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New energy power generation has strong randomness and volatility. Especially in
the case of a high proportion of NE (network security) power generation, its
sudden random power generation in a short period of time will seriously affect the
stable operation of the power grid. Therefore, this paper proposes BP neural
network algorithm to study the distributed NE grid-connected cooperative
operation control technology. First of all, this paper studies the artificial
intelligence algorithm in detail and applies it to the coordinated operation
control of distributed NE grid-connected; then, based on the status quo of
renewable energy PG (power generation), this paper establishes a suitable wind
speed time series model, and thus proposes an optimization model based on a
rolling scheduling optimization algorithm. The experimental results show that the
average running time of the rolling scheduling optimization algorithm is
maintained at about 0.2 s, which can effectively realize online operation. In
addition, through rolling adjustment, the error between the total output curve
of the unit and the actual total output curve of the unit can be significantly
reduced. The research shows that the rolling scheduling optimization algorithm
has a good optimization effect, can promote the coordinated development of
wind farms and power systems, and increase the capacity of power systems.
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1 Introduction

Distributed NE grid connection is an important way to replace traditional energy with
clean energy. However, due to the instability and uncontrollability of NE, the coordinated
operation and control technology of distributed NE grid connection faces challenges. As a
new intelligent technology, AI (Artificial Intelligence) algorithm has powerful data
processing and analysis capabilities, which can effectively solve the coordinated
operation control problem of distributed NE grid connection. The research on
coordinated operation and control technology for grid connection of distributed NE can
reduce energy consumption and emissions, which is of great significance for achieving clean
energy and sustainable development. The application of AI algorithms can achieve accurate
prediction, intelligent scheduling, and optimal management of distributed NE, and improve
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the reliability and economy of the system, so as to achieve efficient
and stable operation of distributed NE. The application of artificial
intelligence algorithms can achieve accurate prediction, intelligent
scheduling, and optimized management of distributed network
elements. Specifically, by learning and analyzing historical data,
the system can accurately predict the behavior of distributed
network elements in terms of future output power, volatility, and
other aspects. On this basis, intelligent scheduling algorithms can
reasonably arrange the operation mode and output level of
distributed network elements based on the needs and constraints
of the power system, in order to achieve system stability and
economy. Optimizing management algorithms can further
improve the efficiency and performance of the system by
optimizing the configuration, operational strategies, and
interoperability of distributed network elements. There are two
main reasons why artificial intelligence algorithms can provide
better results. Firstly, artificial intelligence algorithms can
process a large amount of complex data and learn and
discover potential patterns and patterns from it. This enables
the system to more accurately predict the behavior of
distributed network elements and make corresponding
scheduling and management decisions. Secondly, artificial
intelligence algorithms have the characteristics of adaptability
and intelligence, which can be optimized and adjusted according
to the real-time state and requirements of the system, thereby
improving the flexibility and response speed of the system.
In addition, the research and application of AI algorithms is
also an important direction in promoting the construction and
development of smart grids. With the continuous development
and application of AI algorithms, it is possible to achieve
comprehensive intelligent management and optimal scheduling
of power systems, and improve the security, stability, and
economy of power systems, so as to lay the foundation for the
construction and development of smart grids.

The coordinated operation and control technology of
distributed NE grid connection is an important research
direction. With the continuous increase of the installed capacity
of distributed NE, its impact on the stability and security of the
power grid is also increasing. A key issue that has not yet been
resolved is: How to stimulate coordination between large amounts of
distributed energy? Each energy source has a different owner and
characteristics. Virtual power plants and Peer-to-Peer (P2P) energy
transactions are considered to be different potential structures for
future production consumer electricity markets. Morstyn Thomas
proposed the concept of a combined power plant, which was a
virtual power plant formed through P2P transactions between self-
organized production consumers (Thomas et al., 2018). The
popularity of distributed energy encouraged the concept of
“producers and consumers” of electricity. Luo Fengji proposed a
distributed power trading system to promote P2P power sharing
between production consumers (Luo et al., 2018). Power and energy
systems were undergoing transformation. The Internet of Things
(IoT) was at the forefront of this transformation. In addition, the use
of the IoT digital power ecosystem could improve asset visibility, and
optimize distributed PG management, so as to eliminate energy
waste and create savings. Bedi Guneet evaluated the role, impact,
and challenges of the IoT in transforming power and energy systems
(Guneet et al., 2018). AI algorithms could be applied to distributed

NE grid connection and coordinated operation control technology
to optimize grid operation and improve NE utilization efficiency.

The intelligent industrial environment developed with the support
of the new generation of Generation Physical System (GPS) can
achieve a high concentration of information resources. Lv Zhihan
proposed a GPS trusted robust intelligent control strategy and a
trusted intelligent prediction model. Through simulation analysis,
the influencing factors of attack defense resources and the dynamic
process of distributed collaborative control were obtained (Lv et al.,
2020). Silva Fernando A embedded AI into emergency topics related
to the power grid. A smart grid is a network physical social system that
includes information and communication technology, computer-
implemented human concepts and actions, sensors, controllers,
distributed energy, and social and economic issues. Nowadays, the
universal reality of the information and communication technology
era, the IoT, distributed control, and network security are powerful
promoters of smart grids. Smart grids integrate social aspects into
projects using the network physical social sensing paradigm, which is a
key concept and action to improve gender balance in projects (Silva
Fernando, 2018). However, they have not conducted research on
specificmethods in AI algorithms, nor have they addressed the issue of
coordinated operation and control of distributed energy grid
connection.

This paper proposed an AI algorithm to study the coordinated
operation and control technology of distributed NE grid connection.
AI can help power grid managers quickly and accurately judge the
operation status of the power grid and make corresponding
scheduling decisions. At the same time, AI can also predict and
optimize based on historical and real-time data, thus improving the
efficiency and stability of the power grid. Therefore, the research on
the application of AI in the coordinated operation and control of
distributed NE grid connection is of great significance for promoting
the sustainable development of NE and promoting the intelligent
construction of power grids. The contribution of this article is that
artificial intelligence algorithms can provide accurate predictions of
future output power, volatility, and other aspects of distributed
network elements through learning and analyzing historical data.
This precise prediction ability can help the power system arrange the
operation mode and output level of distributed network elements
reasonably, thereby improving the stability and economy of the
system.

2 Prediction and optimization of AI
algorithms

2.1 Improved power prediction algorithm

Due to the national policy incentives, coupled with its
advantages of environmental protection, economy, and short
installation cycle, wind PG has achieved leapfrog development in
recent years. Due to the intermittent and volatile characteristics of
Wind Power [abbreviated as WP (wind power) for convenience
below], the access to wind PG has been greatly restricted, thus
resulting in a high wind abandonment rate, and leading to
significant economic losses and waste of infrastructure.
Therefore, research on the access methods of wind PG has
become an urgent matter. Improvement of the prediction
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accuracy of wind PG by wind farms and power grids is an important
way to improve the access rate of WP. This paper proposed a new
wind PG process prediction model based on BP (Back Propagation)
neural network by analyzing abnormal phenomena in the wind PG
process. By improving the structure of BP neural network, the
optimal weights and thresholds are obtained, thereby improving
the prediction accuracy of the wind PG process. Therefore, the
detailed framework of this article is shown in Figure 1.

In the study of neural networks, the most widely used network
model algorithm is the BP neural network algorithm, which combines
with the negative gradient descent algorithm to improve the single
layer perceptron and effectively solve the problems that it cannot
solve. This BP neural network includes three parts: input layer, hidden
layer, and output layer. It has a wide range of applications, such as
knowledge processing, forecasting, pattern recognition, and so on.
The AI algorithm flowchart is shown in Figure 2.

Based on the BP algorithm, a neural network model based on the
BP algorithm is established, that is, the BP neural network, with
many individual neurons at each level. The mathematical model for
a single neuron is as follows:

x � g ∑p

j�1SjAj + yj( ) (1)

The connections between these neurons are one layer, but there
is no connection between each layer. The nodes of each hidden layer

use the sigmoid function as the excitation function, while the input
and output layers can choose different excitation functions
according to changes in demand. Therefore, for BP neural
networks, a simple explanation can be made. For the
convenience of observation, the threshold of neurons is not drawn.

As for BP neural network, its mathematical model is represented
as follows:

xn+1 � gn+1 Sn+1xn + yn+1( ), n � 1, 2, ..., N − 1 (2)
Among them, N represents the number of layers of the neural

network. For the input layer, its input signals are as follows: x1 � a;
for the output layer, the output result is as follows: x � xN

Considering that deriving an error is actually about finding a
specific implicit function, it is necessary to use the chain derivation
rule. Here is an example of weight adjustment:

δG

δsnji
� δG

δmn
j

×
δmn

j

δsnji
(3)

From Eq. 2, it can be seen that the second item on the right can
be easily calculated because the weight value is an explicit function
for the output of the previous layer. The formula is as follows:

mn
j � ∑Zn−1

i�1 snjix
n−1
i + yn

j (4)

Equation 5 is as follows:

FIGURE 1
Thinking framework diagram.
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δmn
j

δsnji
� xn−1

i (5)

Therefore, the approximate gradient descent algorithm can be
expressed as follows:

snji r + 1( ) � snji r( ) − γ
δG

δmn
j

xn−1
i (6)

Equation 7 is as follows:

yn
j r + 1( ) � yn

j r( ) − γ
δG

δmn
j

(7)

2.2 Optimization of distributed NE grid
connection coordinated operation control
technology using AI algorithms

AI algorithms have broad application prospects in distributed NE
grid connection coordinated operation control technology, and can
contribute to optimization and improvement in this field (Han et al.,
2018; Wang et al., 2019). Firstly, AI algorithms can help achieve
integratedmanagement of multiple grid connected distributed NE PG
systems. Through data collection, analysis, and processing of various
NEPG equipment, optimal control can be achieved for them, and they
can be adjusted independently under different operating conditions.
Secondly, AI algorithms can also optimize the operation of distributed
NE PG systems through intelligent control loops (Yang et al., 2018;
Pierluigi et al., 2019). Through data collection and analysis of NE PG
equipment, combined with certain control strategies, it is possible to
gradually self-learning the PG system to better adapt to different
operating environments and load requirements, and achieve more
refined and efficient operation. AI algorithms can intelligently predict
future energy supply based on weather forecasts and current energy
storage conditions, and make corresponding control decisions to
ensure the reliability and stability of PG systems (Liu et al., 2018;
Lasseter Robert, 2019). In summary, AI algorithms play an important
role in the optimization of distributed NE grid connection
coordinated operation control technology. It can improve the
efficiency and stability of distributed NE PG systems, and make
contributions to better promoting the development of clean energy
(Kacper, 2018; Shankar and Maple, 2023).

AI algorithms can optimize and improve the coordinated
operation and control technology for distributed NE grid
connection, with the specific significance as follows:

Improvement of coordinated operation control accuracy and
efficiency: AI algorithms can optimize the coordinated operation
control of distributed NE grid connection through processing and
analyzing a large amount of data, thereby improving control
accuracy and efficiency (Amrit et al., 2018; Fabio and Pierre, 2018).

Reduction of system operating costs: By optimizing the
coordinated operation control of distributed NE grid connection
through AI algorithms, renewable energy resources can be utilized to
the maximum extent and system operating costs can be reduced
(Chen et al., 2013).

Improvement of power system stability and security: AI
algorithms can achieve intelligent monitoring and control of

power systems, so as to timely detect and handle potential
problems, thereby improving the stability and security of power
systems (Fang et al., 2022; Kumar et al., 2023).

3 Distributed NE grid connection
coordinated operation control
technology

3.1 Current situation of renewable
energy PG

In order to cope with climate change and reduce emissions,
renewable energy has received increasing attention worldwide.

The schematic diagram of the control model is shown in
Figure 3.

FIGURE 2
AI algorithm flowchart.

Frontiers in Energy Research frontiersin.org04

Lu et al. 10.3389/fenrg.2023.1253890

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1253890


Distributed new energy generation: including distributed
renewable energy generation equipment such as solar power
generation and wind power generation.

Dispatching center: responsible for the operation, scheduling,
and management of the entire distributed new energy grid
connection system.

Grid connection control unit: it controls the grid connection of
distributed power generation units to ensure their safe and stable
connection with the power system network.

Inverter control unit: converts the direct current generated by
the distributed generation unit into alternating current, and
performs power regulation and active and reactive power control.

Distributed power generation unit: includes different types of
distributed power generation equipment, such as photovoltaic
panels, wind turbines, etc.

Power system network: traditional power system network,
including transmission lines, substations, etc.

User terminal: user equipment that receives power from the
power system network and distributed generation units, such as
households, industrial enterprises, etc.

In this schematic diagram, the distributed new energy
generation equipment converts direct current into alternating
current through an inverter control unit and is connected to the
traditional power system network. The grid connected control unit
is responsible for monitoring and controlling the operation of
distributed generation units to ensure their smooth integration
into the power system network and participate in the
coordinated operation of the overall power system. The dispatch
center conducts unified scheduling and management of the entire
system, coordinating the energy exchange between distributed

FIGURE 3
Schematic diagram of the control model.
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generation units and the power system network based on energy
supply and demand and power load demand, in order to achieve
reliable and efficient energy management.

This schematic diagram shows the overall architecture of
distributed new energy grid connection control technology, where
communication and data exchange between various modules are
also key to achieving coordinated operation.

Figure 4 shows the annual PG capacity of renewable resources in
the United States for 50 years (Yin et al., 2017). The overall growth
rate of renewable energy power in the United States is relatively fast.

As shown in the figure, Figure 4A showed the annual electricity
generation of renewable energy in China and the United States, with
a unit of 1,011 kWh. Figure 4B showed the proportion of various
types of PG in the United States. It could be seen from the figure that
during the period 1960–2010, the annual electricity generation of
renewable energy in China and the United States was continuously
increasing (Zeng et al., 2018). In the United States, the annual
electricity generation from renewable energy was only 4.2 ×
1011 kWh in 1960, but by 2010 it increased to 14.2 × 1011 kWh.
China had more, from 4.4 × 1011 kWh in 1960 to 15.1 × 1011 kWh in
2010. Among the total PG, coal-fired PG accounted for the largest
proportion, accounting for 44.5%. The second was natural gas PG,
accounting for 21.5%. In NE PG, WP and solar power took up a
certain share. In particular, WP accounted for 3.15%.

While recognizing these favorable trends in the development of
WP, people should also recognize their inherent shortcomings.
Compared to traditional energy power stations, the PG capacity

of wind farms is significantly affected by various environmental
factors such as wind and weather, and is characterized by incomplete
controllability (García-Nieto et al., 2021). When small-scale wind
PG is connected to the grid, the power fluctuation caused by WP is
within an acceptable range, and the interference is absorbed by the
system, which would not cause too much impact on the safety and
stability of the grid (Zhao and Kok Foong, 2022). However, when
large-scale distributed wind PG is connected to the grid, power
fluctuations caused by changes in WP would have a significant
impact on the power system, thereby threatening the security of the
grid (Candanedo, 2020).

Firstly, when the proportion of WP is large, the sudden and
random nature of this state would seriously affect the stable
operation of the power grid, which is mainly caused by
distributed WP. On the other hand, the random fluctuation
characteristics of WP bring new challenges to the analysis,
scheduling, and control of traditional power grids. From this
point of view, WP is a potential energy source, but it needs to be
properly regulated (Cao and Qian, 2023). With the continuous
development of distributed wind energy, it is necessary to study
more and deeper grid connected collaborative operation and control
technologies for distributed wind energy systems. It is necessary to
optimize and adjust the original operation and scheduling mode of
the power grid to address the challenges faced by large-scale wind
energy access.

After large-scale wind PG is connected to the grid, the active
power control for wind PG in the grid can be divided into two types:

FIGURE 4
Percentage of electricity generated by various types and annual electricity generated by renewable energy sources in the United States. (A) Annual
renewable energy generation in China and the United States. (B) Proportion of various PG categories in the United States.
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system level active power control and wind farm active power
control. On the basis of WP forecasting, system level active
control is mainly based on the forecasting results of wind PG to
optimize the scheduling of traditional generating units, including
economic scheduling of the active output of conventional generating
units. In a wind farm, active power control sends control commands
(including active and reactive power) to various units in the
wind farm by receiving scheduling commands from the system
control layer. The power system would still rely on traditional
distribution management systems, feed terminals, and so on (Shi
et al., 2023).

The additional system reserve capacity required for wind PG is
closely related to the power prediction error of WP. If the prediction
error of WP is incorporated into the conventional unit scheduling
model, it can significantly reduce the cost of PG. On this basis, this
paper constructs a conventional unit active power collaborative
optimization scheduling method based on multiple time scales,
and takes into account the prediction error of wind farms on this

basis, thereby gradually reducing the uncertainties caused by WP
grid connection and improving the capacity of the system.

Currently, international research is mainly focused on how to
use energy storage to regulate the output of wind farms in order to
achieve the maximum benefits under the peak valley electricity price
mechanism. However, for power system managers, more research is
focused on how to maximize the utility of renewable energy while
ensuring the active power balance of the power system, which is also
the study of collaborative control strategies with wind PG (Sreedevi
et al., 2022). The research results of this article would provide new
ideas for improving the efficiency of wind PG in China and reducing
the proportion of traditional energy consumption, which had
significant academic and application value.

This paper took distributed wind PG connected to the power
grid as the object, and only considered the active power control at
the system level. Taking this as a starting point, research on
collaborative control of new generation distributed NE access to
the power grid was conducted. Considering the uncertainty of

FIGURE 5
Comparison of average values of different wind speed time series. (A) Comparison of mean values of different wind speed time series from January
to June. (B) Comparison of mean values of different wind speed time series from July to December.

TABLE 1 Comparison of standard deviations of different wind speed time series.

Month 1 2 3 4 5 6 7 8 9 10 11 12

Historical wind speed 5.37 5.28 4.87 4.23 4.16 4.08 4.25 4.41 5.02 5.37 5.56 5.67

Primitive first order MC 4.87 4.78 5.01 4.97 4.92 5.09 4.89 4.84 5.21 4.98 4.92 5.13

Improved first order MC 5.66 5.32 4.98 4.23 4.12 4.12 4.23 4.37 4.92 5.48 5.36 5.45
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energy storage and WP operation, the multi time scale active power
collaborative optimization problem for conventional units had
significant theoretical and practical significance for achieving the
safe and efficient utilization of distributed WP and solving the
regulation and coordination problems of conventional units at
different time levels. The research results of this article would
help solve the impact of distributed wind farms on the power
system, and promote the collaborative development of wind
farms and power systems, so as to enhance the capacity of the
power system. The construction of a wind farm time series model
suitable for active collaborative optimal scheduling of distributed
wind farms was of great significance for scientifically understanding
the volatility characteristics of wind PG in multiple time scales
(Wang and Lu, 2019).

3.2 Establishment of a suitable wind speed
time series model

The establishment of a suitable wind speed time series model is
the key to achieving collaborative control of distributed wind
farms. In the field of stochastic operation simulation of power
grids containing wind farms, the wind speed time series of wind
farms is often the most basic and important input data. For
example, Monte-Carlo simulation, currently widely used in the
above fields, requires a series of long wind speed data as input to
obtain accurate wind speed data. The mathematical foundation of

Monte-Carlo simulation is the theorem of large numbers in
probability theory. Therefore, to obtain accurate simulation
results, the required input wind speed series usually need to be
up to 105–107 time units (the specific time unit is usually s
according to the simulation needs). However, in wind farms,
the time units of the measured wind speed series often cannot
meet this requirement. In order to ensure the stability of numerical
simulation, current research mostly uses a series of measured wind
speed time series.

The established model should reflect both the randomness of
actual observation data and the statistical characteristics of actual
observation data. Therefore, this paper adopted an improved first
order Markov Chain (abbreviated as MC for convenience below)
based method, and generated a simulated wind speed. The time
series simulation of wind speed prediction errors is relatively simple,
as long as a random sequence is generated based on its consistent
probability distribution.

The MC model includes two aspects: The first is a probability
matrix of wind speed state migration that takes into account
seasonal characteristics, day and night characteristics, and dry
and wet characteristics; the second is the probability matrix of
dryness and wetness transfer considering the characteristics of
weather dryness and wetness.

This section would compare the statistical characteristics of
simulated winds generated using improved first order MC and
original first order MC. The main contents of the test include:
general statistical parameters, probability distribution, etc.

FIGURE 6
Scale and shape parameters for different months. (A) Scale parameters for different months. (B) Shape parameters for different months.
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(1) General statistical parameters

The improved first orderMC and the original first orderMCwere
used to simulate the wind speed time series, because it was only an
hour’s average. The simulation results were classified by month.
General statistics were made for each month on a monthly basis
and compared with historical wind time series. In addition, the
minimum values of the three wind speeds were all 0 m per second,
so the minimum values of the wind series were not separately
compared.

As shown in Figure 5A showed the comparison of the average
values of different wind speed time series from January to June, and
Figure 5B showed the comparison of the average values of different
wind speed time series from July to December. The monthly average
variation trend of historical wind speed series was relatively
significant, while the improved first order MC model’s average
wind speed series was more accurate. The difference between the
groups of average wind speeds obtained by the original first order MC
model was very small, which could not reflect the changes in the
monthly average wind speed series in history, thus resulting in
significant errors. The simulation accuracy of the model was
further improved by introducing seasonal characteristics, dry and
wet characteristics, and daily characteristics. The standard deviation
comparison of different wind speed time series is shown in Table 1.

(2) Probability distribution

It is generally believed that the wind speed should meet the
Weibull distribution, so this paper selected the two-parameter
Weibull distribution. The probability density function is as follows:

gu U( ) � R

e
( ) U

e
( )R−1

exp − U

e
( )R[ ] (8)

Among them, e and R are the scale and shape parameters of the
Weibull distribution, and U is the given wind speed. The maximum
likelihood estimation method is used to calculate the scale and shape
parameters of the simulated wind speed time series and the historical
wind speed time series in different months. The collective results are
shown in Figure 6.

As shown in Figure 6A showed the scale parameters for different
months, and Figure 6B showed the shape parameters for different
months. It could be seen from the figure that by analyzing the
experimental data of the improved first order MC, the wind speed
series accurately retained the monthly probability distribution
information of the historical wind speed series, and could better
maintain the wind field distribution characteristics of the monthly
wind field. There was no significant difference in the scale and
morphological parameters of the corresponding Weibull distribution
between the two.However, a singleMarkovmodel that did not consider
seasonal characteristics, dry and wet characteristics, and day and night
characteristics could not accurately depict the monthly probability
distribution of historical wind speeds.

FIGURE 7
Calculation time and rolling scheduling optimization effects for different time periods. (A) Computation time for different time periods. (B) Rolling
scheduling optimization effect.
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By taking into account the seasonal characteristics, dry and wet
characteristics, and sunshine characteristics of the first order MC,
this paper established a modified model for the first order MC. This
method could effectively improve the accuracy of simulated wind
speed series, which was of great significance for improving the
accuracy of grid planning and evaluation including wind PG. At the
same time, the improvement of this method also facilitated the study
of the interaction between wind PG and load, solar photovoltaic PG.

3.3 Optimization model based on rolling
scheduling optimization algorithm

Figure 7 shows the calculation time of the rolling scheduling
optimization algorithm based on the active set method at different
periods in the simulation.

As shown in Figure 7A showed the calculation time for different
time periods, and Figure 7B showed the rolling scheduling
optimization effect. From the figure, it could be seen that on this
basis, the rolling scheduling optimization algorithm was a very
effective calculation method. The average operation time of this
method was maintained at about 0.2 s, which showed that this
method could well achieve online operations. Day ahead scheduling
was restricted by the accuracy of wind forecasting, and there was a
large error; through rolling adjustment, the error between the total
output curve of the unit and the actual total output curve of the unit
could be significantly reduced. The results showed that the rolling
scheduling optimization algorithm had good optimization effect.

4 Conclusion

With the continuous development and application of NE
technologies, distributed NE grid connection has become an
important component of modern energy systems. Distributed NE
systems have the characteristics of decentralization, renewability,
and flexibility, but they also face challenges in power system stability
and security. Therefore, how to achieve the coordinated operation of
distributed NE and traditional power systems and ensure the
stability and security of power systems has become an urgent
issue to be solved. This paper discussed the temporal wind speed

model. The year was divided into 12 cycles, and the seasonal and
daily characteristics of wind speed were introduced into the first
order Markov model; on this basis, the dry and wet characteristics of
wind were introduced, and then an improved first order MC model
was proposed to simulate the timing of wind. Experiments showed
that this new model made the simulated wind speed data more
accurate. On this basis, this paper also designed a rolling scheduling
optimization method and explains its initialization strategy. The
numerical simulation results showed that the method was effective:
After adjusting the operation plan, the method could effectively
reduce the error between the total power curve of the unit and the
actual power curve of the unit.
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