
Network-constrained flexible
ramping product provision of
prosumer aggregator: a
data-driven stochastic bi-level
optimization

Xin Ai, Huanyu Hu, Junjie Hu*, Zhe Wang and Kunyu Wang

School of Electrical and Electronic Engineering, North China Electric Power University, Beijing, China

Prosumers are expected to provide the flexible ramping product (FRP) in the
power system. However, voltage violations and line congestion may arise in the
distribution network, when FRP delivered by prosumers. Hence, this paper
proposes a data-driven stochastic bi-level optimization model to coordinate
the prosumer aggregator to decide FRP-offering while ensuring distribution
network security under FRP delivery. In the proposed bi-level model, the
upper-level is a min-max problem, representing the minimum expected cost
under the worst-case scenario probability distribution for the prosumer
aggregator. The lower-level is the operation cost minimization within the
distribution network security for distribution network operator. The proposed
model is converted into a single-level model using the Karush-Kuhn-Tucker
condition and strong duality theory, and applied to the modified IEEE 33-bus
network with three prosumers. The results demonstrate the effectiveness of the
proposed model.
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1 Introduction

The expansion of renewable energy integration into the power grid has led to the de-
committed of conventional units, exacerbating the scarcity of ramping resources in the
power system (Wang and Hodge, 2017). According to the CAISO daily report dated 23 June
2023, the requirement of FRP during the 3 hours following 6 a.m. accounted for 40.4% of the
peak load for that day (California Independent System Operator, 2023). Addressing this
pressing issue requires urgent exploration of demand-side ramping capability (Yamujala
et al., 2022). With the implementation of low-carbon policies and smart control technologies
in distribution system, an increasing number of passive low-voltage consumers with
distributed resources are being transformed into active prosumers, resulting in
unprecedented improvements of flexibility in distribution system (Kubli et al., 2018).
While significant improvements have been made in enhancing flexibility, its value
cannot be fully realized without proper organization and coordination. As a crucial link
between decentralized flexibility and economically scalable electricity services, research on
prosumer aggregator has rapidly gained momentum (Olivella-Rosell et al., 2018). However,
the deliverability and availability challenges associated with FRP (Fang et al., 2020), coupled
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with the voltage violations and line congestion in prosumer active
responses, pose additional challenges for prosumer aggregator in
providing FRP. Therefore, this paper investigate how prosumer
aggregator can provide FRP while ensuring the security of the
distribution network.

The current definition of prosumer is broad, encompassing
subjects such as electric vehicle aggregators, smart buildings, and
grid-connected microgrids, which are also considered as
prosumers (Gonzalez-Romera et al., 2019; Hu et al., 2019;
Huang et al., 2020; Nizami et al., 2020). In order to
comprehensively analyze the current state of research, this
paper also considers the provision of FRP by this broad
category of prosumer. Studies on the provision of FRP by
prosumer aggregators can be categorized into two group.

The first group focuses solely on the economic strategy
developed based on the portfolio model without considering
distribution system security. For instance, the author in the
literature (Kim et al., 2021) proposes a FRP offering strategy for
electric vehicles considering travel chain uncertainty. Similarly,
The literature (Wang et al., 2017; Hu et al., 2018) propose a FRP
offering strategy for microgrid and battery energy storage
aggregator, respectively. The literature (Zhang et al., 2022)
develops a method to allocate ramping capacity in electric-gas
systems. The literature (Zhu et al., 2020) proposes a decision
framework for residential-level energy hubs considering the
provision of FRP for arbitrage. The literature (Khoshjahan
et al., 2020) develops a stochastic FRP offering strategy for
energy storage systems. Likewise, The literature (Khoshjahan
et al., 2022) presents a robust optimal strategy for prosumer
aggregators to provide FRP in the real-time market. In
summary, the studies have explored the prosumers that
encompass various types of flexible resources based on the
optimal offering model within forecast market clearing prices.
This group of bidding decision models focuses only on the optimal
power allocation of resources within the prosumer and ignores the
interaction relationship with the market clearing price, which can
lead to an underestimation of the prosumer’s flexibility. Moreover,
strategies formulated using predicted market clearing prices
resemble passive time-of-use tariff demand response strategies.
Such approaches do not fully showcase the proactive advantages
inherent to the prosumer.

The second group considers the security of the distribution
network when submitting an offering strategy but ignores the
potential security issues when FRP is activated. For example, the
literature (Zhang et al., 2020) proposes an extended ACOPF model
that integrates electric vehicles and calculates the marginal benefit
value of FRP. The literature (Bahramara et al., 2022) presents a
method for considering distribution network line congestion when
microgrids provide services to system-independent operators. The
literature (Ghaemi et al., 2021a) proposes a bi-level model for DNO
purchasing microgrid’s FRP in the distribution network, while the
literature (Allahmoradi et al., 2021) suggests a stochastic optimal
strategy for reducing the net load ramping rate of active distribution
networks. The literature (Ghasemi et al., 2021) introduces a bi-level
optimal approach to incorporate distributed resources for providing
FRP. Although the bi-level model described above effectively
captures the interaction between the distribution network and
prosumer aggregators, the upper models are not aggregator

which are not suitable for bidding decisions. Although all of the
work mentioned above considers distribution system security when
the prosumer aggregator submit FRP, they only consider the energy
strategy to satisfy distribution network security when the FRP is not
activated. The power flow in the distribution network will change
when the distribution network operator activates the FRP of the
prosumer, which may cause distribution network security issues
such as voltage violations and line congestions. In addition, the value
of flexibility for each prosumer cannot be accounted for correctly
because of the ignorance of the network security constraints during
FRP delivery.

Moreover, the volatility of distributed renewable energy
(DRE) indirectly affects the bidding/offering decision of
prosumer aggregators. The optimization strategies developed
in the aforementioned literature, based on stochastic optimization
(Wang et al., 2017; Khoshjahan et al., 2020; Allahmoradi et al.,
2021; Bahramara et al., 2022) and robust optimization (Zhu et al.,
2020; Ghasemi et al., 2021b; Khoshjahan et al., 2022; Zhang et al.,
2022) for uncertainty modeling in the DRE output and market
clearing prices. Robust optimization does not rely on probability
distribution characteristics and makes decisions based only on
worst-case uncertainty scenarios. In optimal scheduling
problems where uncertainty extreme scenarios have a low
probability of occurring, robust models tend to result in
overly conservative strategies. It is a characteristic more suited
to the study of stable control and planning problems (Ma et al.,
2023). Stochastic optimization assumes that the decision-making
has a comprehensive understanding of uncertainty through
known probability distributions, and often empirical or data-
driven approaches are used to construct probability distributions
(Fu et al., 2023a). However, due to the finiteness of the sample,
the constructed probability distribution may be far from the true
probability distribution, which can lead to an under-conservative
strategy. Selecting representative discrete scenarios to
characterize the probability distribution is also an issue, which
a large set of scenarios will greatly increase the computational
burden. The literature (Fu et al., 2023b) proposes an approach to
select the representative scenarios by neural networks to reduce
the size of scenarios. Distributionally robust methods have
attracted much attention in recent years, which combine the
advantages of stochastic optimization and robust optimization by
formulating expected optimal decisions under robust probability
distributions, and have been applied to power system optimal
scheduling (Shi et al., 2023) and control (Xu et al., 2023) issues.
Among them, a stochastic optimization method based on a
mixed-norm model was firstly proposed in the literature
(Zhao and Guan, 2016), which can achieve expectation-
optimal decision-making under robust probability distribution.
The method can adjust the conservativeness of uncertainty
modeling and is particularly applicable to the formulation of
bid-offer strategy. The prosumer aggregator can improve its
response to the future development of the complex
distribution grid market by employing external data and
adopting a risk-averse willingness to dynamically adjust its
bidding and offering strategy. Therefore, embedding this
model into the problem of FRP decision-making by prosumer
aggregators is also within the scope of research interest in this
paper.
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In this context, the paper proposes a bidding/offering model
based on a data-driven stochastic bi-level optimization for prosumer
aggregator. The major contributions of this paper are presented as
follows.

1) Proposing a novel data-driven stochastic bi-level optimization
framework for prosumer aggregator, which effectively
incorporates the value of external data and proactively
develops energy and FRP bidding/offering strategy that strike
a better balance between economy and conservativeness.

2) Proposing an extended linearized ACOPF model that avoids
technical violations of the distribution system after the delivery
of FRP and enables the derivation of more detailed marginal
prices of nodes. More importantly, the linearization greatly
improves the model’s applicability, especially in the
construction of the bi-level programming.

The remainder of this paper is organized as follows. Section 2
presents the problem description. In Section 3, the proposed model

and solution technique is formulated. The numerical results are
analyzed in Section 4. Finally, Section 5 concludes the paper.

2 Problem description

2.1 Stochastic bi-level optimization
structure for bid and offer strategy of
prosumer aggregator

The proposed model presents a data-driven, stochastic bi-level
optimization problem. This captures the interactive decision-making
between the prosumer aggregator managing the prosumers and the
DNO scheduling the DRE. The structure is illustrated in Figure 1. We
assume that all prosumers within the distribution network can be
managed by a single aggregator. The interactive decision-making of
prosumer aggregator and DNO is a stochastic bi-level optimization
problem that can be modeled based on the scenario approach. The
upper-level problem represents the formulation of energy bidding and
FRP offering at the distribution locational marginal price for prosumer
aggregator, and the lower-level problem represents the energy and FRP
clearing out locally for DNO receiving the upper-level decision, the
structure of which is shown in Figure 2. In fact, the proposed model is
also a Stackelberg Game problem, where the prosumer aggregator acts
as the leader while the DNO acts as the follower. The proactive
superiority of the prosumer aggregator is emphasized. DRE are
common in distribution networks, and their energy management
strategy affect the energy and FRP clearing of DNO, and
subsequently the strategies of prosumers. The conservativeness of
uncertainty modeling is corrected using a data-driven approach. The
prosumer aggregator searches for the worst-case probability
distribution in the optimization space of the scenario probability
distribution, and ultimately achieves the minimum expected cost of
the bidding/offering strategy under the worst probability distribution.

The KKT condition and strong dual theory are used to solve the
model. The KKT condition can replace the lower-level optimization

FIGURE 1
Coordinated operational framework for aggregator and DNO.

FIGURE 2
A data-driven stochastic bi-level optimization framework for prosumer aggregator decision bid-offer.
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problem with an equilibrium constraint. The strong dual theory can
replace the bi-linear term in the upper level objective. The
linearization of the complementary relaxation constraints is done
by the big-Mmethod. The model can eventually be transformed into
a mixed-integer linear programming problem that can be easily
solved by commercial software.

2.2 Uncertainty modeling of DRE

DRE are widely deployed in distribution networks, and their
stochastic output characteristics have a substantial influence on the
energy and FRP locally clearing of DNO. The uncertainty model
proposed in the literature (Zhao and Guan, 2016) is able to take into
account the uncertainty of the probability distribution of random
variables. In this paper, this model is integrated into the proposed
stochastic bi-level programming problem.

The process of uncertainty modeling, as illustrated in Figure 3,
comprises several steps. Firstly, historical data is clustered to obtain an
initial probability distribution. Subsequently, the L1 norm and L∞ norm
are utilized to construct the set of probability distributions. It is worth
noting that the mix-norm captures the risk-averse of the prosumer
aggregator, influencing the level of conservativeness within the ensemble.
Lastly, a bi-level stochastic optimizationmodel is employed to identify the
worst-case distribution from the set, facilitating the formulation of an
optimal decision that is both economically viable and conservative.

3 Method development of FRP
provision by prosumer aggregator

3.1 Scenario probability distribution set

∑
s∈S

πs − π0| |≤ S
2Ns

ln
2S

1 − α1
(1)

maxs�1,...,S πs − π0| |≤ 1
2Ns

ln
2S

1 − αs
(2)

∑
s∈S

πs � 1 (3)

πs ≥ 0, s � 1, . . . , S (4)
Equation 1 sets the limits of the overall uncertainty of the

probability distribution while Eq. 2 sets the limits on the
maximum probability uncertainty (Zhao and Guan, 2016). Eqs.
3-4 denotes the basic properties of discrete probabilities.

3.2 Optimization model of prosumer
aggregator

3.2.1 Objective function
The upper-level problem aims to minimize operating cost under

the worst-case scenario probability distribution, which comprises
two terms. The first term represents the cost of purchasing energy
while the second term corresponds to the revenue from providing
the FRP, encompassing both upward FPR and downward FRP,
respectively.

minmaxΔt∑
s∈S

πs ∑
i∈N

∑
t∈T

λdlmp,p
s,i,t pvbs,i,t − λdlmp,u

s,i,t rvb,us,i,t + λdlmp,d
s,i,t rvb,ds,i,t( ) (5)

3.2.2 Operational constraints of prosumer
The energy management problem within the prosumer could be

deal with the portfolio model previously reviewed, which is outside
the scope of this paper. Therefore, the virtual battery model is used
here to represent the prosumer flexibility, referring to the authors’
previous work (Hou et al., 2019; Hu et al., 2019; Wu et al., 2019).

pvbs,i,t ≤ �pvbs,i,t (6)
pvbs,i,t − rvb,us,i,t ≥ 0 (7)
rvb,ds,i,t + pvbs,i,t ≤ �pvbi (8)
pvbs,i,t , r

vb,u
s,i,t , r

vb,d
s,i,t ≥ 0 (9)

evbs,i,t+1 � evbs,i,t + ηcpvbs,i,tΔt (10)
�evbi − evbs,i,t+1 ≥ ηcrvb,ds,i,t Δt (11)

evbs,i,t ≤ �evbi (12)
evb,inii � evbs,i,1 (13)
evb,exi � evbs,i,T (14)

FIGURE 3
A data-driven framework for uncertainty modeling.
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The amount of energy and FRP of each prosumer is limited
using Eqs.6–14. Eqs. 10–14 demonstrate the dynamic behavior of
prosumer at each time step, which depends on the amount of stored
energy in the previous time step.

3.3 Optimization model of DNO

3.3.1 Objective function
The lower-level problem aims to minimize the operating costs of

the DNO and represents the energy and FRP clearing out within the
distribution network, as described in Eq.15. The first term in Eq.15
represents the cost of energy purchased by the DNO from the retail
market to maintain power balance within the distribution system.
The second term corresponds to the revenue from providing FRP to
the market by the DNO, which is determined by the quantities
offered from DRE and the prosumers.

minΔt∑
t∈T

γpt p
dso
s,t − γut r

dso,u
s,t + γdt r

dso,d
s,t( ) (15)

rdso,us,t � ∑
i∈N

rvb,us,i,t +∑
j∈J

rpv,us,j,t : λ
u
s,t (16)

rdso,ds,t � ∑
i∈N

rvb,ds,i,t +∑
j∈J

rpv,ds,j,t : λ
d
s,t (17)

Where γpt is the day-ahead energy price in the retail market, γut
and γdt are the upward and downward FRP price. The right-hand
side of Eqs. 16, 17 denote the dual multiplier variables of the
constraints. The expressions of the same form in the later section
carry the same meaning as described here.

3.3.2 Operational constraints of PV
The selection of distributed PV as the representative DRE here is

motivated by its widespread prevalence and common usage. Other
DRE operational models can be extended on this basis easily.

ppvs,j,t ≤ p
pv,f ore
s,j,t : μpv,p+s,j,t (18)

rpv,ds,j,t ≤ p
pv
s,j,t : μ

pv,rd+
s,j,t (19)

ppvs,j,t + rpv,us,j,t ≤ ppv,f orrs,j,t : μpv,ru+s,j,t (20)
ppvs,j,t , r

pv,u
s,j,t , r

pv,d
s,j,t ≥ 0: μ

pv,p−
s,j,t , μpv,ru−s,j,t , μpv,rd−s,j,t (21)

Eqs. 18–21 represent that the DRE providing energy and FRP
within the forecasting power limits of the operating.

3.3.3 Network secure constraints
Inspired by the literature (Yuan et al., 2018), this paper proposes

an extended linearized ACOPF model which can simultaneously
optimize the system cost of providing energy and FRP.

pdsos,t +∑
j∈J

ppvs,j,t −∑
i∈N

pvbs,i,t − ∑
b∈B

ploadb,t − plosss,t � 0: λps,t (22)

pdso ≤ pdsos,t ≤ �pdso: μdso,p−s,t , μdso,p+s,t (23)
plosss,t ≈ plosss,t * −∑

jJ

zdj ppvs,j,t − ppvs,j,t*( ) +∑
i∈N

zdi pvbs,i,t − pvbs,i,t*( ) (24)

Eq. 22 represents the energy balance at system-level. Eq. 23 shows
the acceptable range of exchanging power between the DNO and grid.
Eq. 24 represents the linearized expression of distribution network

losses, where the matrix zd is the partial derivatives of bus power of the
distribution network with respect to the losses (Yuan et al., 2018).

pnets,w,t � ppvs,w,t − pvbs,w,t − ploadw,t (25)
νs,b,t � ν1 + ∑

w∈B
zpbp

net
s,w,t −∑

i∈B
zqb,iq

load
s,i,t (26)

ν ≤ νs,b,t ≤ �ν: μv−s,b,t , μ
v+
s,b,t (27)

ν ≤ νs,b,t + ∑
w∈B

zpb,w rpv,us,w,t + rvb,us,w,t( )≤ �ν: μv,ru−s,b,t , μ
v,rd+
s,b,t (28)

ν ≤ νs,b,t − ∑
w∈B

zpb,w rpv,ds,w,t + rvb,ds,w,t( )≤ �ν: μv,rd−s,b,t , μ
v,rd+
s,b,t (29)

Eqs. 25–27 represent the maximum and the minimum
permissible voltage magnitude of each bus. Eqs. 28, and 29 define
the allowable operating range of voltage magnitude after the delivery
of FRP, where the matrix zp and zq are the partial derivatives of
active power and reactive power each bus respect to voltage
magnitude respectively (Yuan et al., 2018).

plks,t ≈ plks,t* −∑
j∈J

zlkj ppvs,j,t − ppvs,j,t*( ) +∑
i∈N

zlki pvbs,i,t − pvbs,i,t*( ) (30)

p lk ≤ plks,t ≤ �plk : μp−s,lk ,t , μ
p+
s,lk ,t

(31)
p lk ≤ plks,t − ∑

w∈B
zlkw rpv,us,w,t + rvb,us,w,t( )≤ �plk : μru−s,lk ,t

, μru+s,lk ,t
(32)

p lk ≤ plks,t + ∑
w∈B

zlkw rpv,ds,w,t + rvb,ds,w,t( )≤ p lk : μrd−s,lk ,t
, μrd+s,lk ,t

(33)

Eqs. 30, and 31 represent the operating boundary of the branch
power flow. Eqs. 32, and 33 define the allowable operating range of
branch power flow after the delivery of FRP, where the matrix zlk is
the partial derivatives of active power each bust respect to branch
flow (Yuan et al., 2018).

3.4 Solution methodology

3.4.1 KKT conditions
The first-order optimality condition on the lower-level decision

variable pdsos,t , r
dso,u
s,t , rdso,ds,t , ppvs,t , r

pv,u
s,t , rdso,ds,t are sequentially presented

in Eqs. 34–39.

γpt + λps,t − μdsp,p−s,t + μdso.p+s,t � 0 (34)
−γut + λus,t � 0 (35)
−γdt + λdt � 0 (36)

μpv,p+s,j,t − μpv,rd+s,j,t + μpv,ru+s,j,t − μpv,p−s,j,t + λps,t 1 + zpj( )
+∑



zpb,j( − μv−s,b,t + μv+s,b,t − μv,rd−s,b,t + μv,rd+s,b,t − μv,ru−s,b,t + μv,ru+s,b,t )
+∑



zlkj −μp−s,lk ,t + μp+s,lk ,t − μru−s,lk ,t
+ μru+s,lk ,t

− μrd−s,lk ,t
+ μrd+s,lk ,t

( ) � 0 (37)

μpv,ru+s,b,t −μpv,ru−s,b,t − λus,t + ∑
b∈B

zpb,j(− μv,ru−s,b,t + μv,ru+s,b,t )
+∑

k∈K
zlkj μru−s,lk ,t

− μru+s,lk ,t
( ) � 0 (38)

μpv,rd+s,b,t − μpv,ru+s,b,t − μpv,rd−s,b,t − λds,t +∑
bB

zpb,j μ
v,rd−
s,b,t − μv,rd+s,b,t( )

+∑


zlkj (− μrd−s,lk ,t
+ μrd+s,lk ,t) � 0 (39)
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The resulting complementary conditions Eqs 40–59 are non-
linear equations, but they can be linearized using the Big-M
method.

0≤ μpv,p+s,j,t ⊥ ppv,f ores,j,t − ppvs,j,t ≥ 0 (40)
0≤ μpv,rd+

s,j,t ⊥ ppvs,j,t − ppv,ds,j,t ≥ 0 (41)
0≤ μpv,ru+

s,j,t ⊥ ppv,f ores,j,t+1 − ppvs,j,t − rpv,us,j,t + rpv,ds,j,t ≥ 0 (42)
0≤ μpv,p−

s,j,t ⊥ ppvs,j,t ≥ 0 (43)
0≥ μpv,ru−s,j,t ⊥ rpv,us,j,t ≤ 0 (44)
0≤ μpv,rd−s,j,t ⊥ rpv,ds,j,t ≥ 0 (45)

0≤ μdso,p−s,t ⊥ pdsos,t − pdso ≥ 0 (46)
0≤ μdso,p+

s,t ⊥ �pdso − pdsos,t ≥ 0 (47)
0≤ μv−s,b,t ⊥ νs,b,t − ν ≥ 0 (48)
0≤ μv+s,b,t ⊥�ν − νs,b,t ≥ 0 (49)

0≤ μv,ru−s,b,t ⊥ νs,b,t +∑
∈
zpz,w rpv,us,w,t + rvb,us,w,t( ) − ν ≥ 0 (50)

0≤ μv,ru+
s,b,t ⊥�ν − νs,b,t −∑

∈
zpz,w rpv,us,w,t + rvb,us,w,t( )≥ 0 (51)

0≤ μv,rd−
s,b,t ⊥ νs,b,t −∑

∈
zpz,w rpv,ds,w,t + rvb,ds,w,t( ) − ν ≥ 0 (52)

0≤ μv,rd+
s,b,t ⊥�ν − νs,b,t +∑

∈
zpz,w rpv,ds,w,t + rvb,ds,w,t( )≥ 0 (53)

0≤ μp−s,lk ,t ⊥ plks,t − p lk ≥ 0 (54)
0≤ μp+s,lk ,t ⊥ plk − plks,t ≥ 0 (55)

0≤ μru−s,lk ,t
⊥ plks,t − ∑

w∈B
zlkw rpv,us,w,t + rvb,us,w,t( ) − p lk ≥ 0 (56)

0≤ μru+s,lk ,t
⊥ �plk − plks,t + ∑

w∈B
zlkw rpv,us,w,t + rvb,us,w,t( )≥ 0 (57)

0≤ μrd−s,lk ,t
⊥ plks,t + ∑

w∈B
zlkw rpv,ds,w,t + rvb,ds,w,t( ) − p lk ≥ 0 (58)

0≤ μrd+s,lk ,t
⊥ �plk − plks,t − ∑

w∈B
zlkw rpv,ds,w,t + rvb,ds,w,t( )≥ 0 (59)

3.4.2 Strong duality property
The lower-level model is formulated as a linear programming

problem thus exhibits strong duality property. Eqs. 60, 61 refers to
the strong duality condition corresponding to lower-level problem
under each scenario.

∑
t∈T

γpt p
dso
s,t − γut r

dso,u
s,t − γdt r

dso,d
s,t �∑

∈

⎡⎣∑
∈

−λps,tpv,bs,i,t 1+ zdi( )−∑
∈

λus,t r
vb,u
s,t + λds,t r

vb,d
s,t( )⎡⎣ ⎤⎦

+∑
i∈N

pv,bs,i,t ∑
b∈B

zpb,i μ
v−
s,b,t − μv+

s,b,t + μv,ru−
s,b,t − μv,ru+

s,b,t + μv,rd−
s,b,t − μv,rd+

s,b,t( )
+∑

i∈N
pv,bs,i,t ∑

b∈B

zlki −μp−
s,lk ,t

+ μp+
s,lk ,t

− μru−
s,lk ,t

+ μru+
s,lk ,t

− μrd−
s,lk ,t

+ μrd+
s,lk ,t

( )
+∑

i∈N
rvb,us,i,t ∑

b∈B

zpb,i −μv,ru−
s,b,t + μv,ru+

s,b,t( )+ rlks,i,t ∑
b∈B

zlki μru−
s,lk ,t

μru+
s,lk ,t

( )
+∑

i∈N
rvb,ds,i,t ∑

b∈B

zpb,i μ
v,rd−
s,b,t − μv,rd+

s,b,t( )+ rlks,i,t ∑
b∈B

zlki μrd−
s,lk ,t

μrd+
s,lk ,t

( )⎤⎦ +X (60)

X �∑
t∈T

⎡⎢⎢⎣−∑
j∈J

μpv,p+s,j,t ppv,f ores,j,t +μpv,ru+s,j,t ppv,f ores,j,t( )+λps,t⎛⎝−∑
b∈B

ploadb,t −ploss*s,t

−∑
i∈N

zdi p
vb*
s,i,t +∑

i∈N
zdi p

vb*
s,j,t
⎞⎠+μdso,p−s,t pdso −μdso,p+s,t

�pdso

+∑
b∈B

μv−s,b,t +μv,ru−s,b,t +μv,rd−s,b,t( ) ν −ν1 +∑
w∈B

zpb,wp
load
w,t +∑

w∈B
zqb,wp

load
w,t

⎛⎝ ⎞⎠
+∑

b∈B

μv+s,b,t +μv,bu+s,b,t +μv,rd+s,b,t( ) ν1 −∑
w∈B

zpb,wp
load
w,t −∑

w∈B
zqb,wp

load
w,t − �ν⎛⎝ ⎞⎠

+∑
k∈K

μp−s,b,t +μru−s,b,t +μrd−s,b,t( ) p lk −plk*s,t −∑
j∈J

zlkj p
pv*
s,j,t +∑

i∈N
zlki p

vb*
s,i,t

⎛⎝ ⎞⎠
+∑

k∈K

μp+s,b,t +μru+s,b,t +μrd+s,b,t( ) plks,t +∑
j∈J
zlkj p

pv*
s,j,t −∑

i∈N
zlki p

vb*
s,i,t − �plk⎛⎝ ⎞⎠⎤⎥⎥⎦

(61)

3.4.3 Linearized objective
The corresponding DLMP expressions can be obtained by

taking partial derivatives of the Lagrangian function associated
with the lower-level model, as shown by the following Eqs. 62–64.

λdimp,p
s,i,t � −λps,t 1 + zdi( )

+∑
b∈B

zpb,t μv−s,b,t − μv+s,b,t + μv,ru−s,b,t − μv,ru+s,b,t + μv,rd−s,b,t − μv,rd+s,b,t( )
+∑

k∈K

zlki −μp−s,lk ,t + μp+s,lk ,t − μru−s,lk ,t
+ μru+s,lk ,t

− μrd−s,lk ,t
+ μrd+s,lk ,t

( )
(62)

λdlmp,u
s,i,t � λus,t −∑

bB

zpb,j μ
v,ru+
s,b,t − μv,ru−s,b,t( ) − ∑

kK

zlki μru−s,lk ,t
− μru+s,lk ,t

( ) (63)

λdlmp,d
s,i,t � λds,t −∑

bB

zpb,j μ
v,rd−
s,b,t − μv,rd+s,b,t( ) − ∑

kK

zlki μrd+s,lk ,t
− μrd−s,lk ,t

( ) (64)

Finally, the linear equivalent expression of the objective function
Eq. 5 can be driven from the strong duality condition Eq. 60 and the
DLMP expressions Eqs. 62–64. The linear objective function can be
substituted by Eq. 5 is stated below:

minmax∑
s

πs△t∑
t

γt
ppdsos,t − γut r

dso,u
s,t − γdt r

dso,d
s,t − X (65)

4 Numerical studies

4.1 Input data

A modified IEEE-33 bus power system is employed to
demonstrate the effectiveness of the proposed model. Figure 4
shows the specific access locations and capacities of the

FIGURE 4
Topology of the modified IEEE 33 bus power system.
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prosumers. The exchange power limit between the DNO and grid
sets 5 MW. The simulation is presented in the form of per-unit value
with a base value of 10 MW. The market prices for energy and FRP
are displayed in Figure 5, derived from the case in the literature
(Wang et al., 2017). The active and reactive loads demand of the
distribution network is shown in Figure 6. All cases studies are
performed on a PC with Inter Core 7 CPU (3.40 GHz) and 24.0 GB
RAM with the commercial solver GUROBI 10.0.1 for MILP
problems.

To demonstrate the effectiveness of the proposed model, two
numerical case are designed here. In both cases, a total of
1,000 historical scenarios of PV’s output are utilized, and the
mix-norm constraint is applied with a confidence level of 90%.

1) Case 1: Aggregator provide FRP without considering the security
of the distribution network after FRP delivery.

2) Case 2: The proposed model.

To demonstrate the effectiveness of the data-driven model in
adjusting offers conservativeness, two additional case are designed
based on Case 2.

1) Case 3: The mix-norm constraint is applied with a confidence
level of 80%.

2) Case 4: The mix-norm constraint is applied with a confidence
level of 100%.

4.2 Distribution network security analysis

The energy-bidding and FRP-offering costs of the prosumer
aggregator for different cases are shown in Table 1. Each type cost of
Case 1 is better than that of Case 2. When comparing the energy
costs of Case 1 and Case 2, it is clear that without considering the
security constraint related to FRP delivery, the prosumer aggregator
often prioritizes higher FRP benefit over energy costs. Obviously
ignoring the security constraint related to FRP delivery will cause the
prosumer flexibility value to be overestimated and affect the energy
bidding decision.

The voltage magnitude of each bus for Case 1 and Case 2 at time
slot 18:00 are shown in Figure 7. It can be seen that the voltage
magnitude of bus 12–17 in case 1 violates the low bound after the
delivery of the downward FRP. On the contrary, the voltage
magnitude of each node in Case 2 remains within the safety
boundary after the delivery of the downward FRP. In addition, it
can be seen that the voltage magnitude boost is less in Case 2 than in

FIGURE 6
Load curve.

TABLE 1 Bid-offer decision of prosumer aggregator in case 1 and case 2.

Case Energy
cost/$

FRP
revenue/$

Expected total
cost/$

1 71.432 61.404 10.028

2 69.532 43.257 26.274

FIGURE 7
Cases results of voltage magnitudes.

FIGURE 5
Energy, FRT market prices.
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Case 1 after delivering the upward FRP, because the quantity of FRP
in Case 2 is less than that of Case 1.

The power flow of each line of Case 1 and Case 2 in time slot 12:
00 are shown in Figure 8. The congestion occurs in Case 1 after the
delivery of downward FRP in line 1–3. On the contrary, there is no line
occurring congestion after delivering the downward FRP. The power of
each line does not change significantly in both cases after delivery of
upward climbing because the quantity of upward FRP accounts for too
small a proportion of the distribution network load demand.

The above analysis provides that the prosumer aggregator can
offer FRP while enable distribution network security.

The full-time energy and FRP bidding/offering strategies of
prosumer 2 in Case1 and Case2 are shown in Figure 9 and
Figure 10, respectively. Comparing Figure 5 and Figure 6, it can
be found that both energy and FRP cater better to the price and the
peak-valley characteristics of the distribution grid load to minimize
the operating cost. Case 2 purchases energy and offers downward

FRP in periods 7 and 9, which differ significantly from Case1.
Between the time periods 07:00–22:00, downward FRP of Case 2 is
significantly less than that of Case 1, which is caused by the
constraints related to post-delivery FRP.

4.3 Economic and conservative analysis

The costs of prosumer aggregator for Case3-4 are shown in
Table 2. The expected total cost of the bidding/offering strategy
increases with increasing confidence due to the consideration of
greater distributional uncertainty, which makes the strategy more
conservative and therefore less economical. It reflects the adjustment
of the conservativeness of the strategy by the subjective risk-averse of
the prosumer aggregator in the FRP-offer.

5 Conclusion

This paper addresses the problem of providing FRP by a
prosumer aggregator within distribution network security. For
this purpose, a data-driven bi-level stochastic optimization
approach is proposed to model the process of active interaction
between the prosumer and the DNO for decision making. The
stochastic decision problem of adjustable conservativeness of the
prosumer aggregator is solved by a data-driven scenario approach.
The portfolio problem of the prosumer aggregator and the problem

FIGURE 8
Case results of line congestion.

FIGURE 9
Case results of energy-bid od prosumer 2.

FIGURE 10
Cases results of FRP-offer of prosumer 2.

TABLE 2 Bid-offer decision of prosumer aggregator in cases 2–4.

Case Energy
cost/$

FRP
revenue/$

Expected total
cost/$

3 69.532 42.771 26.761

2 69.532 43.257 26.274

4 69.532 55.700 13.831
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of security-constrained economic dispatch of the distribution
network are solved in the upper-level and lower-level model,
respectively.

The simulation results show that through the optimal
scheduling of aggregator, prosumers can actively purchase
energy from DNO and provide the upward and downward FRP,
and ensure that the distribution network does not occur voltage
violations and line congestion. The prosumer aggregator is able to
take advantage of the peak-valley characteristics of prices and
adjust the conservativeness of its decisions based on confidence
levels. The reduction in FRP available to the prosumer due to
distribution network security constraints leads to higher costs for
the prosumer.
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Nomenclature

KKT Karush-Kuhn-Tucker

CAISO California Independent System Operator

FRP flexible ramping product

ACOPF alternative current optimal power flow

DNO distribution network operator

PV photovoltaic

Variables

πs scenario probability

pvbs,i,t energy bidding of prosumer

rvb,us,i,t , r
vb,d
s,i,t

upward/downward FRP offering of prosumer

evbs,i,t state of energy of prosumer

pdsos,t energy requirement of DNO

rdso,us,t , rdso,ds,t
upward/downward FRP offering of DNO

ppvs,j,t quantity of energy of DRE

rpv,us,j,t , r
pv,d
s,j,t

quantity of upward/downward FRP offering of DRE

λdlmp,p
s,i,t , λdlmp,u

s,i,t , λdlmp,d
s,i,t

DLMP of energy, upward/downward FRP for prosumer

Parameters

π0 initial probability

ηc energy conversion efficiency

γpt , γ
u
t , γ

d
t

day-ahead energy price, upward/downward FRP price

ppv,f ores,j,t
forecast day-ahead generation

ν1 voltage magnitude of the reference bus

Indices and sets

s,Ns index/set of scenario

S number of clustering scenarios

i,w,N index/set of prosumer

t,T index/set of time

j, J index/set of DRE

B set of nodes

b,w index of node

k,K index/set of branch
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