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A revision of blade
element/momentum theory for
wind turbines in their high-thrust
region

David H. Wood* and Narges Golmirzaee

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada

Modern horizontal-axis wind turbines producemaximumpower at an optimal tip
speed ratio, λopt, of around 7. This is also the approximate start of the high-thrust
region, which extends to runaway at λR ≈ 2λopt where no power is produced and
the thrust is maximized. The runaway thrust coefficient often exceeds unity. It is
well known that the conventional axial momentum equation must be modified
whenever the thrust coefficient approaches unity, but most past modifications
have no sound physical basis. Our main revision is to include the “wake vorticity”
term in the axial momentum balance. This term is related to blade element drag
and acts to decouple the thrust from the induced axial velocity when it becomes
large near the edge of the rotor as the runaway is approached. The wake vorticity
term dominates the axial momentum equation in these conditions and leads to
estimates of power and thrust that are consistent with the limited amount of
high-quality experimental data in the high-thrust region.
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1 Introduction

The blade element theory (BET) divides the blades of a horizontal-axis wind turbine
into a contiguous stack of radial elements, typically 30–50 in number. They are assumed to
behave as airfoils whose lift and drag give the element’s thrust and torque.These are balanced
against the axial and angularmomentum changes in the annular streamtube flowing over the
element derived from momentum theory (MT). The combined blade element/momentum
theory (BEMT) is the workhorse of wind turbine aerodynamics. BEMT is described in
all aerodynamics text books and is widely used in the initial, multidimensional design of
blades, for which the potentially more accurate computational fluid dynamics modeling is
prohibitively costly in computer time, e.g., Sessarego et al. (2015).

Wind turbine performance is usually considered in terms of the power and thrust
coefficients, CP and CT, respectively, as functions of the tip speed ratio, λ =ΩR/U0, where
Ω is the blade angular velocity, R is the tip radius, and U0 is the wind speed. BEMT is
generally held to provide accurate estimates of CP and CT in comparison to wind tunnel
and field tests, as shown in Spera (1994),Wood (2011), and Schmitz (2020). It is well known,
however, that the relation between the induced axial velocity at the rotor, u, and in the far-
wake, u∞, u = (1+ u∞)/2 in the one-dimensional version of the momentum theory starts to
break down somewhere near the tip speed ratio for maximum power, λopt. This is the start of
the high-thrust region: as λ increases further, CT approaches and sometimes exceeds unity,
the maximum value allowed by conventional momentum theory.The high-thrust region for
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wind turbines ends at the runaway tip speed ratio, λR, where CP = 0
and CT = CTR is usually maximized if λR is large (Note that the
subscript “R” denotes runaway values, whereas the script “R” is the
rotor radius). Since modern turbines have λopt ∼ 7− 9, the high-
thrust region normally spans high values of λ: as a rule of thumb
λR ≈ 2λopt.This approximate relation holds for multiblade windmills
where λopt ∼ 1, as shown in Figure 5 of John et al. (2023), and
the experiments of Krogstad and Adaramola (2012) and Krogstad
and Eriksen (2013) that we consider below, for which λopt ∼ 6.
Furthermore, it is normal for CT to increase monotonically in this
region when λopt is large.

Pratumnopharat and Leung (2011) and Schmitz (2020)
documented a large number of modifications that have been made
to the relationship between CT and u for the high-thrust region.
It is our contention that these modifications are ad hoc, have little
or no physical basis, and rely on questionable experimental results
obtained a century ago, as explained in Section 2.7 of Wood (2011).
Unfortunately, there have been very few subsequent experiments
on the high-thrust region that provide sufficient detail for BEMT
revision. One of the few that does was by Limacher et al. (2022),
who measured the thrust and all three velocities in the wake of
a small model turbine by particle image velocimetry, for values
of λ above and below λR = 7.9. They proposed a revision to the
conventional momentum equation that will be described later.
The other measurements in this category were by Krogstad and
Adaramola (2012) and Krogstad and Eriksen (2013), who provided
power, thrust, and limited wake measurements for a model wind
turbine with λopt ≈ 6 and λR ≈ 12. Their results will be compared to
the revised BEMT developed here.

Our further contention is that BET remains valid in the high-
thrust region, but the conventional angular and axial momentum
equations are incomplete. The most important omission is in the
latter equation, which should contain a term related to the “wake
vorticity.” This term balances the BE drag on stationary turbines
but increasingly balances the BE lift (and thrust) as λ increases. It
also decouples the approach to the runaway from the relationship
between u and u∞. Our revised BEMT equations require no specific
relation between the two velocities.

The wake vorticity term was identified in the computational
study of the flow through two-dimensional, equi-spaced cascades
of airfoils by Golmirzaee and Wood (2023). Cascade elements are
subjected to the same forces as wind turbine blade elements and
have the sameMT terms except for those due to expansion, rotation,
and the vorticity shed from the blades as a consequence of the
radial gradient of the bound vorticity. The wake vorticity term is
introduced in the following section after the following preliminary
observations on the induced velocitiesu andw in the circumferential
direction. One of the key simplifications of MT is that the wake
is characterized by circumferential averages of u and w. When the
number of blades, N, is finite and λ is small, the velocities at the
elements, which determine the lift and drag, may differ from their
streamtube averages.This difference is usually accommodated by the
use of “finite blade functions:” Fu = u/ub and Fw = w/wb, where the
subscript “b” denotes a value at the blades. Nearly all BEMT codes
for wind turbines use Prandtl’s tip loss factor, FP to approximate
Fu and Fw. Some of the inaccuracies of using FP are documented
in Wood et al. (2016) and Wood (2021), while Wood et al. (2021)
reviewed the numericalmethods that produce accurate estimates for

Fu and Fw. Wood et al. (2016) showed that Fu,Fw→ Fp and Fp→ 1
as λ increases, suggesting that azimuthal variations become less
important in the high-thrust region.

Our revisions to BEMT apply at all values of λ including zero,
but we concentrate on the high-thrust region, where BEMT is
most challenged. It is further noted that John et al. (2023) found
conventional BEMT accurately predicted λR for a model of a low-
speed, multi-bladed water pumping windmill where λR ≈ 2 and the
runaway CTR increased from 0.1 to 0.5 as N increased from 3 to 24.
The implication is that the present revisions are not critical at low λ.

Our major aim is to establish the necessity to include the wake
vorticity term in the axial momentum equation.This may not be the
only change to MT necessary for accurate calculation of the high-
thrust region, but we show that it is likely to be a very important one.
We argue that more experimental information near the runaway is
required to complete the revision of BEMT.

The rest of this paper is laid out as follows. Section 2 describes
BEMT and our revision. We use a simple version of the revision
in Section 3 to compute the power and thrust as the runaway
is approached and compare these to wind tunnel measurements
by Krogstad and Adaramola (2012) and Krogstad and Eriksen
(2013) on a model three-bladed rotor. Section 4 focuses on further
requirements for completing the revision of BEMT and the
conclusions.

2 Blade element/momentum theory

Using the definitions of the velocity at the blade element, Urel,
and the angle ϕ from Figure 1, the balance between the gradient of
thrust, dT/dr, and the axial momentum flux for an N− bladed rotor
at radius r is given as follows:

dT
dr
= 1
2
NρU2

relc(Cl cosϕ+Cd sinϕ) = πρ(4w2 + 4λrw+ v2 − u2) r,

(1)

where ρ is the density of air and c is the blade element chord.
Cl and Cd are the lift and drag coefficients, respectively. They are
functions of the angle of attack, α, which—according to Figure 1—is
dependent on ub and wb. The term on the right involving u, w,
and the radial velocity v is the axial momentum flux in the annular
streamtube intersecting the N elements. It is important to note that
w is the value at the blades, whereas the value immediately behind
them is 2w. An overbar denotes a circumferential average over the
streamtube for a quadratic quantity: overbars are not used on u
or w on their own as their circumferential variation is important
only in distinguishing values at the blades, which are subscripted as
defined previously. u and w denote streamtube averages throughout
this study. The last term, involving v2 − u2, is called the “expansion”
term because

∫
∞

0
(v2 − u2) rdr = 0, (2)

which shows the expansion term re-distributes, rather than
generates, T. Wood and Limacher (2021) showed that the expansion
term gives the thrust due to the pressure acting on the expanding
streamtubes upwind of the rotor. Eq. 2 ensures that v and u have the
same magnitude at the rotor plane. Thus, significant flow expansion
must occur when u is large.
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FIGURE 1
Blade element at radius r, the forces, and velocities. The wind direction
is up. L is the element lift which is normal to Urel, and D is the drag,
parallel to Urel. Ω is the angular velocity of the blades and θ is the pitch
angle. The other symbols are defined in the text.

The usual thrust equation fromMT ignores the expansion term
and contains terms in u instead ofw on the right side of Eq. 1, which
is the Kutta–Joukowsky form of the momentum flux. It, along with
Eq. 2, was derived by Limacher and Wood (2021) using a control
volume (CV) of radius much larger than R, with the inlet far upwind
of the rotor where u = v = w = 0, and the outlet immediately behind
the blades. Eqs 1, 2 hold for any amount of wake expansion at any
λ. Their relation to the usual thrust equation is easily derived by
ignoring circumferential variations and the expansion term. Wood
and Hammam (2022) showed that the high−λ circumferentially
uniformwakes of optimal rotors satisfy “helical symmetry:” pu = wr
where p = (1− u)/(w/r+ λ) is the pitch of the helical vorticity.
Applying these equations turns the right side of Eq. 1 (when v2 − u2
is ignored) into the usual form involving u:

4πw (w+ λr) r→ 4πu (1− u) r, (3)

which leads to a less general axial momentum equation than Eq. 1.
The equation for the torque, Q, derived from the same CV has

the similar and familiar form:

dQ
dr
= 1
2
NρU2

relc(Cl sinϕ−Cd cosϕ) r = 4πρ(w− uw) r2. (4)

For steady operation, the power extracted from the wind is the
product of the rotor torque, obtained by summing Eq. 4 over all
elements, and Ω: in the non-dimensional form, CP = λCQ, where CQ
is the standard torque coefficient.

Wewill assume that the BE parts of Eqs 1, 4 involving the lift and
drag do not need revision. The validity of this “airfoil assumption”
is difficult to assess. Simulations of the 2D cascade flow suggest it
is conservative, because the lift:drag ratio for a cascade element is
slightly greater than that on the corresponding airfoil, Golmirzaee
andWood (2023), but we know of no other direct assessment of the
assumption for wind turbines.

We now revise the right side of Eqs 1, 4 based on the cascade
simulations of Golmirzaee and Wood (2023). The revision is
different from that of Limacher et al. (2022), who simplified the
equations by assuming the shed vorticity was strain-free. They
did not make a direct connection to blade element drag, and no
consideration was given to the angular momentum equation. Their

model and its relation to the current revision are considered in the
following sections. For an infinite cascade of identical and equi-
spaced airfoils, the BE or left sides of Eqs 1, 4 are unchanged except
for the removal of N. For a cascade element, Golmirzaee and Wood
(2023) show that Eq. 1 becomes

1
2
U2
relc(Cl cosϕ+Cd sinϕ) = 2Sw2 +∫

S/2

−S/2
(1− u)Ωzydy, (5)

when the density is removed. The cascade element spacing, S,
is related to the circumferential distance between blade elements
by S = 2πr/N, and there is no term corresponding to λrw in
Eq. 1 as the cascade is stationary. Ωz is the (transverse) vorticity,
distinguished from the angular velocity by its subscript, and y is the
normal co-ordinate, whose origin is the blade quarter-chord. The
integral, which we call the “wake vorticity” integral or term, has no
counterpart in the current form of the BEMT equation.

Eqs 1.5 and 1.6 of Liu et al. (2015) and Eq. (9.1.20) of Wu et al.
(2015) give important constraints on wake vorticity:

S/2

∫
−S/2

Ωzdy = 0 and
S/2

∫
−S/2

(1− u)Ωzdy = 0. (6)

The former, which relies on the applicability of the slender flow
approximation Ωz ≈ −∂u/∂y, prevents Ωz from contributing to the
bound vorticity of the blade because it forces the area integral
of Ωz over the wake to be zero. The latter is exact for any wake
independent of the validity of the slender flow approximation. It
has two important consequences. First, the choice of origin for y
has no effect on the wake vorticity integral. Second, it removes
the integral containing Ωz from the y−direction force balance and,
by implication, from the angular momentum equation for BEMT
because the integrand is (1− u)Ωzx. From here on, the phrase
“wake vorticity term” will be used only for the integral in Eq. 5
or the corresponding integral in the axial momentum equation for
BEMT.The exact y−direction cascade equivalent of Eq. 4without the
density is as follows:

1
2
U2
relc(Cl sinϕ−Cd cosϕ) = 2S(w− uw) , (7)

showing that the cascade analysis retains the non-linear terms
from Eqs 1, 4. Golmirzaee and Wood (2023) found that the spatial
variations in the velocities caused only small differences between uw
and uw or between w2 and w2. It is reasonable, then, to assume that
significant circumferential variations in u andw for BEMTarise only
through the shed vorticity, as explained previously for Fu and Fw.
Furthermore, if Fu and Fw are close to unity, then it is reasonable
to also ignore any circumferential variation in u2, w2, and uw in the
high-thrust region.

For wind turbines, the wake vorticity is largely radial and is
associated with the element drag. The shed vorticity arises from
radial gradients in the bound circulation and lies predominantly
in the radial direction. The wake expansion will cause the shed
vorticity to have a radial component, so themain difference between
wake and shed vorticity is that the latter can follow the local
streamlines and so be force-free, whereas the former cannot. A
further distinction is that an ideal rotor has shed but no wake
vorticity, whereas a real rotor can have a wake without shed vorticity
in the unlikely event of constant bound circulation along the blades.
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2.1 Revision of the axial momentum
equation

Aside from comparing Eqs 1–5, the incompleteness of the right
or MT side of Eq. 1 can be shown by the following thought
experiment involving a symmetrical airfoil, such as NACA 0012,
at zero incidence. This airfoil is also a stationary, two-bladed wind
turbine (with no center body and infinite R), and so BEMT applies.
As the airfoil has no lift, w = 0 in Eq. 1 and the drag (at ϕ = π/2)
is not balanced. Golmirzaee and Wood (2023) found that the
wake vorticity term in Eq. 5 balanced the element drag for the
corresponding situation in a cascade. Liu et al. (2015) showed the
same balance for airfoils in their Eq. 1.8.

Golmirzaee and Wood (2023) reduced the wake vorticity term
to the usual integral involving u for the drag, D, on anybody in an
unbounded two-dimensional flow:

D = ρU2
0∫
∞

−∞
u (1− u)dy, (8)

but this derivation requires the validity of the slender-flow
approximation at the outlet of the CV. As λ increases, however, the
approximation eventually ceases to hold anywhere in the wake, and
the wake vorticity term cannot be rewritten in a form that involves
only u and w. Its magnitude also increases as the angle between
the wake and the plane of rotation decreases and ϕ→ 0 in Figure 1.
Small ϕmeans the wake crosses most of the outlet of the CV used to
derive the MT equations rather than being a thin wake leaving the
CV near-normally as for airfoils or rotors and cascades with high
ϕ. This is demonstrated in Figures 2, 3 for cascade Case 4 in Table
XI of Golmirzaee and Wood (2023), for which θ = 0 and ϕ = α ≈ 4°:
the wake leaves the CV at an acute angle at low ϕ, there is no
region of uniform u, and the flow is filled with wake vorticity. The
first constraint of Eq. 6 is approximately satisfied, and the second
is satisfied within numerical uncertainty. Furthermore, the wake
vorticity integrand is positive over most of the wake and cannot be
simplified by the slender flow assumption as Ωz has extrema close
to where ∂U/∂y = 0. Nevertheless, Eq. 18 of Golmirzaee and Wood
(2023)

ρ∫
S/2

−S/2
(1− u)Ωzydy =

ρU2
relcCd

2sinϕ
. (9)

was found to be accurate for cascade geometries thatmimic the blade
element flow for a wide range of λ. It may be objected that the wake
vorticity integral in Eq. 9 should be reducible to an equation like
Eq. 8 at least for large ϕ. This appears impossible because of a subtle
difference between u in that equation and Eq. 9, and u in Eq. 3. In
Eq. 8, u is the y−dependent departure from U0 normalized by U0
for a non-expanding flow, whereas u in the BEMT equations is the
average induced velocity at the rotor. This u clearly does not have a
circumferential variation.

The corresponding term for BEMT is most conveniently
subtracted from the right side of Eq. 1 to give the revised form as
follows:

dT*

dr
= 1
2
NρU2

relc(Cl cosϕ+Cd sinϕ−Cd/sinϕ)

= πρ(4w2 + 4λrw+ v2 − u2) r,
(10)

where T* will be called the “reduced thrust.” The right side gives
the “ideal” element momentum flux—the total flux when Cd = 0.

FIGURE 2
Profile of the induced axial velocity 1.29c downstream of a cascade of
NACA 0012 airfoils with θ = 0, α ≈ 4°, and the spacing-to-chord ratio,
S/c = 5 [case 4 in Table XI of Golmirzaee and Wood (2023)]. The origin
for y is the airfoil quarter-chord.

FIGURE 3
Simulation of the wake vorticity for the conditions in Figure 2.

When ϕ = π/2 at λ = 0 and Cl = 0, the reduced thrust and the
ideal momentum flux are both zero, which is not the case for (1).
As λ increases and ϕ decreases, the wake vorticity term balances
increasing amounts of lift for a wind turbine and lessens the burden
on w, or u if the conventional equation was revised.

If any revisions of Eq. 4 are much less significant than the
difference between Eq. 1 and Eq. 10, a number of important results
follow. Eq. 4 gives the first condition for runaway as follows:

• wR = 0 and Eq. 4 and Eq. 10 both require
• tanϕR = Cd/Cl ≈ (1− ubR)/(λRr). It then follows from Eq. 10
that
• runaway thrust is balanced entirely by the wake vorticity
term.
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Now, helical symmetry requires either u = 0 or p = 0whenw = 0.
We regard u = 0 as physically untenable, so additional conditions are

• pR ≈ 0 and
• uR ≈ 1.

These five conditions can only be approximated as the wake
vorticity term becomes infinite as ϕ,pR→ 0 and uR→ 1. It is also
possible thatw changes sign across thewake to give zero rotor torque
without every element torque being zero. It will be shown below
that high u was measured behind a model turbine approaching
the runaway. High u implies high ub since U0 ≥ ub ≥ u. Thus, it
is reasonable to assume that Fu,Fw,Fp→ 1 as λ→ λR even faster
than they do normally as λ increases. The simulations of the
high-thrust region in the following section use Fu = Fw = 1∀ r. The
spatial variations in the non-linear terms u2, w2, and uw in the
MT equations will also be ignored, and it will be assumed that
u2 = u2, w2 = w2, and uw = uw. By ignoring any difference between
u and ub and assuming u is constant with r, it is possible to
estimate its value from the conditions mentioned. Two additional
assumptions are needed: c ∼ 1/r for optimal blades, e. g., Wood
(2011) Eq. 5.12a, and Cd ≈ Cd0, the drag coefficient when α = 0, for
all elements. In other words, the same or very similar airfoil(s) is/are
used for the whole blade, which is usually the case for small wind
turbines and wind tunnel models such as that used by Krogstad and
Adaramola (2012) and Krogstad and Eriksen (2013). It then follows
that

CTR ≈
Nλ3Rc (R)cd0
3π (1− uR)

. (11)

For the three-bladed rotor of Krogstad and Adaramola (2012) and
Krogstad and Eriksen (2013), Cl0 ≈ 0.5, Cd0 ≈ 0.01, and c(R) = 0.06.
They found λR ≈ 12 and CTR ≈ 1.2. Eq. 11 then gives uR = 0.725, and
it follows that pR = 0.02R so the blade wake and the shed vorticity
exit the CV at very small angles to the plane of rotation, as argued
previously. The wake measurements closest to the runaway were
made at λ = 10 at distance R behind the blades. u was approximately
linear in r reaching u = 0.81 at r = 0.91.This extraordinary result has
received little attention.

The importance of the wake vorticity term in the high-thrust
region is now clear. Furthermore, it increases at least as fast as λ3,
whereas the first and second terms on the left side of Eq. 10 vary
at most as λ2 and λ, respectively. It is likely, therefore, that wake
vorticity will be an important term in a fully revised BEMT for any
rotor at high λ. Wake vorticity also requires λR→∞ as Cd↓ 0. In
other words, an ideal rotor (without drag) does not have a high-
thrust region. The classical one-dimensional analysis that leads to
the Betz–Joukowsky limit ignores drag and so gives no hint of a
runaway. Using an actuator disc model of an ideal rotor, Wood
and Hammam (2022) found that the Betz–Joukowsky values of
CP = 16/27 and CT = 8/9 were approached as λ→∞: ideal rotors
do not run away. Thus, blade element drag is sufficient to cause
a high-thrust region but it may not be the only mechanism to
cause a runaway. For example, the shed vorticity modification of
Limacher et al. (2022) also provides good estimates of CT in the
high-thrust region.

In considering the high-thrust region, the main difference
between the blade and cascade elements is that the wakes of the

former can also contain shed vorticity from the radial variation in
the blade loading. Thus, it is not possible to distinguish between the
MT revision due to Limacher et al. (2022) and the present revision
on the basis of cascade analysis.One further comment is in the order:
the present revision of MT makes no assumptions about the flow
downwind of the rotor. This is a crucial point because eventually
the wake vorticity will be rolled up with the shed vorticity and the
distinction between themwill be lost.We discuss wake development
further in Section 4.

To conclude this section, we summarize the implementation
of the simple model for the high-thrust region. After dividing the
rotor into blade elements, Eq. 10 for the reduced thrust is solved for
w, which gives Γ. The expansion term involving v2 − u2 is ignored,
w2 is approximated as w2, and the difference between w and wb is
also ignored. In other words, Fu = Fww = 1. Then, Eq. 4 is used to
find u with uw = uw or Fuw = Fw = 1. For comparison, u was also
computed using the helical symmetry relation pu = wr. Knowing
ub = u and wb = w allows the determination of the torque and
thrust on the blade elements.The BEMT equations for each element
were iterated until a relative convergence tolerance of 10–8 was
achieved.

3 Results from the simple revised
theory

We now test the plausibility of the revised BEMT. The
experiments for comparison are those previously mentioned by
Krogstad and Adaramola (2012) and Krogstad and Eriksen (2013)
on a three-bladed rotor with R = 1.5 m. The airfoil (S826) lift and
drag data, extracted from Bartl et al. (2019), cover the range of
Reynolds number, Re, of the experiments. Cl(α,Re) and Cd(α,Re)
were found by linear interpolation in α and log(Re).

The results for power and thrust using NBE = 40 are shown in
Figure 4. Table 1 lists the variation inCP andCT forNBE = {20,40,80}
for λ = 6 which is close to λopt, and λ = 12, near λR. All
subsequent results were obtained with N = 40. The experimental
results have not been corrected for blockage, which was about
10% (Sarlak et al., 2016). Using computational modeling of the
experiment, Sarlak et al. (2016) found that CP was under-estimated
by around 0.05, and the corrected λR value was closer to 12 (their
Fig. 13). Figure 14 of Sarlak et al. (2016) suggests that a blockage
correction would reduce CT by approximately the same amount.
It appears that applying blockage corrections to the experimental
data would generally improve the accuracy of the simple model but
no correction has been applied. As expected for a BEMT analysis
without finite blade corrections, CP is over-estimated near λopt. The
largest measured CP at λ = 6.164 was 0.4481, which is about 10%
lower than the value at λ = 6 shown in Table 1.CT is generally under-
estimated, but the trends of power and thrust and the estimate for
λR ≈ 12 are encouraging. Furthermore, the simple model appears to
have no problems in computing through λR and with CT values well
in excess of unity.

The two methods for calculating u are shown in Figure 5 at
λ = 10, which is the closest to λR that measurements were made.
Eq. 4 gave higher values of u across the rotor, so these were used to
computeCP andCT.These should be lower than the valuesmeasured
one radius downwind by an amount that is difficult to estimate. It is,
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FIGURE 4
Simple model results for power (×) and thrust (+) coefficients
compared to the measurements of Krogstad and Adaramola (2012)
and Krogstad and Eriksen (2013).

TABLE 1 Effect of a number of blade elements on power and thrust.

λ NBE CP CT

6 20 0.5059 0.8367

40 0.5065 0.8385

80 0.5058 0.8379

12 20 −0.0761 1.1631

40 −0.0736 1.1681

80 −0.0718 1.1701

however, noteworthy that the high values near the edge of the rotor
have been reproduced, at least qualitatively. There is considerable
discrepancy between the two calculations of u toward the hub, and
it is likely that the large negative values are unphysical. They result
from helical symmetry, which forces u to have the same sign as w
and Γ. Furthermore, it is not clear whether zero or slightly negative
umeasured downwind of the rotor and nacelle implies similar values
at the rotor computed without considering the nacelle.

Negative w indicates that a part of the rotor is operating as a
propeller, whose flow normally contracts by a small amount rather
than expanding significantly. In the present case, the “propeller
region” is near the hub where we would expect v2 to be small.
Assuming v2 = 0 and including u2 in theMT calculation forces u = 0.
This can be seen by starting with

dQ
dT*
= r tanϕ = r 1− u

w+ λr
= p, (12)

where the first equality comes from dividing the BE part of Eq. 4
by that of Eq. 10 and the second from the blade element velocity
triangle in Figure 1. Alternatively, using the right sides of Eqs 4, 10
with v2 = 0 gives

dQ
dT*
= r 1− u

w+ λr− u2/w
, (13)

FIGURE 5
Induced axial velocity through the rotor at λ = 10. Eq. 4 after Eq. 10
was solved for w with u2 − v2 = 0, solid line, from helical symmetry, +.
Measurements of Krogstad and Adaramola (2012) and Krogstad and
Eriksen (2013), ♢ taken in a vertical traverse through the wake, one
rotor radius downwind of the rotor. They have been converted to
radial profiles.

and so u = 0 for consistency. If u is set to zero in the BEMT
calculations whenever w < 0, CP, CT, and λR increase; at λ = 12, for
example, CP increases to 0.248, CT to 1.405, and λR to be closer
to 14. The change is largely due to the reduction in magnitude of
the negative w value, which is not shown. Detailed measurements
of all velocity components emerging from the rotor would be a
valuable aid for improving the modeling. The development of the
calculated induced velocities (without setting u = 0 for negative
w) with λ is shown in Figure 6. At λopt, w is everywhere positive
but has a propeller region by λ = 10. The figure suggests the
discrepancy between the two methods of determining u becomes
more important as λ increases, and there is an increasing part of
the rotor where w and Γ are negative. It appears that the runaway
is approached more by the overall rotor torque going to zero rather
than the torque on all elements being zero.This is consistent with the
development of the vortex pitch shown in Figure 7). p decreases with
λ, but the very small value at the runaway from Eq. 11 is confined to
the tip region.

4 Discussion and conclusion

The comparison with the experimental results in the previous
section shows that the wake vorticity term in the revised BEMT
provides a plausible explanation for the occurrence of a runaway
as a consequence of the blade element drag, and a reasonable
description of the λ− dependence of the thrust and power as
the runaway is approached. In addition, the high values of the
calculated induced axial velocity near the blade tip as the runaway
is approached agree qualitatively with the experiment. These high
values arise from the effective decoupling of the thrust from the
axial velocity through the wake vorticity term which we added to
BEMT.
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FIGURE 6
Simple model results for the induced axial and circumferential
velocities for the values of λ: 4, blue solid line; 6, red ♢; 8, dashed
black line; 10, green×; 12, blue +; and 14, solid black line. Note that u
increases with λ near the hub from a minimum just below 0.2, but w
decreases and that u for λ = 12 is not plotted.

FIGURE 7
Simple model results for the vortex pitch. Symbols as in Figure 6.

What is not clear is whether the particular form of the wake
vorticity term is sufficient, and ignoring the effects of the shed
vorticity is justified. The thrust is consistently under-predicted
(Figure 4), suggesting that additional shed vorticity terms are needed
in the axial momentum equation, as argued by Limacher et al.
(2022). We also note that Ebert and Wood (2002) found the tip
vortex had sufficient negative angular momentum at runaway to
balance the kinetic energy deficit in the remainder of the wake.
If this is a general feature, then the angular momentum equation
would require revision. Figure 6 shows that the wake considered
here had a substantial deficit in kinetic energy at runaway, which
must be balanced elsewhere in the wake to prevent it from being
extracted by the rotor. It will be necessary to explore the link between

this balance and the wake vorticity term before the revision of
BEMT can be completed. This would require measurements of the
three-dimensional distribution of all three velocity and vorticity
components immediately behind the rotor—a task that is far from
trivial.

Runaway at high λ may be associated with the blade element
lift and drag changing from the two-dimensional values used here.
There is a long history of three-dimensional corrections to airfoil
data, e.g., Bangga et al. (2023), which should be investigated in
future experiments. On the other hand, high λ is likely to reduce
the effective blade sweep caused by the large v velocities as the rotor
flow expands significantly.

A further issue is a consequence of the large u value; the
expansion integral in Eq. 2 requires high levels of the radial velocity,
v, near runaway. The calculations of Wood and Limacher (2021)
suggest that v is smaller than u near the axis of rotation where v
must be zero. v is then comparable to u near the blade tip and
greater in the external flow. In the present context, this suggests a
complex wake development. On the other hand, it is emphasized
that the simple revision to BEMT is based on using a control
volume for the axial and angular momentum equations that ends
immediately behind the blades. Thus, no relation between the axial
velocity leaving the rotor and in the far-wake is required. Because
the angular and axialmomentumfluxesmust be constant downwind
of the turbine, there are only two ways the wake can influence the
present model: in determining the spanwise variations induced by
its vorticity distribution and through the shed vorticity as noted
previously. Gupta and Leishman (2005) imply that thewake at high λ
(small p) becomes unstable, and this results in the so-called “vortex
ring” and “turbulent wake” states and the breakdown of BEMT.
The importance of the wake vorticity term suggests otherwise,
unless large amounts of radial vorticity are associated with these
states. This seems unlikely, however, as the “free wake” model of
Gupta and Leishman (2005) does not include the radial vorticity
associated with the blade drag. The complexity of the wake at high
thrust is also suggested by the simulations of Martínez-Tossas et al.
(2022) but again without considering the effect of the wake vorticity
term.

Two general aspects of the wake vorticity term and the current
analysis are worth mentioning. Eq. 12 gives the vortex pitch as the
ratio of the blade element torque to reduced thrust, which also holds
for the ideal actuator disc model of Wood and Hammam (2022),
for which dT = dT*. Thus, it is not surprising that the runaway is
associated with p ↓ 0. Second, the circulation is found from the axial
momentum equation, which has significant contributions from the
blade element drag. It follows that blade element circulation, in
general, is determined partly by drag. This is also a consequence
of the angular momentum (Eq. 4) having no wake vorticity term
to cancel the drag. A similar result holds for elements of a cascade
(Golmirzaee and Wood, 2023).

In conclusion, it is clear that there is still much to learn
about wind turbine operation in the high-thrust region. Detailed
and high-quality experiments are needed to guide the further
development of models for numerical simulation. The present
contribution suggests the wake vorticity term in the axial
momentum equation will be an important part of improved
models.
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Glossary

λ Tip speed ratio

Ω Blade angular velocity

Ωz Wake vorticity

ϕ Inflow angle, Figure 1

ρ Air density

θ Blade pitch angle, Figure 1

α Angle of attack, Figure 1

Γ Circulation

c Chord of the blade element

Cd,0 Blade element drag coefficient when α = θ

Cd Blade element drag coefficient

Cl,0 Blade element lift coefficient when α = θ

Cl Blade element lift coefficient

CP Rotor power coefficient

CT Rotor thrust coefficient

D Drag

Fu Finite blade function for u

Fw Finite blade function for w

Fuw Finite blade function for uw

Fww Finite blade function for w2

L Lift

N Number of blades

NBE Number of blade elements

p Pitch of the helical vortex

Q Rotor torque

R Rotor radius

r Radius

S Spacing of airfoils in a cascade

T Rotor thrust

T* Reduced thrust, Eq. 10

u, v, w Axial, radial, and circumferential velocities, respectively

U0 Wind speed

U rel Relative or total velocity at the blade element

x Streamwise co-ordinate

y Normal co-ordinate (for cascades)

An overline denotes a streamtube average for u2,w2 and uw
Subscript “b” denotes a value at the blades.
Subscript “opt” denotes an optimum value for maximum power.
Subscript “R” denotes a value at runaway.
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