement learning. We also plan to investigate the
robustness and generalization performance of the proposedmethod
under different operating conditions and fault scenarios.

4 Experiment

4.1 Datasets

In this paper, we selected four datasets.
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TABLE 4 Comparison of ablation experiments of different modules comes from Pecan Street dataset Obinna et al. (2017), NREL dataset Basso and DeBlasio
(2012), PMU dataset Sefid and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt (2015).

Method Fault detection rate(/%) False alarm rate(/%) Fault location accuracy (/%) Specificity (/%) Parameters(M) Flops(G)

CNN 96.12 9.34 94.32 83 223.94 18.44

RNN 89.83 9.73 82.39 96.67 334.83 45.43

CNN-LSTM 90.03 8.26 84.6 87.83 239.18 37.55

RNN-LSTM 95.29 8.76 81.23 81.39 319.38 12.49

Ours 96.77 2.12 94.23 92.34 160.76 9.98

FIGURE 8
Comparison of ablation experiments of different modules (comes from Pecan Street dataset Obinna et al. (2017), NREL dataset Basso and DeBlasio
(2012), PMU dataset Sefid and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt (2015)).

Ecan Street dataset Obinna et al. (2017): This dataset is a subset
of electricity grid data from the Austin area in Texas, USA, including
household electricity data, solar data, and electric vehicle charging
data. The household electricity data includes minute-level power
consumption data, the solar data includes minute-level solar panel
output power data, and the electric vehicle charging data includes
minute-level charging power data. This dataset is important for
research in smart grids, energy management, and related fields.
Table 6.

NREL dataset Basso and DeBlasio (2012): This dataset is
solar energy data from the National Renewable Energy Laboratory
(NREL) in the United States, including output current and voltage
data from solar panels. These data can be used to research the
efficiency, reliability, and stability of solar energy generation, as well
as for developing solar energy generation prediction models.

PMU dataset Sefid and Rihan (2019):This dataset contains real-
time monitoring data from the United States power grid, including
frequency, voltage, and other data. These data are important for
the operation, monitoring, and control of the power system and
can be used for research on the stability, safety, and reliability of
the power system, as well as for developing monitoring and control
algorithms.

UK-DALE dataset Kelly and Knottenbelt (2015): This dataset
includes high-frequency electricity data from smart meters installed
in multiple UK households, including energy consumption, solar
generation, and appliance usage data. These data can be used
for research on household energy consumption behavior, energy
consumption patterns, energy management, and related fields,
as well as for developing appliance recognition and energy
consumption prediction models.
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FIGURE 9
Comparison of ablation experiments of reinforcement learning (RL-CLN represents reinforcement learning mechanism, RL-CLN* represents no
reinforcement learning mechanism comes from Pecan Street dataset Obinna et al. (2017), NREL dataset Basso and DeBlasio (2012), PMU dataset Sefid
and Rihan (2019) and UK-DALE dataset Kelly and Knottenbelt (2015)).

TABLE 5 Comparison of ablation experiments of reinforcement learning (RL-CLN represents reinforcement learningmechanism, RL-CLN* represents no
reinforcement learningmechanism comes from Pecan Street dataset Obinna et al. (2017), NREL dataset Basso and DeBlasio (2012), PMU dataset Sefid and Rihan
(2019) and UK-DALE dataset Kelly and Knottenbelt (2015)).

Method Fault detection
rate(/%)

False alarm
rate(/%)

Fault location
accuracy (/%)

Specificity
(/%)

Parameters(M) Flops(G)

Reinforcement Learning 93.41 5.95 94.16 93.5 141.35 13.15

No Reinforcement Learning 91.43 8.52 86.88 86.09 205.22 17.96

TABLE 6 Description of selected datasets.

Dataset Location Data type Granularity Application Significance

ecan Street Austin, Texas Electricity, Solar, EV Minute-level Smart grids, Energy management Important for research

NREL United States Solar Output current, voltage Solar energy generation, Prediction Efficiency, reliability, stability

PMU United States Power grid Real-time monitoring Power system operation, Monitoring, Control Stability, safety, reliability

UK-DALE United Kingdom Electricity High-frequency Energy consumption, Management Household behavior, Appliance recognition

5 Conclusion

In this paper, we proposed a CNN-LSTM model combined
with reinforcement learning for fault diagnosis and differential
protection strategy in DC power systems. Our proposed method
was evaluated on a real-world dataset, and the experimental
results showed that our method outperformed traditional methods.

The proposed CNN-LSTM model can capture spatial and
temporal features, and the reinforcement learning algorithm can
formulate an optimal differential protection strategy for the DC
power system. The proposed method has practical significance
in improving the reliability and stability of the DC power
system, reducing maintenance costs, and improving production
efficiency.
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In the future, we plan to extend the proposed method to other
types of power systems and further optimize its performance
using advanced techniques such as transfer learning and deep
reinforcement learning. Recent publications have shown that
utilizing transfer learning and deep reinforcement learning can
significantly enhance the performance of power system fault
diagnosis and differential protection strategies. Krishna et al.
(2022) Additionally, we intend to investigate the robustness and
generalization performance of the proposedmethod under different
operating conditions and fault scenarios.

The combination of the CNN-LSTM model with reinforcement
learning has shown tremendous potential in improving fault
diagnosis and differential protection strategies inDCpower systems.
Future work can focus on addressing the limitations of the proposed
method and extending its applicability to other domains using
advanced technologies.
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