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This work develops microgrid dispatch algorithms with a unified approach to
model predictive control (MPC) to (a) operate in grid-connected mode to
minimize total operational cost, (b) operate in islanded mode to maximize
resilience during a utility outage, and (c) utilize weighting factors in the grid-
connected objective function to preserve islanded capability (on-site fuel
reserves, battery state of charge) to enhance resilience in the potential event
of an unplanned grid outage. Resilience is defined using microgrid survivability
(probability to serve 100% of critical load), autonomy (duration of time to serve
100% of critical load), and unserved energy (curtailed critical load) for a target of
7 days during a grid outage. The developed methods are applied to a military
microgrid with 2,250 kW of diesel generation, 3,450 kW/13,800 kWh battery
storage, and 16,479 kW of solar photovoltaics. Sensitivity analysis is conducted
to determine the selection of weighting factors to have the best impact on three
developed objectives: grid-connected economics, islanded resilience, and carbon
intensity. Optimal weighting factors reduce operating costs by 0.1%, increase
survivability by 3.9%, increase autonomy by 16.7%, reduce unserved energy by
94.1%, and increase carbon intensity by 2.5%.
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1 Introduction

Climate change has increased the frequency and intensity of natural disasters (Cane
et al., 1997; Anderson and Bausch, 2006) and caused significant damage to electrical
infrastructure from severe weather (Bryan, 2012; Kerr, 2011; Stott, 2016) and forest fires
(Sunrun Inc, 2019; Stelloh, 2019). The damage can create large-scale and prolonged outages
with harmful impacts through loss of essential services such as hospitals, climate control, and
transportation (Anderson and Bell, 2012), and may include increased impacts to rural
communities and marginalized populations (UNISDR, 2015). Anthropogenic stressors such
as physical and cyber-attacks (Chen et al., 2011; Zhu et al., 2014), lack of maintenance
leading to equipment failure (Venkatasubramanian and Yuan, 2004), and human error
(Muir and Lopatto, 2004) can also result in grid outages. These situations are characterized as
high-impact, low-frequency (HILF) events that motivate attention to improve the resilience
of critical power systems to anticipate, adapt, and recover from disturbances (Raoufi et al.,
2020). These HILF events cause perturbations in the voltage, grid frequency, current flows,
and rotating generator torque that can cascade beyond the immediate location of the fault
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and affect adjacent infrastructure and regions. Mitigation strategies
to address these stability issues include distributed control strategies
(Lee et al., 2016; Ayar et al., 2017), generator control circuits (Ellithy
et al., 2013; Derafshian and Amjady, 2015), fast-acting power
electronics devices (Ma et al., 2016; Yu et al., 2018), and
distributed energy resources (DERs) and microgrids (Krismanto
et al., 2021). Areas of the grid with high amounts of renewable
generation and DERs may be at higher risk to outages if the
variability in their output power is not complemented with
advanced power electronics or sufficient operating reserves from
storage, controllable loads, and dispatchable generation
(Ogunjuyigbe et al., 2016; Khani et al., 2012; Dulău et al., 2014;
Resource and MW Fault Induced Solar Photovoltaic, 2017).

These centralized approaches to grid stability are increasingly
effective but still cannot guarantee resilience to critical loads if
transmission and distribution lines are severed. Critical circuits at
hospitals, military bases, cellular towers, refrigeration, data centers,
and other uses are often equipped with an uninterruptable power
source (UPS) and generators to maintain power in the event of a grid
outage. It is less common to have a coordinated set of renewables,
storage, generators, and load control that serves an entire
distribution network behind-the-meter as a district or campus-
scale microgrid (Zheng, 2022; Energy Government and US,
2022). Grid-connected microgrids are an existing technology with
a rapidly growing adoption trend to provide resilience to customers
requiring power in the event of a grid outage. The U.S. Department
of Energy (DOE) defines a microgrid as “a group of interconnected
loads and distributed energy resources within clearly defined electrical
boundaries that acts as a single controllable entity with respect to the
grid. A microgrid can connect and disconnect from the grid to enable
it to operate in both grid-connected or island-mode” (Ton and Smith,
2012).

Microgrids can provide value in grid-connected mode and in
islanded mode. During grid-connected operation, microgrids can
provide cost-savings through dispatch of DERs to reduce energy
purchases, reduce demand charges, and shift power use to lower cost
time-of-use (TOU) periods (Thompson et al., 2016; Nelson and
Johnson, 2020; Palma-Behnke et al., 2011; Miao et al., 2013).
Additional cost savings can be secured by revenue curation
through participation in wholesale energy and ancillary service
markets by selling electricity at real-time prices. Federal Energy
Regulatory Commission (FERC) Order No. 2222 enables DERs and
DER aggregators to participate in real-time markets (Cano, 2020).
These microgrid assets require coordination to gain the most value,
with typical approaches to economic dispatch including logic-based
control (Theerthamalai and Maheswarapu, 2010; Ton and Smith,
2012), non-linear optimization (Bhattacharjee and Khan, 2018),
dynamic systems theory (Xiaoping et al., 2010), multi-objective
optimization (Meiqin et al., 2010), and Model Predictive Control
(MPC) (Nelson and Johnson, 2020; Nelson et al., 2020). This paper
uses MPC to dispatch energy assets amidst uncertainty (e.g.,
variability in renewable generation and loads) (Rawlings and
Mayne, 2009) and enhance the technical and economic metrics
for microgrids (Bruni et al., 2014). MPC uses historical data and
real-time forecasting of future system states to identify optimal
decisions for asset dispatch that satisfy the goals of an objective
function such as least cost operation, highest resilience, or lowest
carbon (Nelson and Johnson, 2020; Nelson et al., 2020). MPC uses

static asset parameters and time series data such asset status, critical
and controllable load status, solar insolation and wind speed,
ambient air temperatures, retail energy and demand charge costs,
and market pricing signals to determine the optimal operation of a
microgrid (Nelson and Johnson, 2020; Xiaoping et al., 2010; Meiqin
et al., 2010). Renewables and energy storage are increasingly
common in microgrids, and help organizations meet carbon
reduction goals while also reducing electricity bills and enhancing
resilience (Theerthamalai and Maheswarapu, 2010; Bhattacharjee
and Khan, 2018).

Microgrids provide resilience to critical loads in the event of
electric utility outages (Energy Government and US, 2022; Moretti
et al., 2019; Rawlings andMayne, 2009; Nelson et al., 2020). Back-up
power is presently common to maintain critical loads for public
health services, fire and police, andmilitary bases, to name a few, and
recent changes in technology, business models, and regulation are
opening the door for microgrids to displace back-up generators. Not
only this, but distribution system infrastructure can be damaged
during utility outages, causing sizable economic impacts and
motivating microgrids to enhance system stability in the larger
grid (Energy Government and US, 2022).

The increasing focus on resilience has not yet led to a single
commonly accepted definition or quantifiable metric for resilience.
The term generally refers to the ability of a system to withstand HILF
events (Raoufi et al., 2020; Bhusal et al., 2020). Some examples of
quantitative metrics include Customer Average Interruption
Duration Index (CAIDI), Loss of Load Frequency (LOLF), Loss
of Load Probability (LOLP), asset reliability, loss of power to critical
public service loads such as emergency management and hospitals,
power quality, and economic losses from a grid outage (Raoufi et al.,
2020; Khan and Iravani, 2007; Fu et al., 2015; Bhusal et al., 2020). In
this paper, the metric of survivability is used from (Nelson et al.,
2020) to describe the resilience of microgrid operations as a
probability that critical load on the system will be served during
islanded conditions. The quantitative development is similar to
LOLP, which uses uncertainties in load forecasts to determine
the probability that the peak load on a power system will exceed
the generating capacity (Gambirasio, 1976). Survivability, however,
uses failure rates of generating assets and considers all possible
system configurations to determine the probability that generation
can meet the critical load. Autonomy is also used to describe the
duration of time themicrogrid canmeet critical loads while islanded.
Unserved energy to critical loads is reduced and eliminated through
microgrid control operations. These metrics are used to evaluate the
resilience of MPC approaches developed in this paper.

The objective function for microgrid operation is different in
grid-connected mode (economic optimization) and in islanded
mode (resilience optimization) and asset dispatch must adapt
accordingly. For example, a microgrid’s primary objective may be
to provide 7-day autonomy and therefore microgrid assets will be
dispatched to ensure energy is available for an islanding event
(Johnson, 2022). Conversely, a commercial project may have an
interest in electricity cost savings resulting in higher energy market
participation and energy and demand charge reduction during peak
TOU periods (Wood, 2022). Motivation exists, especially for large
customers, to optimize both resilience and economic impacts of
microgrid operations. Most current literature does not investigate
the interrelated influence of grid-connected microgrid economic
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dispatch with the resilience of the microgrid during islanded
operation, instead, those operating modes are isolated and
approached separately (Nelson and Johnson, 2020; Nelson et al.,
2020; Jafari et al., 2018). Efforts in this paper show the benefits for
co-optimization of grid-connected and islanded algorithms.
Minimal to no research exists on how economic optimization for
grid-connected operations affects resilience optimization for
islanded operations. This paper attempts to address this gap by
coupling microgrid dispatch approaches presented in (Nelson and
Johnson, 2020; Nelson et al., 2020), in which MPC and Markov
Chains are used to dispatch microgrids and quantify resilience
during islanded operations, respectively. By coupling the
methods of grid-connected and islanded dispatch of microgrids,
the study shows the intersectional relationship between cost-
minimized grid-connected cost and resilience-maximized
dispatch during unpredictable utility outages. Additionally, this
work adopts the use of objective function weighting factors from
(Nelson et al., 2020) for islanded dispatch and applies them to grid-
connected dispatch methods in (Nelson and Johnson, 2020) in an
effort to improve islanded resilience while maintaining low
operational cost. This work identifies that microgrid generator
and battery usage is the key factor in managing this intersectional
relationship of cost and resilience, and presents a method to
optimize usage for the best overall outcome. Contributions of
this work to literature include:

• Introduces objective functions and demonstrates how
microgrid control decisions in grid-connected and islanded
mode can be coordinated to advance overall economic and
resilience goals;

• Demonstrates and studies the relationship between grid-
connected operational cost and islanded resilience of
microgrid operations;

• Enhances resilience quantification by incorporating solar
photovoltaic (PV) reliability into microgrid survivability
calculations;

• Identifies control parameters to optimize microgrid behavior
with respect to grid-connected economics and islanded
resilience, with an associated quantification of
environmental impact to meet carbon reporting goals.

2 Materials and methods

2.1 Microgrid dispatch formulations

The MPC approach implements a Mixed-Integer Linear
Programming (MILP) optimization formulation with static and
time series data to calculate optimal dispatch decisions. MPC
uses a receding time horizon of static length that contains
relevant forecasted data (electrical load, solar PV output, grid
electricity pricing signals) to make informed decisions for current
operations and plan future operations. The first control action
within the time horizon is the executed action and is selected
with consideration of potential system states in the remaining
time steps of the MPC time horizon. One time step is advanced
and the MPC is repeated, and this process is continued through the
duration of the simulation timeframe.

A Python-based simulation environment was developed to
simulate dispatch of microgrid assets in both grid-connected and
islanded modes. It is crucial to dispatch microgrid assets to improve
economics without sacrificing microgrid survivability, or at least,
evaluating the impact of grid-connected dispatch decisions on
microgrid survivability in the event a grid outage occurs at any
time. These tertiary control signals are used to optimize minute-to-
minute performance of a microgrid over the course of a longer-term
planning period. The sub-second switching sequences and
associated changes in primary controls of power hardware
required to transition from grid-connected to islanded mode are
outside the scope of this study. Figure 1 shows the process flow to
simulate operations of a microgrid and how data is shared between
grid-connected and islanded operating modes.

2.2 Grid-connected dispatch

Grid-connected dispatch algorithms control use of batteries,
fossil fuel generators, and solar PV to reduce utility costs by lowering
energy charges, lowering demand charges, and generating revenue
through energy sales. The grid-connected objective function seeks to
minimize operating costs consisting of a generator term, battery
term, utility energy import/export term, and demand charge term.
Generator operating cost is represented by fuel cost, Cfuel

gen .
Generator efficiency is represented by the term ηgen (calculated
using ρgen × LHVfuel). Fixed and variable generator O&M costs
could be added to the grid-connected objective depending on
contractual agreements with the developer to account for hourly
labor costs or runtime maintenance cost. In this case, however,
maintenance is annualized at a fixed cost and does not vary with
operations, and thus is not captured in the objective function.
Variable battery O&M costs, COM,v

bat , are incurred through
charging and discharging of battery stacks. The variable battery
O&M captures the cost of the degradation of the battery stacks
through cycling, and represents the cost to replace them over the
system lifetime. Solar PV fixed and variable O&M costs are not
included in the objective function due to annualized O&M cost by
contractual agreement and hence do not affect dispatch. In some
other cases, variable solar O&M could be captured in the O&M to
account for replacement cost of solar PV and could influence
whether PV is curtailed. Utility per-unit energy purchase cost
and sales price are represented as Cb

grid,t and Cs
grid,t, respectively,

and change based on the TOU period according to the time step, t.
The time step variable increments forward in time from the start of
the simulation period to the end of a simulation period, for example,
from 1 to 8,760 for a year-long simulation with hourly time steps.
The variable Cs

grid,t is set to the utility’s annual purchase rate for
overgeneration and is typically the average annual wholesale energy
rate, as assumed here. For the economic optimization in a net
metering agreement, the generated solar PV is used to offset
energy purchases at the retail tariff rate, which is higher than the
wholesale energy rate that would be counted as revenue if excess is
sold to the utility. There is a potential, in this formulation, to
undervalue the net metering benefit because the MPC time
horizon is only 7 days long and does not consider moving excess
energy across longer time horizons such as a month or a year which
are typical for net metering billing cycles.
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A “time step hourly fraction”, τ, is included in the formulation to
account for the time resolution that simulations occur, and can be
adjusted for 5-min, 15-min, 1-h, or other time step increments.
Across each TOU period in the utility purchase agreement, peak
demand charges are calculated by the product of the TOU demand

price, Cdem
grid,n, with the period’s peak kW demand, Pgrid,n

max, and
require an additional summation term to consider the demand
charges across all TOU types included in the simulation time
horizon (off-peak, mid-peak, on-peak, etc.). The TOU demand
charges are scaled in the objective function by dividing total

FIGURE 1
Process flow for simulating unified dispatch of microgrid operations.
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hours in the simulation time horizon, Th, by total hours in the billing
period, Tbp, to reflect demand charges that only represent a portion
of the billing period. Eq. (1) shows the objective function to
minimize operating costs for grid-connected microgrid dispatch.
The set of constraints that govern microgrid behavior and
interaction between decision variables in the optimization
formulation are given in Appendix A.

J ≔∑Th

t�0
⎡⎢⎢⎣ ∑

∀gen
Cfuel

gen × Pgen,t × ηgen( ) + ∑
∀bat

COM,v
bat × Pd

bat,t( ) + COM,v
bat × Pc

bat,t( )( )⎛⎝

+ Cb
grid,t × Pb

grid,t − Cs
grid,t × Ps

grid,t( )⎞⎠

× τ + Th

Tbp
∑NTOU

n�1
Cdem

grid,n × Pgrid,n
max⎤⎦ (1)

2.3 Islanded microgrid dispatch

The islanded objective function in Eq. (2) consists of three
primary terms with associated weighting factors ωload, ωbat, and
ωfuel to prioritize the corresponding term load, battery, and fuel
reserve during optimization. The signs of each term indicate that
energy stored in the battery is maximized, and fuel consumption
and curtailed load are minimized. This formulation maximizes
total reserve capacity from generators and batteries to mitigate
effects of a potential asset failure, as initially demonstrated in
(Nelson et al., 2020). Weighting factors sum to one, with ωload set
nearly equal to one (0.999999999) to heavily disincentivize load
shedding, with ωfuel set to 0.0 and ωbat set to 0.000000001 as
determined by sensitivity analysis in (Nelson et al., 2020) to
maintain battery reserve capacity and improve microgrid
survivability.

J ≔∑Th

t�0
ωfuel ∑

∀gen
Pgen,t × ηgen( ) − ωbat

Pd,max
bat

Ebat
max

( ) ∑
∀bat

Ebat,t( )⎡⎢⎢⎣
+ ωload

Pslack
t

t+1( )]
(2)

2.4 Grid-connected microgrid dispatch
unified with islanded resilience goals

This work improves microgrid control algorithms developed in
(Nelson and Johnson, 2020) by incorporating islanded resilience goals
within the grid-connected economic dispatch shown in Eq. (3).
Weighting factors were added in the objective function to
prioritize the dispatch of energy assets where ωgrid, ωgen, and ωSOC

are the factors for utility import, generator fuel consumption, and
battery SOC, respectively. The sum of the three weighting factors
equals 1, and factors that have higher values result in decreased
utilization of that asset. The effect of weighting factor selection is
explored by sensitivity analysis to identify which combination of
weights will enhance islanded resilience with no or negligible effect on
grid-connected economics. Multi-objective optimization is not used

here in order to directly preserve the concepts and metrics of grid-
connected economics and islanded resilience.

J ≔∑Th

t�0
ωgrid

⎡⎢⎢⎣ ∑
∀gen

Cfuel
gen × Pgen,t × ηgen( )⎛⎝

+ ∑
∀bat

COM,v
bat × Pd

bat,t( ) + COM,v
bat × Pc

bat,t( )( )
+ Cb

grid,t × Pb
grid,t − Cs

grid,t × Ps
grid,t( )⎞⎠

× τ + Th

Tbp
∑NTOU

n�1
Cdem

grid,n × Pgrid,n
max

+ ωgen ∑
∀gen

Pgen,t × ηgen( ) − ωSOC∑
∀bat

Pd,max
bat

Ebat
max

× Ebat,t( )⎛⎝ ⎞⎠⎤⎥⎥⎦ (3)

3 Evaluation metrics

Microgrid survivability is a quantitative metric to describe the
probability that a microgrid’s critical load will be served. The
following formulation uses statistical analysis and Markov Chains
in (Nelson et al., 2020) with extensions to account for solar PV
reliability. Matrices represent potential operating states of microgrid
assets (generators, batteries, solar PV arrays) and reflect probabilities
of the microgrid configuration to transition to a possible future
operating state. From these probabilities, additional matrices are
calculated to represent the ability to serve 100% of the critical load
during the outage.

The state vector (size [N× 1]), expresses probabilities of each
combination of microgrid assets being able to serve the critical load.
The state vector length calculation, shown by Eq. (4), represents the
total possible combinations of DERs. Microgrid survivability in the
first time step of the islanded time horizon is found by the binomial
distribution in Eq. 5 to model the probability of starting the
islanding event with each possible combination of DERs. In this
probability function, the statistical availability of each DER is
considered where αgen, αbat, and αsol are the percent
availabilities of generators, batteries, and solar arrays,
respectively, based on up-time and failure-to-start rates (Nelson
et al., 2020; Ericson, 2019; Mrowca, 2011; EOS, 2023b). The
previous work described in (Nelson et al., 2020) calculates
microgrid survivability with an assumption that solar PV
generators are 100% reliable (i.e., λsol� 0 and αsol� 1). This
assumption neglects solar PV outages from inverter failures,
ground faults, broken fuses and breakers (Abunima and Teh,
2020; Colli, 2015; Golnas, 2012), or physical failures due to
mechanical load or extreme weather such as heat or hail
(Skoczek et al., 2008). Here, this assumption is adapted to more
accurately reflect solar PV operation. The total numbers of diesel
generators, battery stacks, and solar arrays are reflected by Ngen,
Nbat, and Nsol, respectively. The numbers of generators, battery
stacks, and solar arrays available in each combination of operating
states is reflected as g, b, and s, respectively.

N � Ngen + 1( ) × Nbat + 1( ) × Nsol + 1( )−1 (4)
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p 0, g, b, s( ) � Ngen

g
( ) × 1 − αgen( )g × αgen( )Ngen−g( )
×

Nbat

b
( ) × 1 − αbat( )b × αbat( )Nbat−b( )

×
Nsol

s
( ) × 1 − αsol( )s × αsol( )Nsol−s( )

(5)

A transition matrix, [T], can then be calculated to represent the
probability of the microgrid to change from a current operating state
to a potential future state with all possible combinations of DER
assets, and reflects if the number of available DERs changes due to
probabilistic failure. Each index of the transition matrix represents
the probability of the current system’s operating state to change to
another operating state by accounting for the probability that any
asset will fail over that time period. This probability calculation is
shown in Eq. (6) where g, b, and s are the number of generators,
battery stacks, and solar PV arrays, respectively, in the “current”
operating state, with variables g′, b′, and s′ as the number of assets in
the “next” operating state, and λgen, λbat, and λsol representing the
failure rates of DERs with units of # of failures

hour . The time step hourly
fraction, τ, accounts for the simulation time resolution, for example,
τ � 1 represents hourly time steps, τ � 0.5 represents 30-min
intervals, and τ � 0.25 represents 15-min intervals. Note that if a
microgrid does not contain a certain type of asset (e.g.,Nbat � 0), the
corresponding term in the probability function will be set equal to
one so that term does not influence the remaining parts of the
equation set.

p g,g′,b,b′,s,s′( ) � g

g′( ) × 1 − λgen × τ( )( )g × λgen × τ( )g−g′( )
×

b

b′( ) × 1 − λbat × τ( )( )b × λbat×τ( )b−b′( )
×

s

s′( ) × 1 − λsol × τ( )( )s × λsol × τ( )s−s′( )
(6)

Columns of the transition matrix represent all possible
combinations of assets in the “current” operating state and the
rows contain combinations of assets for possible “future” operating
states. As a result, the transition matrix is an upper triangular matrix
with size [N × N] due to the assumption that assets are not added to
the microgrid during the simulation period. Eq. (7) describes the
transition matrix and the dependency of each index term in relation
to Eq. (6).

T[ ] �

1 p 1, 0, 0, 0, 0, 0( ) . . . p Ngen, 0,Nbat, 0,Nsol, 0( )
0 p 1, 1, 0, 0, 0, 0( ) . . . p Ngen, 1,Nbat, 0,Nsol, 0( )
..
. ..

.
1 ..

.

0 . . . 0 p Ngen,Ngen,Nbat,Nbat,Nsol,Nsol( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)
Eq. (8) shows the calculation for microgrid power generation at

time, t, demonstrating a worst-case scenario approach by only
considering the minimum output of assets based on operational
and technical limitations. Generator contribution to total generation
capacity is shown by the onsite fuel availability in gal, Fav

t , fuel
conversion rate of the generators in gal/kWh, ρgen, and power
capacity of all microgrid generators, Pgen. Battery contributions

are reflected by the energy contained in all battery stacks, Ebat,
minimum energy storage capacity of a battery stack, Ebat

min, the
efficiency of a battery stack, ηbat, and the maximum discharge of a
battery stack, Pd,max

bat . Solar PV contribution is reflected by the total
output of solar units, Psol. Eq. (9) expresses the probability of
microgrid survival with g, b, and s available generators, battery
stacks, and solar arrays at time, t, and applies for all state vectors in
the time horizon, with the initial state vector using the probability as
shown in Eq. (6) that uses DER failure-to-start rates. Those
calculations following the initial state are based on the previous
operating states and operating failure rates. The microgrid state
vector of an islanding event beginning at time t can be calculated by
performing matrix multiplication of the transition matrix with the
microgrid state vector from the previous time step, as shown in Eq.
(10). Eq. (11) expresses microgrid survivability in each time step by
summing entries in the state vector at each time step.

Ptot
t � g × min

Favt
g

ρgen × τ
,Pgen

⎛⎝ ⎞⎠+ b

× min
Ebat − Ebat

min

τ
× ηbat,P

d,max
bat( ) + s × Psol( )

(8)

sh t, g, b, s( )� 0, Ptot
t t( )<Pcrit

t

p t, g, b, s( ),Ptot
t t( )≥Pcrit

t
{ (9)

Sh,t+1[ ] �
sh t+1,0,0,0( )
sh t+1,1,0,0( )

..

.

sh t+1,Ngen,Nbat,Nsol( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

1p 1,0,0,0,0,0( ) . . . p Ngen,0,Nbat,0,Nsol,0( )
0p 1,1,0,0,0,0( ) . . . p Ngen,1,Nbat,0,Nsol,0( )
..
. ..

.
1 ..

.

0 . . . 0 p Ngen,Ngen,Nbat,Nbat,Nsol,Nsol( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

sh t,0,0,0( )
sh t,1,0,0( )

..

.

sh t,Ngen,Nbat,Nsol( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Sh t( ) � ∑Ngen

∀g
∑Nbat

∀b

∑Nsol

∀s
sh t,g,b,s( ) (11)

Four technical metrics, three economic metrics, and one
environmental metric are used to evaluate the performance of
microgrid control algorithms. Technical metrics include
survivability, autonomy, fuel consumption, and unserved energy.
Economic metrics include microgrid O&M cost, revenue from
energy sales, and net operational cost. The environmental metric
is carbon intensity. Eq. (12) expresses the average probability of
surviving a microgrid islanding event over a simulation where Q is
the distribution of outage starts and qt is the probability of an
islanding event starting in time step t of a simulation. A uniform
distribution is assumed for qt to indicate an islanding event has
equal probability to start at any time step in the simulation time
period, Tsim.
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Sh t, Q( ) � ∑Tsim

t�0
qtSh t( ) (12)

Eq. (13) represents autonomy by summing the slack binary
variable, Bslack

t , across each time step in the time horizon to measure
the time where critical load is fully met. Autonomy,A, represents the
duration of time that 100% of the critical load can be served during
an islanding event.

A � ∑Th

t�0
Bslack
t × τ where

Bslack
t � 1,Pslack

t � 0
Bslack
t � 0,Pslack

t ≠ 0
{ (13)

Eq. (14) shows the calculation for total fuel consumption during
an islanding event. Fuel consumption is the product of the generator

fuel consumption rate with the generator power output and time
step hourly fraction.

Ftot
gen � ∑Th

t�0
∑Ngen

g�0
ρgen × Pgen,t × τ⎡⎢⎢⎣ ⎤⎥⎥⎦ (14)

Eq. (15) shows the calculation for unserved energy. The total
unserved energy during an islanding event is found by summing the
curtailed load for the duration of the islanding event.

Eunserved � ∑Th

t�0
Pslack
t × τ (15)

Eq. (16) expresses the microgrid O&M cost for all DER assets.
As discussed in Section 2.1, the sources of microgrid O&M can be

TABLE 1 Operational characteristics of battery storage (EOS, 2023a).

Round-trip
efficiency (%)

Self-discharge (fraction of
capacity lost per hour)

C-rate Min/Max
SOC (kWh)

Unit
capacity (kWh)

Lifetime
(cycles)

Up-time
(%/year)

75 0.01 C/4 0/600 600 5,000+ 98

TABLE 2 Asset financial data for optimal sizing and selection for hybrid microgrid.

Technology Capital cost Annual O&M cost Fuel Variable O&M

Generator $750/kW (ESTCP, 2019) $9.33/kW/year (ESTCP, 2019) $2.97/gal -

Solar PV $2,100/kW (Fu et al., 2018) $17.04/kW/year (Fu et al., 2018) - -

Battery $436/kWh (EOS, 2023a) $3.96/kWh/year (EOS, 2023a) - $0.0436/kWh (ESTCP, 2019)

FIGURE 2
Daily critical load and total load.
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influenced by contractual agreements for O&M. In this work,
microgrid O&M cost includes fuel use by generators and battery
degradation. In some use cases, microgrid O&M can also include
fixed and variable generator O&M and fixed and variable solar
PV O&M. Eq. (17) expresses microgrid revenue from energy sales
to the utility. Energy sales use a net metering assumption where
the compensation price is set equal to the purchase price of
energy, and if energy sales exceed energy purchases in a billing
period, market wholesale rates are used to credit the microgrid

for energy sales. Eq. (18) expresses net operating costs, which
include dispatch from DERs and utility import energy and
demand costs. These costs a reduced by revenue from energy
sales.

COM � ∑Tsim

t�0
⎡⎢⎢⎣ ∑

∀gen
Cfuel

gen × Pgen,t × ηgen( ) + ∑
∀bat

COM,v
bat × Pd

bat,t( )(
+ COM,v

bat × Pc
bat,t( ))⎤⎥⎥⎦ × τ

(16)

FIGURE 3
Daily peak solar PV output.

FIGURE 4
Utility rate structure for Summer.
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Cs
grid �∑Tsim

t�0
Cs

grid,t × Ps
grid,t( ) × τ (17)

Cnet � COM + ∑Tsim

t�0
Cb

grid,t × Pb
grid,t( ) × τ + Th

Tbp
∑NTOU

n�1
⎛⎝

Cdem
grid,n × Pgrid,n

max( )⎞⎠ − Cs
grid

(18)

Eq. (19) shows the calculation of total carbon intensity, βtot,
associated with energy consumption from utility import and local
power generation from diesel generators. Both terms use emissions
factors to represent the rate at which carbon is emitted per unit of
energy generated by each source. The utility import emissions factor
uses publicly available data from the California Independent System
Operator (CAISO). Monthly emissions data (California ISO, 2023) and

utility energy supply (Blanke, 2019) provide the average annual
emissions factor, ϵgrid. The generator emissions factor, ϵgen, uses the
rate of carbon emissions from diesel fuel (The Climate Registry, 2022)
and generator efficiency to equate carbon emissions from diesel
generators.

βtot � ∑Tsim

t�0
Pb
grid,t × ϵgrid( )+ ∑

∀gen
Pgen,t × ϵgen( )⎛⎝ ⎞⎠ × τ (19)

4 Microgrid case study

4.1 Microgrid specification data

Amilitary installation distribution system is used as the microgrid
case study given increasing interest from the United States Office of

FIGURE 5
Utility rate structure for Winter.

TABLE 3 Optimal sizing of microgrid assets.

Generator units Total generator
capacity (kW)

Solar PV
area (m2)

Total solar PV
capacity (kW)

Battery
units

Total battery storage
capacity (kWh)

3 2,250 109,862 16,479 23 13,800

TABLE 4 Summary of sensitivity analyses.

ωgrid ωgen ωSOC ωgen ωSOC ωgen ωSOC ωgen ωSOC ωgen ωSOC ωgen ωSOC

0 0 1.0 0.2 0.8 0.4 0.6 0.6 0.4 0.8 0.2 1.0 0

0.2 0 0.8 0.2 0.6 0.4 0.4 0.6 0.2 0.8 0 - -

0.4 0 0.6 0.2 0.4 0.4 0.2 0.6 0 - - - -

0.6 0 0.4 0.2 0.2 0.4 0 - - - - - -

0.8 0 0.2 0.2 0 - - - - - - - -

1.0 0 0 - - - - - - - - - -
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the Secretary of Defense (OSD) to maintain resilience and load-
serving capability during utility islanding events (Johnson, 2022).
Sensitive information is anonymized.

4.2 Microgrid assets

Potential microgrid assets included diesel generators, battery storage,
and solar PV. A Cummins 750 kW diesel generator was used with an
assumed constant fuel conversion rate, ρgen, of 0.0727 gal/kWh
calculated from a linear regression (R2� 0.9962) from manufacturer
data (Power, 2007). The lower-heating value, LHVfuel, of diesel fuel is
37.65 kWh/gal (ESSOM, 2016). Onsite fuel storage,Fav

0 , is assumed to be
25,000 gallons (ESTCP, 2019). Per contractual agreement, fuel is
resupplied on the first day of each month, and any fuel used for
grid-connected operation reduces fuel reserves available at the start of
an islanding event until the next resupply occurs. Metrics for up-time,
failure to start (FTS), and mean time to failure (MTTF) rates were taken
to be 99.9%, 0.02%, and 1700 h, respectively (ESTCP, 2019). Battery
storage operating characteristics are shown in Table 1 for an EOS zinc
aqueous technology (EOS, 2023a). The starting battery SOC at the
beginning of simulations,Einit

bat , is assumed to be 50% to reflect regular use
of the battery for energy shifting and peak shaving, rather than being
simply used for backup power.

Financial data for capital cost, O&M cost, and fuel are provided in
Table 2 for all asset types (ESTCP, 2019). Asset capital cost and annual
O&M cost are included in the microgrid sizing study because they
affect project payback period and sizing economics, but are not

included in the dispatch study and main results demonstrated in
this work because they do not affect dispatch economics. An average
annual inflation rate of 2.2% and nominal investment discount rate of
6.0% were assumed for a 20-year investment period (ESTCP, 2019).
Tax incentives include the U.S. federal investment tax credit (ITC)
that permits 30% credit towards the developer’s or operator’s taxes,
and the Modified Accelerated Cost Recovery System (MACRS) of
5 years to accelerate tax deductions for renewable asset depreciation
(Sherlock, 2018). These incentives were applied to the capital costs of
solar PV and battery storage. To be eligible for the ITC, battery
charging was restricted to renewable sources of generation when grid-
connected.

4.3 Military installation load profile and solar
production

The daily peak and daily average values are shown in Figure 2 for the
critical load, Pcrit

l,t , () and total load, Pcrit
l,t + Pctrl

l,t . Microgrid critical load
(load served during islanded operation) is 26.7% of total installation load.
During microgrid islanding, non-critical loads are isolated from
microgrid generation assets via manual switchgear operations by
installation personnel. Modeling of other types of curtailable loads is
outside the scope of this work. Figure 3 shows the daily peak solar PV
generation,Pfor

sol,t, using the cost-optimal solar PV array capacity, withAC
output simulated in National Renewable Energy Laboratory’s (NREL)
SAM tool (ESTCP, 2019) using local solar irradiance weather data, panel
performance and orientation, and inverter and balance of system losses.

FIGURE 6
Sensitivity analysis showing annual economic results. The case with the lowest net operating cost is outlined in white.
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4.4 Utility costs

Energy costs differ for summer (June through September) and
winter (October through May). Figures 4, 5 show the TOU rate
structure for energy, Cb

grid,t, and demand charges, Cdem
grid,n, for

summer and winter seasons, respectively. This use case operates
on a net metering assumption, so all energy sales are credited
back on the utility bill at the same rate as the purchase cost. The
utility wholesale rate is applied to bill credits
(Cs

grid,t � 0.02839/kWh) in which energy sales exceed the
energy purchased.

4.5 Optimal microgrid portfolio

Asset sizes were selected by optimizing for lowest cost grid-
connected operations using XENDEE (Stadler and Naslé, 2019;
Pecenak et al., 2019). XENDEE is a cloud computing software
that jointly performs techno-economic optimization and power
systems analysis. XENDEE’s economic optimization tool selects,

FIGURE 7
Sensitivity analysis of O&M costs. Two cases with values above
the z-axis are indicated with black arrow and text, which are truncated
for better visualization of the graph topology. The case with the lowest
net cost is outlined in white.

FIGURE 8
Sensitivity analysis of utility cost components and energy sales
revenue. The case with the lowest net cost is outlined in white.
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sizes, places, and dispatches energy assets within a microgrid
portfolio using MILP. XENDEE minimizes total annual costs of
providing energy services to a customer considering system energy
demand, regulatory requirements, and energy procurement costs,
including monthly fixed utility costs, volumetric electricity
purchases, demand charges, annualized technology investment
costs, and technology O&M costs during grid-connected and
islanding operations. The optimization formulation accounts for
technical operating constraints of the considered technologies (e.g.,
charging/discharging limits of battery stacks) and environmental
conditions (e.g., solar irradiance) that influence the capacity of
onsite renewable generation. Grid-connected economic dispatch
in XENDEE was completed using the local utility tariff that
consists of monthly fixed charges, distribution charges, on-peak
energy charges, mid-peak energy charges, off-peak energy charges,
monthly peak demand charges, and taxes.

XENDEE yielded the cost-optimal asset types and capacities
listed in Table 3. This microgrid portfolio is used in remaining
sections to exercise the proposed unified dispatch algorithm for
grid-connected economic operation and islanded resilience
operation.

5 Results

Sensitivity analysis was used to evaluate the effect of weighting
factors for the grid-connected objective function (Eq. (3)). Each

weighting factor was varied from zero to one in steps of 0.2, keeping
the summation of the three factors (ωgrid,ωgen,ωSOC) equal to one.
Weighting factors are summed to one so each term in the objective
can be prioritized as parts of a whole (fraction of 100%). The step-
size of 0,2 is selected to limit the number of simulations to be
conducted, allowing for clarity and manageability of results. The
resulting 21 combinations of weighting factors shown in Table 4
omit repeat combinations. For each sensitivity combination, an
annual simulation was completed of grid-connected dispatch to
equate economic results, fuel use, battery SOC profile, and carbon
intensity data. The resulting fuel and battery SOC capacities for each
time step of the year were then used as starting states for islanded
dispatch, thereby simulating an unexpected grid outage for every
hour of the year. Sections 5.1–5.3 demonstrate and analyze results
for grid-connected operational costs, islanded resilience, and
environmental impact, respectively. Section 5.4 summarizes the
selection of optimal weighting factors for microgrid control to
jointly prioritize goals for grid-connected and islanded operation.

5.1 Grid-connected operation and
economics

Figure 6 shows the net operational cost for each combination in
the sentivity analysis comprised of grid energy costs, grid demand
costs, microgrid O&M costs, fuel costs, and grid energy sales.
Inclusion of the grid weighting factor (i.e., ωgrid > 0) in the unified

FIGURE 9
Sensitivity analysis islanded autonomy. The case with the lowest net cost is outlined in white.
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dispatch formulation results in an average reduction of $665,200 in
net operating cost across sensitivity combinations where ωgrid > 0.
Optimizations using any non-zero grid weighting value showed
minimal variation in net operating cost (0.22%), indicating that
selection of weighting factors above ωgrid� 0 have similar
economic savings. For this case study, the lowest net operating
cost occurs when ωgrid� 0.2, ωSOC� 0.8, and ωgen� 0 by delivering
reductions in utility costs and battery O&M costs that offset higher
diesel fuel costs, relative to other combinations of weighting factors.
Figure 7 graphs the contributing factors to net operating cost
including the annual fuel cost, battery O&M cost, and total O&M
cost for each sensitvity combination. The trends across the fuel and
battery O&M graphs show there is an inverse relationship as the
priortization of onsite fuel (ωgen) changes: When ωgen ranges from
zero to one (red to blue bars in Figure 7), the cost of fuel consumed
during grid-connected operation decreases by $586,066 due to
increased weighting of fuel consumption in the objective funciton;
Subsequently, as ωgen ranges from zero to one, battery O&M cost
increases by $115,983 due to batteries being dispatched to replace
diesel generation and preserve onsite fuel. The total O&M plot is
relatively flat across simulations where ωgen > 0 due to the trade-off in
dispatch of energy assets (and associated O&M costs) as weighting
factors shift priorities in the objective function. This indicates that the
selection of weighting factors has little impact on total O&Mcost even
though larger changes are observed in the individual contributors to
total cost. Figure 8 illustrates changes to utility energy costs, demand

costs, and total utility costs for all combinations of sensitvity
weighting factors. Energy costs are the largest contributor to total
utility cost (>90%) with the reminder comprised of demand costs.
Revenue was also calculated, and the revenue from energy sales
contribute is larger when ωgen and ωSOC are greater than greater than
zero. Revenues from energy sales contribute to the flattening shape of
net operating cost in Figure 6, making the choice of the grid weighting
factor insignificant for all positive non-zero values.

5.2 Islanded resilience

Figures 9, 10 show the average islanded microgrid autonomy and
average unserved energy during islanded operations, respectively,
computed across simulations of a 168-h duration grid outage
starting at every time step in a year. In Figure 9, cases where
ωSOC� 0 (ωgen > 0 and ωgrid > 0) demonstrate the worst performing
autonomy across the sensitivity analysis, and in cases when ωgen� 0
(ωSOC > 0 and ωgrid > 0) or when all weights are >0 the autonomy is
improved by an average of 22.4% and 28.1%, respectively. This
demonstrates that when resilience terms are included in the grid-
connected objective, unified dispatch preserves energy from DERs
(i.e., battery storage and generator fuel) and improves ability to survive
utility outages and power critical loads. Figure 10 shows that unserved
energy (curtailed power) is significantly higher when either ωSOC or
ωgen are zero because batteries and generators are more freely

FIGURE 10
Sensitivity analysis unserved energy during islanded operation. One case with unserved energy above the range of the z-axis is shown by a black
arrow and text. The case with the lowest net cost is outlined in white.
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dispatched to meet the grid-connected load for cost reduction
purposes, resulting in less stored energy and onsite fuel stored at
the start of an islanding event. Autonomy worsens further when
ωSOC� 0 and ωgrid� 0 because generator dispatch becomes the only
contribution to the grid-connected objective, which does preserve fuel
but results in greater dispatch of batteries and less stored energy to
meet power needs of the critical load across long time periods.
Similarly, when ωSOC� 1 and other terms are zero, the generator is
heavily dispatched and fuel reserves are significantly depleted, leading
to greater amounts of load shedding during an islanding event.
Figure 10 shows an average reduction of 98.7% in unserved energy
when both ωgen and ωSOC have values greater than zero, resulting

from the increased availability of onsite fuel and battery storage at the
start of the islanding event. Adding these resilience terms to a
traditional economic optimization formulation creates solutions
that result in higher availability during islanded operations.
Minimal variation is observed in both autonomy (0.91%) and
unserved energy (1.32%) when both ωgen and ωSOC are included in
the objective function.

Figure 11 shows the average survivability for islanded operation
across all sensitivity cases. Survivability decreases over time with respect
to the increasing statistical likelihood for assets to fail and diesel fuel
reserves to become depleted. The optimization weight sensitivity cases
are compared to the baseline inwhichωgrid � 1,ωgen� 0, andωSOC � 0

FIGURE 11
Sensitivity analysis islanded survivability. The case with the lowest net cost is indicated by the dotted-line.
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(i.e., no resilience considerations during grid-connected operation).
Figure 11 shows that for each ωgrid plot, cases in which ωSOC � 0
deplete the battery and result in the lowest survivability, except in the
case in which ωgrid � 0, ωgen � 0, and ωSOC � 1 yields a lower
survivability for longer outages as fuel reserves are depleted on
average over the simulated year. Including the generator term and
storage term in the objective function (setting both ωgen and ωSOC to
non-zero values) always yields an improvement in survivability over the
baseline case that only considered grid energy costs (ωgrid � 1) in the
grid-connected objective function. These results parallel those shown in
Figure 10 and clearly illustrate that the set of sensitivity cases with all
three weights set to positive non-zero values yield similarly favorable
results for all three resilience metrics.

5.3 Environmental impacts

Figure 12 shows carbon intensity associated with each sensitivity
case. Carbon intensity comprises emissions from utility power

purchases and generator power output. Any excess solar exported
to the utility is not counted as a credit to reduce carbon intensity.
The utility import emission factor and diesel generator emmision
factor are 0.241 mTCO2

MWh (California ISO, 2023; Blanke, 2019;
0.701 mTCO2

MWh The Climate Registry, 2022), respectively. The hybrid
microgrid reduces carbon intensity by using solar PV at the time of
production and storing excess solar PV generation to displace grid
purchases and generator use. The variations in carbon intensity
shown in Figure 12 are attributed to diesel generators being
dispatched to minimze grid demand charges and preserve a high
battery SOC. As ωgen increases, generators are dispatched less
frequently, resulting in an overall reduction of carbon intensity
because the emissions factor for generators is higher than the
emissions factor for grid imports. This behavior occurs regardless
of the grid weighting factor. The worst carbon intensity is observed
when both ωgen � 0 and ωgrid� 0, matching the expected conceptual
understanding that emissions will be highest when generator and
grid terms are excluded from the cost-minimizing objective function
with no penality against using those carbon-producing sources. As

FIGURE 12
Sensitivity analysis carbon intensity results. The case with the lowest net cost is outlined in white.

TABLE 5 Summary of weighting factor combinations for illustrative cases.

ωgrid ωgen ωSOC Net operating
cost ($)

Autonomy
(hr)

Unserved
energy (kWh)

Ending
survivability (%)

Carbon intensity
(mT C02)

0.4 0.2 0.4 6,141,938 166.6 16.7 89.6 14,382

0.4 0.4 0.2 6,142,203 165.3 36.3 90.9 14,282

0.6 0.2 0.2 6,143,295 165.3 36.2 90.9 14,280
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ωSOC increases, stored energy in the battery bank is increasingly
reserved for a potential unplanned islanding event, and this behavior
deceases the frequency in which batteries are used to store excess
solar PV and dispatch excess to serve loads, resulting in a higher use
of carbon-producing sources. Results show that reductions in
carbon intensity are best achieved for weighting factor
combinations that prioritize ωgrid and ωgen and set ωSOC � 0.

5.4 Optimal microgrid operations

Results in Table 5 summarize the subset of sensitivity cases that
yielded similarly favorable results. For improved economics, any
non-zero value for ωgrid produced minimal change in annual net
operating cost relative to sensitivity cases with ωgrid � 0 that were an
average of 11% higher in cost. For improved islanded resilience,
results showed that autonomy, unserved energy, and survivability
improved with the selection of all three weighting factors to be non-
zero, meaning that all three terms in the objective function were
active. Results of the case ωgrid � 0.4, ωgen � 0.2, and ωSOC � 0.4 in
Figure 13 show a higher survivability over nearly all hours of a 168-h
(7-day) outage, resulting from the optimization algorithm focus on

preserving battery storage for the event of an outage. These results
complement other results in Table 5. Carbon intensity is slightly
higher and net operating cost slightly lower, relative to the other two
cases in Table 5. Results shown in Table 6 compare this case to the
baseline case in which ωgrid � 1. Operational behavior arising from
the objective function with all three terms shows an improvement in
net operating cost, autonomy, unserved energy, and survivability,
with a small increase in carbon intensity from increased use of the
generator to reduce grid demand charges and maintain higher
battery SOC.

6 Conclusion

This work developed a simulation environment and tertiary
controls approach for microgrid economic dispatch and resilience
dispatch for grid-connected and islanded operations, respectively.
Results demonstrated that including resilience terms in the
optimization formulation for grid-connected economic dispatch
produced more favorable resilience results, and also yielded a
modest improvement in economic results. Optimal selection of
weighting factors used in the microgrid control strategy resulted

FIGURE 13
Survivability of weighting factor combinations selected to illustrate best case operations for combined grid-connected economics and islanded
resilience.

TABLE 6 Summary of operational characteristics for optimal control parameters compared to baseline.

ωgrid ωgen ωSOC Net operating
cost ($)

Autonomy
(hr)

Unserved
energy (kWh)

Ending
surviability (%)

Carbon production
(mT C02)

Baseline 1.0 0.0 0.0 6,150,293 142.8 281.2 85.7 14,032

Optimized 0.4 0.2 0.4 6,141,938 166.6 16.7 89.6 14,382

Percent Difference (%) −0.1% +16.7% −94.1% +3.9% +2.5%
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in islanding operational results with a 3.9% improvement in
survivability, a 94.1% reduction in unserved energy, and a 16.7%
improvement in autonomy, while also delivering a reduction in
annual net costs of 0.1%, at the expense of a small increase in carbon
intensity of 2.5% relative to the baseline case.

This approach is generalizable for use as a planning tool or during
real-time operational control to reflect changing conditions where
weighting factors can be selected and tuned to match microgrid goals
relative to the situation (e.g., depleted fuel reserves, asset outage,
estimated grid outage duration). It may also be beneficial to chose
different weighting factors to consider operating conditions such as
volitile fuel prices, such as those seen following the global COVID-19
pandemic or conflict in Ukraine (US Energy Information
Administration, 2022), utility rate changes, and various types of
technology O&M agreements. Microgrid performance during
islanded conditions can be improved by tuning weighting factors
that maximize battery SOC, and hence, improve the ability of the
microgrid to meet loads in the event of a generator outage, solar PV
outage, or depleted fuel reserves. While this work demonstrated an
undesirable increase in carbon intensity in its results, the methods of
weighting factor selection can be applied to prioritize this objective.
Future work with the developed methodology can include application
across different use cases with results used to compare and contrast
weighting factor selection for varying priorities. Additionally, the
algorithm can incorporate inputs for planned and unplanned
maintenance of DERs to demonstrate how the controls approach
can be used to schedule maintenance with least risk to critical loads.
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Appendix A

Mathematically optimized dispatch of microgrids requires
analytical formulations to describe the behavior of the system

and the intersectional relationship of decision variables. Table A1
includes the full list of constraints for grid-connected and islanded
dispatch.

TABLE A1 Microgrid dispatch constraints.

Name Constraint Type of dispatch

Battery energy limit Ebat
min ≤Ebat,t ≤Emax

bat for t� 0, ...,Th and bat� 0, . . . ,Nbat Grid-connected,
Islanded

Battery initial capacity Ebat,0 � Einit
bat for bat� 0, . . . ,Nbat Grid-connected,

Islanded

Battery energy Ebat,t � Ebat,t−1 + ((ηbat × Pc
bat,t−1) − 1

ηbat
(Pd

bat,t−1 + Pself
bat )) × τ for t� 1, ...,Th and bat� 0, . . . ,Nbat

Grid-connected,
Islanded

Battery charge “Big M″ Pc
bat,t ≤Bbat,t × M for t� 0, . . . , Th and bat� 0, . . . , Nbat Grid-connected,

Islanded

Battery discharge “Big M″ Pd
bat,t ≤ (1−Bbat,t)×M for t� 0, . . . , Th and bat� 0, . . . , Nbat Grid-connected,

Islanded

Battery power charge limit Pc
bat,t ≤P

c,max
bat for t� 0, . . . , Th and bat� 0, . . . , Nbat Grid-connected,

Islanded

Battery power discharge
limit

Pd
bat,t ≤Pd,max

bat for t� 0, . . . , Th and bat� 0, . . . , Nbat Grid-connected,
Islanded

Generator power limit
maximum

Pgen,t ≤Pgen
max × Bgen,t for t� 0, . . . , Th and gen� 0, . . . , Ngen Grid-connected,

Islanded

Generator power limit
minimum

Pgen,t ≥Pgen
min × Bgen,t for t� 0, . . . , Th and gen� 0, . . . , Ngen Grid-connected,

Islanded

Generator fuel use Pgen,t

ηgen × LHVfuel
× τ ≤Fav

t for t� 0, . . . , Th and gen� 0, . . . , Ngen andfuel � 0, . . . , Nfuel
Grid-connected,

Islanded

Solar PV curtailment 0≤Psol,t ≤P
for
sol,t for t� 0, . . . , Th and sol� 0, . . . , Nsol

Grid-connected,
Islanded

Generator ramp-up rate Pgen,t−1 − Pgen,t ≤P
ramp,up
gen for t� 1, . . . , Th and gen� 0, . . . , Ngen Grid-connected,

Islanded

Generator ramp-down rate Pgen,t − Pgen,t−1 ≤P
ramp,down
gen for t� 1, . . . , Th and gen� 0, . . . , Ngen

Grid-connected,
Islanded

Islanded controllable load Pctrl
l,t � 0 for t� 0, . . . , Th and l� 0, . . . , Nload Islanded

Islanded power balance Pgen,t + (Pd
bat,t − Pc

bat,t) + Psol,t − Pcrit
l,t + Pslack

t � 0

for t� 0, . . . ,Th and gen� 0, . . . , Ngen and bat� 0, . . . , Nbat and sol� 0, . . . ,Nsol and l� 0, . . . ,Nload

Islanded

Grid buy “Big M″ Pb
grid,t ≤Bgrid,t × M for t� 0, . . . , Th Grid-connected

Grid sell “Big M″ Ps
grid,t ≤ (1 − Bgrid,t) × M for t� 0, . . . , Th Grid-connected

Grid-connected power
balance

Pgen,t + (Pd
bat,t − Pc

bat,t) + Psol,t + (Pb
grid,t − Ps

grid,t) − (Pcrit
l,t + Pctrl

l,t )� 0

for gen� 0, . . . , Ngen and bat� 0, . . . , Nbat and sol� 0, . . . , Nsol and l� 0, . . .Nload

Grid-connected

TOU peak demand Pgrid,n
max ≥Pb

grid,t for t� 0, . . . , Th and n� 1, . . . , NTOU when tbTOU(n)≤ h(t)≤ teTOU(n) Grid-connected
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Nomenclature

Symbol Units Description

A hr Duration of time a microgrid can serve 100% of
critical load

αbat % Battery stack availability

αgen % Generator availability

αsol % Solar photovoltaic availability

βtot mTCO2 Total carbon intensity from serving microgrid load

b N/A Number of batteries stacks available as a subset of the
total number of batteries stacks

b′ N/A Number of batteries stacks available during the next
system state

bat N/A Set of all battery stacks in microgrid

Bslack
t

N/A Binary variable to describe when load is 100% served
(1) or is curtailed (0) at simulation time step

Bbat,t N/A Binary variable to describe if a battery stack is
charging (1) or discharging (0) at simulation time step

Bgen,t N/A Binary variable to describe if a generator is outputting
power (1) or idle (0) at simulation time step

Bgrid,t N/A Binary variable to describe if the point of common
coupling is importing power (1) or exporting power
(0) at simulation time step

COM,v
bat

/kWh Variable operational cost of charging or discharging
battery stack

Cdem
grid,n

/kW Per-unit demand cost for time-of-use period

COM $ Total annual operations and maintenance cost

Cb
grid, t

/kWh Per-unit cost to buy energy from the utility at
simulation time step

Cs
grid,t /kWh Per-unit price to sell energy to the utility at simulation

time step

Cs
grid $ Total annual revenue from energy sales

Ctotal $ Total operating cost

Cnet $ Net operating cost

Cf uel
gen

/kWh Per-unit fuel cost to operate generator

gen mTCO2/MWh Emissions factor for generator energy

grid mTCO2/MWh Emissions factor for utility energy

Ebat
min kWh Minimum energy capacity in a battery stack

Ebat kWh Total instantaneous energy capacity in all battery
stacks during islanded operation

Ebat,t kWh Instantaneous energy capacity in battery stack at
simulation time step

Ebat
max kWh Maximum energy capacity in battery stack

Einit
bat kWh Initial battery energy at the start of the time horizon

Eunserved kWh Total unserved energy for the microgrid during a
utility islanding event

ηbat % Battery stack round-trip efficiency

ηgen % Generator efficiency

Ftot
gen gallon Total fuel consumed during a utility islanding event

Fav
t gallon Onsite fuel available at simulation time step

f uel N/A Set of all generator fuel types in microgrid

g N/A Number of generators within a subset of total
generators

g′ N/A Number of generators available in the next system
state

gen N/A Set of all generators in microgrid

h(t) N/A Hour of the day at simulation time step

LHVfuel kWh/gallon Lower heating value of diesel fuel

l N/A Number of loads within a subset of total loads

λbat failure/hr Failure rate of battery stacks

λgen failure/hr Failure rate of generators

λsol failure/hr Failure rate of solar photovoltaics

M N/A Any large number to be used in the “Big M” method,
1,000,000 in this work

N N/A Total possible combinations of assets available in
microgrid portfolio

n N/A Set of all time-of-use periods in a microgrid rate
structure

Nbat N/A Total number of battery stacks in microgrid portfolio

Nfuel N/A Total number of fuel types in microgrid portfolio

Ngen N/A Total number of generators in microgrid portfolio

Nload N/A Total number of loads in microgrid portfolio

Nsol N/A Total number of solar photovoltaics sources in
microgrid portfolio

NTOU N/A Number of time-of-use periods in utility rate structure

ωbat % Objective function weighting factor for energy from
battery stacks during islanded operation

ωf uel % Objective function weighting factor for energy from
fuel during islanded operation

ωload % Objective function weighting factor for energy from
unserved critical load during islanded operation

ωgen % Objective function weighting factor for energy from
onsite fuel reserve preservation during grid-connected
operation

ωgrid % Objective function weighting factor for total
operational cost during grid-connected operation

ωSOC % Objective function weighting factor for energy from
battery stack state of charge preservation during
grid-connected operation

Pc
bat,t kW Charging power of battery at simulation time step

Pd
bat,t

kW Discharging power of battery at simulation time step

Pc,max
bat kW Maximum power charge of battery stack

Pd,max
bat

kW Maximum power discharge of battery stack

Pself
bat

kW Discharge power of battery due to thermal energy loss

Pgen kW Total generator capacity
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Pgen,t kW Output power of generator at simulation time step

Pgen
max kW Maximum output power of generator

Pgen
min kW Minimum output power of generator

Pramp,up
gen kW/hr Generator ramp-up rate limit

Pramp,down
gen

kW/hr Generator ramp-down rate limit

Pcrit
l,t kW Power consumption of critical load at simulation time

step

Pctrl
l,t

kW Power consumption of controllable load at simulation
time step

Pgrid,n
max kW Peak demand during time-of-use period

Psol kW Total solar photovoltaics capacity

Psol,t kW Output power of solar photovoltaics at simulation
time step

Pf or
sol,t

kW Forecasted solar PV at simulation time step

Ptot
t kW Total available generation capacity at simulation time

step

Pb
grid,t

kW Import power from the utility at simulation time step

Ps
grid,t kW Export power to the utility at simulation time step

Pslack
t

kW Curtailed load during islanded operation at
simulation time step

ρgen gallon/kWh Fuel conversion rate of the generator

Q N/A Statistical distribution of islanding events over the
period of simulation

qt % Probability of an islanding event to occur at
simulation time step

s N/A Number of solar photovoltaics sources within a subset
of total solar photovoltaics sources

s′ N/A Number of solar photovoltaics sources available in the
next system state

sol N/A Set of all solar arrays in microgrid

Sh(t) % Microgrid survivability at simulation time step

Sh % Average microgrid survivability over the period of
simulation

t N/A Current time step in the simulation time horizon

T N/A Transition matrix of for islanded operations

Tbp hr Total number of time steps in the utility billing period

Th hr Total number of time steps in the simulation time
horizon

Tsim hr Total number of time steps in the simulation

tbTOU N/A Beginning time step in a time-of-use period

teTOU N/A Ending time step in a time-of-use period

τ hr/time step Time step hourly fraction

ucbat,t N/A Binary variable to describe unit commitment of
battery charging at simulation time step

udbat,t N/A Binary variable to describe unit commitment of
battery discharging at simulation time step

ugen,t N/A

Binary variable to describe unit commitment of
generator at simulation time step

usol,t N/A Binary variable to describe unit commitment of solar
photovoltaics at simulation time step
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