
Adaptive SPP–CNN–LSTM–ATT
wind farm cluster short-term
power prediction model based on
transitional weather classification

Guili Ding1,2, Gaoyang Yan1,2*, Zongyao Wang1,2, Bing Kang1,2,
Zhihao Xu1,2, Xingwang Zhang1,2, Hui Xiao1,2 and Wenhua He1,2

1Department of Electrical Engineering, Nanchang Institute of Technology, Nanchang, China, 2Jiangxi
Engineering Research Center of High Power Electronics and Grid Smart Metering, Nanchang Institute of
Technology, Nanchang, China

With the expansion of the scale of wind power integration, the safe operation of
the grid is challenged. At present, the researchmainly focuses on the prediction of
a single wind farm, lacking coordinated control of the cluster, and there is a large
prediction error in transitional weather. In view of the above problems, this study
proposes an adaptive wind farm cluster prediction model based on transitional
weather classification, aiming to improve the prediction accuracy of the cluster
under transitional weather conditions. First, the reference wind farm is selected,
and then the improved snake algorithm is used to optimize the extreme gradient
boosting tree (CBAMSO-XGB) to divide the transitional weather, and the sensitive
meteorological factors under typical transitional weather conditions are
optimized. A convolutional neural network (CNN) with a multi-layer spatial
pyramid pooling (SPP) structure is utilized to extract variable dimensional
features. Finally, the attention (ATT) mechanism is used to redistribute the
weight of the long and short term memory (LSTM) network output to obtain
the predicted value, and the cluster wind power prediction value is obtained by
upscaling it. The results show that the classification accuracy of the CBAMSO-XGB
algorithm in the transitional weather of the two test periods is 99.5833% and
95.4167%, respectively, which is higher than the snake optimization (SO) before
the improvement and the other two algorithms; compared to the CNN–LSTM
model, the mean absolute error (MAE) of the adaptive prediction model is
decreased by approximately 42.49%–72.91% under various transitional weather
conditions. The relative root mean square error (RMSE) of the cluster is lower than
that of each reference wind farm and the prediction method without upscaling.
The results show that the method proposed in this paper effectively improves the
prediction accuracy of wind farm clusters during transitional weather.
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1 Introduction

Under the background of the transformation of a global energy
structure to low carbon and the continuous optimization of an
energy consumption structure, China has formulated a dual-carbon
plan of carbon peak and carbon neutralization, and the demand for
renewable energy continues to grow. Wind energy has become one
of the most widely developed and applied renewable energy sources
due to its outstanding advantages such as abundant resources,
environmental protection, high automation of operation and
management, and continuous reduction of electricity costs.
However, wind power has strong intermittence and volatility.
When wind power is connected to the grid on a large scale, it
will have a serious impact on the stable operation of the power grid
and power quality. Transitional weather is the weather that has
undergone major changes, such as typhoons and cold waves. During
this period, the sudden change in wind speed and temperature will
even lead to the damage of the unit equipment and the occurrence of
large-scale off-grid blackouts. Therefore, accurate wind power
prediction helps assist the steady-state operation of the power
system, rationally allocate energy storage, and reduce operating
costs.

The current wind power prediction methods are mainly
divided into three categories. The first category is the physical
model based on numerical weather prediction (NWP) which
includes features such as wind direction, pressure,
temperature, and roughness to simulate the wind power. This
method requires a large amount of historical meteorological data,
the calculation is very complex, and the accuracy of the model is
greatly affected by the accuracy of weather forecast. The second
category is statistical and probabilistic models, such as moving
average model, autoregressive integrated moving average
(ARIMA) model, and Bayesian model. They focus on the
time-varying relationship of time series and establish a
mapping relationship between predicted power and historical
data based on historical output data; however, the strong
nonlinearity of wind power is difficult to solve using the
statistical method, especially when there are obvious errors in
dealing with wind sequences with large oscillations. Therefore,
the third category, machine learning model and hybrid model,
has become the focus of the current research. The machine
learning method considers the nonlinear relationship between
the output and multiple input features and has high prediction
accuracy and generalization ability. The machine learning
methods include LSTM, back propagation neural network
(BPNN), and extreme learning machine (ELM). Xiong et al.
(2022) proposed a secondary optimization RMSprop–SFLA–BP
model, which uses the RMSprop algorithm with a stronger
purpose to perform a secondary gradient descent on the
objective function to obtain better initial values of BPNN
hyperparameters. Liu et al. (2021) proposed a new combined
loss function to update BPNN to build the wind power prediction
model. Gong et al. (2022) first decomposed the wind power data
via EMD to eliminate the non-stationary sequence and then used
the MA-BP model for prediction. However, BPNN is a gradient
descent method, which is sensitive to the initial parameter values
and often converges to the local optimal solution. Even if the
meta-heuristic algorithm is used to optimize BPNN, it often

obtains high-quality inferior solutions, and it has low training
efficiency for high-dimensional data and insufficient
generalization performance.

Compared to BPNN, support vector machine (SVM) tends to
perform better in short-term wind power prediction duet to its
advantages of fitting high-dimensional nonlinear data. Wang et al.
(2020) divided the historical data into multiple clusters according to
different features of different periods to establish their own
prediction models and achieved good performance and
computational efficiency in different scenarios. Zhang et al.
(2017) used the least square support vector machine model with
error correction to improve prediction accuracy. To overcome the
problem of selecting SVM kernel function, Yue et al. (2020) used the
whale optimization algorithm (WOA) to optimize the parameters,
and Huang et al. (2022) used the grid search method to optimize the
kernel function and penalty factor of SVM, which improved the
prediction accuracy of the model. However, the efficiency of SVM in
dealing with large sample data is relatively low, and the conventional
SVM only supports binary classification. When solving multi-
classification problems, model combinations are needed to solve
them, and the complexity of the model is not conducive to
engineering implementation.

As a special recurrent neural network (RNN) with the input gate,
output gate, and forget gate, LSTM can memorize long-term
temporal features and enhance the processing ability of long
sequences. Shahram et al. (2022) used the hyperparameter
optimization framework Optuna to optimize the hyperparameters
of LSTM. Wang et al. (2023) also proposed an improved sparrow
search algorithm (SSA) to optimize the parameters. Mohamad et al.
(2023) proposed a new coati optimization algorithm to optimize the
parameters of the CNN–LSTM hybrid model, and the prediction
accuracy and persistence of these models have been improved. Fu
et al. (2018) proved the superiority of LSTM compared with SVM
and other methods. Liu and Zhang (2022) introduced a sparse
pooling (SP) structure into the CNN–LSTM model to process data
with different resolutions. Liu et al. (2023) proposed an LSTM
network structure combining multiple graph convolution
network (GCN) to deal with high-dimensional input and
achieved good prediction performance.

The meteorological data show a certain degree of inertia in
space, and it changes gradually between the adjacent locations, that
is, the state information of a wind farm will affect the state
information of other wind farms nearby. However, the current
research on wind power prediction is mainly focused on the
prediction of a single wind turbine or wind farm, and the various
models established only utilize the data of time dimension, which
has some limitations. Extending the power prediction of a single
wind turbine or wind farm to the wind farm cluster and introducing
the information of spatial dimension can further improve the upper
limit of prediction accuracy.

In addition, it is mostly aimed at the overall power prediction for
a period of time at present. On the one hand, the prediction of the
whole wind farm cluster can coordinate the resource allocation of
wind farms in the region according to the prediction results. On the
other hand, there is a potential spatial correlation between adjacent
wind farms. This spatial correlation is shown on the time scale,
which represents the influence of wind information of the current
reference wind farm on the surrounding wind farm at the next
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moment. Fully considering this correlation can further improve the
prediction accuracy in the transitional weather period, facilitate the
timely exchange of information among wind farms in the region,
coordinate the adjustment of unit power generation plans, reduce
abandoned wind power, and improve economic benefits (Ye and
Zhao, 2014; Peng et al., 2016; Xue et al., 2017). Yang et al. (2021)
divided the cluster into time series clusters based on the difference in
NWP in time series and finally predicted the power of the entire
wind farm cluster. Zhang et al. (2021) predicted the standard wind
farm and then upscaled it to characterize the power of the entire
wind farm cluster. According to the performance index of each wind
farm in the cluster, Ye et al. (2018) designed a rolling optimization of
the physical–statistical combined prediction model; however, the
prediction accuracy of the transitional weather was still insufficient.
Yu et al. (2022) modeled the probability density of transitional
weather prediction errors, which improved the forecast performance
to a certain extent.

1.1 Contribution and novelty of the study

In view of the lack of detailed analysis of the impact factors of
transitional weather in the current prediction scheme mentioned
above, the problem of ignoring time continuity caused by selecting
different characteristics for different transitional weather and
establishing their own prediction models, and the problem of
focusing on the power prediction of a single wind farm without
analyzing the whole wind farm cluster, this paper proposes an
adaptive prediction model of the wind farm cluster based on
transitional weather classification to improve the power
prediction accuracy of transitional weather. First, the reference
wind farm in the cluster is selected, and the snake algorithm
based on chaotic initial population and dynamic adjustment of
mutation step size theory is used to optimize the parameters of XGB
to construct the transitional weather classification model. According
to the classification results, different input features under different
weather conditions are selected, and then a convolutional neural
network (CNN) with three-layer spatial pyramid pooling (SPP) is
constructed to fully extract the input features of different
dimensions. The obtained fixed dimension results are input into
the long- and short-term memory (LSTM) network, and the output
of the long- and short-term memory network is re-weighted by the
attention (ATT) module before the final fully connected layer so as
to realize the wind power prediction under transitional weather. The
prediction results of each reference wind farm are upscaled to obtain
the final cluster prediction results.

The main contributions of this study are as follows:

(1) Accurate transitional weather classification results are helpful in
selecting the optimal input features and improving the
prediction effect of the model. The improved snake
optimization algorithm proposed in this paper can effectively
improve the classification accuracy of the XGB model for
various transitional weather conditions.

(2) The sensitive meteorological factors in various transitional
weather periods are analyzed and selected in detail, which
are used as the input of the model to avoid the negative
influence of low correlation factors.

(3) Different transitional weather has different sensitive features. In
order to make the model fully extract the features of various
dimensions and avoid the destruction of time continuity caused
by modeling transitional weather separately, the three-layer SPP
structure is designed at the CNN layer. This enables the model
to fully extract sequence features while maintaining the
continuity of time.

(4) The transitional weather is a short-term process in the whole
time series. The important features of the short-term process are
easily ignored. In this paper, the ATTmechanism is added to the
LSTM layer to avoid the problem of ignoring the key features in
the short-term transitional weather.

2 Basic work

Due to the inertia of meteorological factors, they gradually
change in the vicinity of adjacent locations. For a wind farm
cluster, the meteorological and power data between adjacent
wind farms are likely to have high correlation, and the data
provided for the cluster prediction are also very similar. If all
wind farms in the cluster are predicted and fitted separately, it
will provide too much redundant information to the model, and the

TABLE 1 Correlation coefficient and correlation strength relationship table.

|ρx,y | Correlation strength

0.8–1.0 Highly strong correlation

0.6–0.8 Strong correlation

0.4–0.6 Moderate correlation

0.2–0.4 Weak correlation

0.0–0.2 Very weak or no correlation

FIGURE 1
Upscaling model.
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high dimensionality of the data will cause overfitting, leading to a
decrease in the generalization ability and prediction accuracy of the
model. Therefore, it is necessary to select a reference wind farm in
the wind farm cluster that contains the most valuable information as
the basis for the upscaling prediction of the wind farm cluster.

2.1 Reference wind farm selection

Pearson’s correlation coefficient formula is shown in Eq. 1:

ρx,y �
∑N
t�1

px,t − �px,t( ) py,t − �py,t( )������������∑N
t�1

px,t − �px,t( )2√ �������������∑N
t�1

py,t − �py,t( )2√ . (1)

Table 1 illustrates the corresponding relationship between the
range of Pearson’s correlation coefficient and the correlation
strength of variables.

In Eq. 1,px,t and py,t are the power measurement values of wind
farm x and cluster y at time point t, respectively, or the power

FIGURE 2
Flowchart of the CBAMSO algorithm.
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measurement values of any two wind farms at time point t, and N is
the length of the time series.

The scale of the wind power cluster is generally large, and there
are many wind farms inside. Therefore, the wind farms with a high
correlation coefficient are clustered and divided into multiple sub-
clusters. Then, the correlation between individual output and overall
output is analyzed in each sub-cluster, and the best reference wind
farm is selected for each sub-cluster (Wang et al., 2017). The final
selected multiple reference wind farms contribute the most to the
features of the cluster with little redundant data.

2.2 Upscaling model

For cluster power prediction, one method is to analyze the
historical power data of the cluster point. It is similar to the

prediction of a single wind farm, and the cluster prediction value
is obtained by mining the time series change rule. This method
considers a single factor and has relatively large limitations. The
other method is used to map the power of the cluster through
upscaling, which first analyzes the data information in the cluster to
obtain the best reference wind farm that can represent the features of
the cluster and then maps the power prediction value of the cluster
through the power of the wind farm in a certain proportional
relationship.

However, for large-scale wind farm clusters, it is difficult to find
a special reference wind farm, called the standard wind farm, that
can map the cluster power well. Therefore, the direct mapping
method from the single reference wind farm to the cluster is greatly
affected by the prediction accuracy of the reference wind farm, and
there must be great volatility. However, by dividing sub-clusters,
multiple mapping can better represent cluster power. Specifically,
this is an indirect mapping method. First, the entire wind farm
cluster is divided into multiple sub-clusters. The power of the
corresponding sub-cluster is obtained by mapping the power of
the reference wind farm in the sub-cluster, and then the power of the
entire wind farm cluster is obtained by mapping the power of these
sub-clusters. The upscaling model is shown in Figure 1. The
predicted value PG,i of the cluster power at time i calculated
using the upscaling model can be obtained by Eqs 2, 3:

PG,i � ∑E
n�1

anPn,i, (2)

an � Ce

Cn
. (3)

Here, E is the number of sub-clusters of wind farm clustering. Each
wind farm sub-cluster has a reference wind farm. The weight coefficient
of the reference wind farm n is an, the installed capacity is Cn, the
installed capacity of the corresponding sub-cluster is Ce, and the power
prediction value of the reference wind farm n at time i is Pn,i.

2.3 Transitional weather

In addition to the necessary shutdown of wind turbines in
order to ensure safety in extreme weather, the transitional weather

TABLE 2 Parameter definition of the snake optimization algorithm.

Symbol Definition

xm/f
i , xm/f

r , x̂m/f
i , xm/f

best/worst , and x̂m/f
best/worst

The position of male/female individual i, the position of random male/female individual, the position of new male/female
individual i generated by chaotic mapping, the position of best/worst male/female individual, and the position of the best/worst
male/female mutation individual

t, T, and r Current number of iterations, maximum number of iterations, and random number between 0 and 1

xmax and x min Upper and lower bounds of the problem to be solved

xfood Position of the best individual in the whole population

c1, c2, and c3 Constants with values of 0.5, 0.05, and 2

Fm/f and Mm/f Male/female fighting ability and male/female mating ability

fm/f
best/worst , f̂

m/f

best/worst , and fm/f
i

Fitness of the best/worst male/female individual, fitness of the best/worst male/female mutation individual, and fitness of the
current male/female individual

FIGURE 3
Multi-layer spatial pyramid pooling process of features of
different dimensions.
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that has a great impact on the operation of wind turbines is mainly
divided into high wind speed fluctuation weather, low-
temperature icing weather, high-temperature weather, and
heavy precipitation weather (Zeng and Chen, 2019). Wind
speed begins to increase from a certain minimum threshold
and reaches the maximum threshold after a series of
fluctuations. Again, it drops to reach the minimum threshold.
This time period is called a high wind speed fluctuation process. In
the high wind speed fluctuation weather, wind speed is the most
significant feature. In the low-temperature icing weather, the wind
turbine blade is partially iced, which will lead to uneven mass
distribution and increased load. It is difficult to achieve rated
power when the wind speed is not high. At this time, in addition to
wind speed, the features of temperature and relative humidity
should be considered to improve prediction accuracy. Wind
power generation has the features of low wind speed at high
temperature. During the high-temperature period, air density is
often low and wind power is small. In addition, the high
temperature will overload the internal line of the wind turbine,
further limiting the power of the operation. The impact of heavy
precipitation on wind power is more complicated. On the one
hand, heavy precipitation weather will increase air density and
change atmospheric circulation, thus affecting wind speed. On the
other hand, the angle of rain hitting the wind turbine blade and
the uneven quality caused by water on the blade surface will also
affect power generation.

In this paper, four types of transitional weather, namely, low-
temperature icing weather, high-temperature weather, heavy
precipitation weather, and high wind speed fluctuation
weather, are selected. Their labels are 1, 2, 3, and 5,
respectively, and the labels of the other types of weather are 4.
Among them, the high wind speed fluctuation weather, according
to the wind speed sequence and the actual conditions of each
wind farm, has the normalized wind speed of 0.3 selected as the
minimum threshold and 0.6 selected as the peak threshold. In this
interval, the period of time that meets the conditions of high wind
speed fluctuation can be determined as a high wind speed
fluctuation process.

3 The establishment of the
SPP–CNN–LSTM–ATT network based
on transitional weather classification

3.1 Weather classification model based on
the improved SO-XGB algorithm

3.1.1 XGB
As an improved version of GBDT, XGB uses an incremental

approach. The new tree generated by each iteration will fit the
residual of the previous tree, fix the error of the previous tree
classification, and use gradient lifting to continuously reduce the
loss of the previously generated decision tree with parallel processing
capabilities. The final classification prediction results are obtained by
summing multiple decision trees. The calculation formulas are
shown in Eqs 4, 5:

ŷi � ∑A
a�1

fa xi( ), (4)

xi � xi,1, xi,2, L, xi,m[ ]. (5)
Here, ŷi is the classification category corresponding to the

feature set xi of sample i, and xi has m features. fk(xi)
represents the weight of sample i classified to the leaf node in the
tree a, and the number of trees is A. The calculation formula of the
objective function Lobj of the decision tree is shown in Eq. 6:

Lobj � ∑n
i�1
l ŷi, yi( ) +∑K

k�1
Ω fk( ). (6)

Here, ∑n
i�1l(ŷi, yi) is the loss function, which is used to measure the

difference between the predicted category ŷi and the actual category
yi, and the objective function is approached using the second-order
Taylor expansion (Li and Liu, 2019), which not only increases
accuracy but also facilitates the custom loss function (Su et al.,
2023). The advantage of the XGB tree is that the regularization term∑K

k�1Ω(fk) is introduced to punish the complex model and prevent
overfitting (Zhao et al., 2019). The calculation formula is shown in
Eq. 7:

FIGURE 4
Structure of LSTM.
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Ω fk( ) � γT + λ

2
∑T
j�1
ω2
j . (7)

Here, γ and λ are regularization coefficients, which are used to
control the number of leaf nodes T and the weight ωj of the leaf
node j.

3.1.2 A snake optimization algorithm combining
Bernoulli chaotic map and bidirectional adaptive
Cauchy mutation (CBAMSO)

The snake optimization algorithm is inspired by the snake‘s
foraging and breeding behavior (Hashim and Hussien, 2022).
Affected by temperature Temp and food quantity Q at the same
time, the snake group can be divided into three behavioral patterns:
food search mode, fighting mode, and mating mode.

First, an initial population xi is generated. The total number of
individuals in the population is n, in which males and females are
equally divided. The initialization formula is shown in Eq. 8:

xi � x min + r × x max − x min( ). (8)
The temperature formula is shown in Eq. 9:

Temp t( ) � exp
−t
T

( ). (9)

The food quantity formula is shown in Eq. 10:

Q t( ) � c1 × exp
t − T

T
( ). (10)

WhenQ < 0.25, the snake group chooses a random location to
search for food and updates the location. The location update
formulas for males and females are shown in Eqs 11, 12,
respectively:

xm/f
i t+1( ) � xm/f

r t( ) ± c2 × Am/f × x max − x min( ) × r + x min( ),
(11)

Am/f � exp
−fm/f

r

fm/f
i

⎛⎝ ⎞⎠. (12)

When Q > 0.25 and Temp > 0.6, the snake group begins to
approach food, and the population position update formula is
shown in Eq. 13:

xm/f
i t+( ) � xfood t( ) ± c3 × Temp t( ) × r × xfood t( ) − xm/f

i t( )( ).
(13)

WhenQ > 0.25 and Temp < 0.6, a random value is generated. If it
is less than the threshold of 0.6, the snake group will enter the
fighting mode. The male and female position update formulas are
shown in Eqs 14, 15, respectively:

xm/f
i t+1( ) � xm/f

i t( )
+ c3 × Fm/f × r × Q t( ) × xf/m

best t( ) − xm/f
i t( )( ),

(14)

Fm/f � exp
−ff/m

best

fm/f
i

⎛⎝ ⎞⎠. (15)

Otherwise, the snake group enters the mating mode, and the
male and female position update formulas are shown in Eqs 16, 17,
respectively:

FIGURE 5
Structure of the SPP–CNN–LSTM–ATT combined model
network.
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xm/f
i t+1( ) � xm/f

i t( )
+ c3 × Mm/f × r × Q t( ) × xf/m

i t( ) − xm/f
i t( )( ),

(16)

Mm/f � exp
−ff/m

i

fm/f
i

⎛⎝ ⎞⎠. (17)

After mating, snakes can choose whether to hatch eggs. If they
choose to hatch, the worst male and female individuals will be
replaced. The replacement formula is shown in Eq. 18:

xm/f
worst � x min + r × x max − x min( ). (18)

The snake optimization algorithm uses multiple fixed
parameters c1, c2, and c3, which is easy to cause local
convergence. The mutation operation can jump out of the local
optimum to a certain extent, but the size of the mutation step has a
great influence on the optimal solution. If the step size is too small,
the generated mutation individual shows little difference from the
original individual and cannot jump out of the convergence region.

If the step size is too large, it may destroy the structure of the original
individual, generate an invalid sample, reduce computational
efficiency, and affect model performance. Therefore, this paper
proposes a bidirectional adaptive Cauchy mutation strategy to
add perturbations to the optimal solution and worst solution of
each iteration at the same time. By comparing the fitness of the
mutation individual and the original individual in the current
iteration, the step size of the individual variation in the next
iteration is dynamically adjusted so as to improve the problem
that the algorithm is easy to fall into the local optimal solution and
improve the effect of population evolution and convergence speed.
The bidirectional adaptive Cauchy mutation operation update
formula is shown in Eq. 19:

x̂m/f
best/worst t+1( ) � xm/f

best/worst t( )
+ xm/f

best/worst t( ) × φbest/worst t( ) × Cauthy 0, 1( ).
(19)

The calculation formula of the adjustment factor φbest/worst is
shown in Eq. 20:

FIGURE 6
Flowchart of the CBAMSO-XGB–SPP–CNN–LSTM–ATT adaptive prediction model.

TABLE 3 Installed capacity of each wind farm in the cluster.

Wind farm number FD001 FD002 FD003 FD004 FD005 FD006 FD007

Installed capacity (MW) 397 99 66 203 106 49.5 36

First, clean the abnormal data, divide the wind speed–power scatter plot into several regions according to fixed horizontal and longitudinal direction intervals, detect the outliers in each region

using the quartile method according to the horizontal and vertical order, and set them to null values. Then, fill all missing values using the linear interpolation method (Zhao et al., 2014).
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φbest/worst t( ) � f̂
m/f
best/worst t( ) − fm/f

best/worst t( )
∣∣∣∣∣∣ ∣∣∣∣∣∣. (20)

Here, Cauthy(0, 1) represents the function of generating
standard Cauchy random variables. Comparing the fitness of the
position before and after the mutation, if the fitness is higher after
the mutation, the position before the mutation is replaced;
otherwise, the original position is retained.

When the population is generated and the snake hatches eggs
to reset the worst solution, a pseudo-random number with non-

uniform distribution is used. The chaotic sequence has orbital
instability and is highly dependent on the initial value. Even if the
two similar initial values are iterated, a completely different
sequence of random numbers will be obtained. Therefore, this
paper uses the Bernoulli chaotic map instead of pseudo-random
number initialization to expand the search area, increase the
diversity of the population, and improve global search
performance. The formula of Bernoulli chaotic map is shown
in Eq. 21:

FIGURE 7
Power correlation coefficient heat map between the cluster and each farm.

FIGURE 8
Classification results of the CBAMSO-XGB model for the weather of Periods 1 (A) and 2 (B).
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zk+1 �
zk

1 − λ
, zk ∈ 0, 1 − λ[ ],

zk − 1 + λ

λ
, zk ∈ 1 − λ, 1( ].

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (21)

Here, zk+1 represents the chaotic sequence generated by k
iterations, and the value of λ is 0.6.

The formula of Bernoulli chaotic map initialization is shown in
Eq. 22:

x̂m/f
i � x min + zk+1 × x max − x min( ). (22)

The specific flowchart of the CBAMSO algorithm is shown in
Figure 2. The improved snake optimization algorithm is used to
optimize the learning rate, tree depth, and optimal number of XGB
trees with the error rate of sample classification as the objective
function. The parameters mentioned in the above algorithm and
their definitions are shown in Table 2.

Based on the above XGB model and the improved snake
optimization algorithm, the steps of the transitional weather
classification task are as follows, which is also shown in the first
half of the flowchart of the complete method used in this paper
shown in Figure 6.

(1) Mark the weather types of the sample data manually, and select
a certain number of weather types to train the model.

(2) Initialize the XGB tree, and obtain the optimal hyperparameters
through the improved snake optimization algorithm.

(3) Use the NWP data and the corresponding marked weather type
as the input and output, respectively, to train the XGB model.

(4) Input the test set to verify the accuracy of the model
classification.

(5) Introduce NWP data from the validation set into the trained
model to classify weather types.

3.2 Prediction model based on
SPP–CNN–LSTM–ATT

3.2.1 SPP–CNN
CNN is a type of deep feedforward neural network with local

connection and weight sharing. It has strong feature extraction
ability and is widely used in computer vision, natural language
processing, and other fields.

After optimizing the features, the input feature dimension of the
time series samples is constantly changing. Traditional truncation or
filling to make the input feature dimension consistent will inevitably
cause high-dimensional input samples to lose a large amount of
effective data, and low-dimensional input samples fill up a large
amount of invalid information, resulting in low feature extraction
effects. If LSTM prediction models are established for input samples
with different features, the time continuity of meteorological data is
ignored and the requirements of the LSTM model are not met.
Therefore, this paper introduces a special spatial pyramid pooling
structure to realize the feature extraction of variable length input by
CNN without adding or deleting sample data while ensuring the
time continuity of data.

Spatial pyramid pooling processes the input feature dimension
by fixing the pooling output dimension. According to the fixed
pooling output dimension n, the input features are divided into n
parts, and the maximum pooling is performed in each region. The
granularity of a single spatial pyramid pooling layer is too coarse to
fully extract the features of different dimension inputs, which will

FIGURE 9
Overall confusion matrix of the two periods.

FIGURE 10
Convergence curves of CBAMSO, SO, SSA, and WOA.

TABLE 4 Comparison of classification accuracy of different algorithms.

Algorithm Time period 1 (%) Time period 2 (%)

SO 91.4583 87.0833

SSA 94.7917 88.6458

WOA 96.6667 90.5208

CBAMSO 99.5833 95.4167
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lead to insufficient model training and low performance. In this
paper, a multilayer spatial pyramid pooling structure is used to splice
the pooling results of each layer and transfer them to the flattening
layer to fully extract the features of inputs of different dimensions.
The multi-layer spatial pyramid pooling process of features of
different dimensions is shown in Figure 3.

3.2.2 LSTM
LSTM is a special recurrent neural network that is often used to

deal with time axis problems. It can solve long-term dependence and
gradient disappearance or explosion problems in general recurrent
neural networks (Kim and Byun, 2022). Each unit of LSTM
comprises four function layers, and the information transmission
is controlled by the forget gate, memory gate, and output gate
structures. The structure of LSTM is shown in Figure 4.

Each A represents an LSTM unit. When the data pass through
LSTM, it will first pass through the forget gate, which will read the
output ht−1 of the previous moment and the input xt of the
current moment. Through the sigmoid neural layer and point-by-
point multiplication operation, each number in the unit state ct−1
is given a number between 0 and 1, which represents the weight of
whether to let the information pass. Then, the memory gate
passes through two steps: the tanh function layer first extracts the
effective information in the current vector and then uses the
sigmoid function to control how much these memories should be
put into the unit state to complete the screening of effective
information. Finally, the output gate will first use the sigmoid
function to extract the effective information in the vector
integrated by the current input value and the previous output
value. The tanh function will compress and map the unit state to

FIGURE 11
Normalized high wind speed fluctuation curves of Periods 1 (A) and 2 (B).

FIGURE 12
Weather classification results of Periods 1 (A) and 2 (B) after extracting the high wind speed fluctuation weather.
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the interval (−1,1) and then multiply the sigmoid function and
tanh function to obtain the output of LSTM at time t.

The calculation formulas mentioned above are shown in Eqs
23–28:

ft � sigmod Wf · ht−1, xt[ ] + bf( ), (23)
it � sigmod Wi · ht−1, xt[ ] + bi( ), (24)
~ct � tanh Wc · ht−1, xt[ ] + bc( ), (25)

ot � sigmod Wo · ht−1, xt[ ] + bo( ), (26)
ht � ot · tanh ct( ), (27)
ct � ft · ct−1 + it · ~ct. (28)

Here,Wf,Wi,Wc, andWo represent the weight matrices for the
forget gate, memory gate, intermediate output, and output gate,
respectively. Meanwhile, bf, bi, bc, and bo represent the constant
parameter matrices for the forget gate, memory gate, intermediate
output, and output gate, respectively.

3.2.3 Attention mechanism
Attention mechanism is a deep learning method that simulates

human visual attention, and its essence is a resource redistribution
strategy. When LSTM processes the input sequence, each hidden layer
is given the same weight. Transitional weather is a short-term change

process in the whole time series. Therefore, the key features in this
short-term process are easily discarded as invalid information, which
leads to the insufficient learning effect of the model on transitional
weather. The attention mechanism calculates the attention weight by
comparing the correlation between the previous hidden layer vector and
the output, improves the extraction of effective information, realizes the
dynamic extraction of key parts in the time series, and ensures that the
model fully learns the key features of the transitional weather period.

First, the LSTM hidden layer output Ht is used as the input of
the attention layer to train the weight coefficient St through the fully
connected layer. The calculation formula is shown in Eq. 29:

St � tanh ωHt + bt( ). (29)
The weighted sum of the weight coefficient and the hidden layer

output is used to obtain the output result ot. The calculation formula
is shown in Eq. 30:

ot � ∑N
t�1
StHt. (30)

3.2.4 Adaptive prediction model
During the transitional weather period, meteorological factors,

such as temperature, air pressure, and wind speed, change greatly,

FIGURE 13
Correlation coefficient heat maps of the features of high wind speed fluctuation weather (A), low-temperature icing weather (B), high-temperature
weather (C), and heavy precipitation weather (D).
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FIGURE 14
Prediction results of the CNN–LSTM model without feature optimization (A), the SPP–CNN–LSTM model after feature optimization (B), and the
SPP–CNN–LSTM–ATT model proposed in this paper (C) in three periods.

TABLE 5 Comparison of the prediction results of three models in the transitional weather period.

Evaluating indicator Transitional weather CNN–LSTM SPP–CNN–LSTM SPP–CNN–LSTM–ATT

MAE Low-temperature icing weather 3.0708 2.4969 1.7661

High-temperature weather 3.9824 2.3061 1.0788

Heavy precipitation weather 1.8876 1.6644 0.9833

High wind speed fluctuation weather 2.2551 1.8890 0.9365

RMSE Low-temperature icing weather 20.4731 13.2473 7.0962

High-temperature weather 20.6353 7.4355 1.8111

Heavy precipitation weather 5.8776 4.6825 1.6679

High wind speed fluctuation weather 8.1925 6.8156 2.0776
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which have a great impact on the prediction results. At this time, the
influence of sensitive meteorological factors on power will be
magnified, and the influence of other factors on power will be
reduced. If all the features are fully considered, meteorological
factors with lower correlation will have a negative impact on
power prediction results. Therefore, after optimizing the features
based on the CBAMSO-XGB weather classification model, it is
coupled with SPP–CNN–LSTM–ATT, and different features are
selected according to different weather scenarios to construct an
adaptive prediction model, which can improve the prediction
accuracy under transitional weather conditions. The structure of
the proposed SPP–CNN–LSTM–ATT combined model network is
shown in Figure 5, and the complete flowchart of the CBAMSO-
XGB–SPP–CNN–LSTM–ATT adaptive prediction model is shown
in Figure 6.

4 Case analysis and discussion

4.1 Dividing into sub-clusters and selecting
their respective reference wind farms

The example selects a wind farm cluster in northern China,
which comprises seven wind farms. The installed capacity of each
wind farm is shown in Table 3. The data source comprises a total of
35,136 sets of NWP and power data from seven wind farms in 2020.

The time resolution is 15 min, and the features are wind speed and
directions at 10 m, 30 m, 50 m, and 70 m, temperature, relative
humidity, air pressure, and power.

The power correlation coefficient between the cluster and each farm
is shown in Figure 7. The cluster is divided into four clusters according
to the correlation coefficient thermalmap.Wind farm FD001 has a very
low correlation with other wind farms, so it is regarded as a cluster
alone; wind farms FD002 and FD006 are classified as a cluster; wind
farms FD003 and FD007 are classified as a cluster; and wind farms
FD004 and FD005 are classified as a cluster. The reference wind farms
in each sub-cluster is selected according to the correlation betweenwind
farms and clusters, and the final reference wind farms are FD001,
FD002, FD004, and FD007.

4.2 Transitional weather classification and
optimal feature selection

In the four types of transitional weather mentioned in Section
2.3, the high wind speed fluctuation weather, according to the wind
speed sequence and the actual conditions of each wind farm, has the
normalized wind speed of 0.3 selected as the minimum threshold
and 0.6 selected as the peak threshold. In this interval, the period of
time that meets the conditions of high wind speed fluctuation can be
determined as a high wind speed fluctuation process, without using
the CBAMSO-XGB model for classification.

Weather conditions except low-temperature icing weather, high-
temperature weather, and heavy precipitation weather are uniformly
marked as other types of weather. The above four weather types
manually marked in the sample are sequentially marked as weather
types 1–4 and assigned to the training and test sets in a 7:3 ratio. The
number of populations and the maximum number of iterations are 50.
TheCBAMSO-XGBmodel is trainedwith the classification error rate as
the objective function. After the classification is completed, high wind
speed fluctuation weather is extracted in other types of weather to avoid
the interference of high wind speed fluctuation weather on the other
three types of weather classification.

Taking the FD007 reference wind farm as an example, Figures 8A,
B show the classification results of the CBAMSO-XGB model for the
weather of Periods 1 and 2, respectively, and the overall classification
accuracy is relatively high. Time period 1 contains 480 sampling points,
time period 2 contains 960 sampling points, and the sampling frequency
is 15 min. The overall confusion matrix of the two periods is shown in
Figure 9. It can be seen that themodel has higher classification accuracy
for weather types 1, 2, and 4, and the classification accuracy of weather
type 3 is relatively lower. Compared to SO before improvement, SSA,
and WOA under the same parameter configuration, the convergence
curves of the algorithms are shown in Figure 10. The classification
accuracy is shown in Table 4.

TABLE 6 Comparison of the prediction results of reference wind farms and cluster.

Evaluating indicator FD001 FD002 FD004 FD007 Cluster without upscaling Cluster based on upscaling

MAE 12.5912 2.3720 3.7651 0.7905 30.8002 27.9281

RRMSE 0.1749 0.2406 0.2377 0.2195 0.1666 0.1480

Installed capacity(MW) 397 99 203 36 956.5 956.5

FIGURE 15
Comparison of the predicted power of the cluster without and
with upscaling and the actual power of the cluster.
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Combined with the analysis of Figure 10 and Table 4, it can be
seen that the optimal individual fitness value of the CBAMSO
algorithm proposed in this paper is less than 0.003, which is
better than the other three algorithms, and the number of
iterations is also lower than the other three algorithms. The
classification accuracy of CBAMSO in the transitional weather of
the two test periods is 99.5833% and 95.4167%, respectively, which is
higher than SO, SSA, and WOA. Hence, it is proved that the
Bernoulli chaotic map and the bidirectional adaptive Cauchy
mutation strategy proposed in this paper effectively improved the
convergence speed and classification accuracy of SO.

The normalized high wind speed fluctuation curves of Periods
1 and 2 are shown in Figures 11A, B, respectively. Weather type
4 with no precipitation, no icing, and no high temperature is selected
to extract the high wind speed fluctuation period. Weather with high
wind speed fluctuations can be determined if the high wind speed
fluctuation interval includes the lowest threshold of 0.3 and the
highest threshold of 0.6. The weather classification results of Periods
1 and 2 after extraction are shown in Figures 12A, B, respectively,
where weather type 5 is the high wind speed fluctuation weather.

4.3 Model prediction and result analysis

The features for transitional weather scenarios are optimized.
The correlation coefficient heat maps of the features of high wind
speed fluctuation weather, low-temperature icing weather, high-
temperature weather, and heavy precipitation weather are shown in
Figures 13A–D, respectively.

Under the high wind speed fluctuation weather condition, the
correlation between wind speed and power is far greater than other
features, and the optimized features are wind speed at each height.
Under the low-temperature icing weather condition, the correlation
between wind speed and power is weakened, and the correlation
between temperature and power and that between relative humidity
and power are enhanced. Optimized features are wind speed at each
selected height, temperature, and relative humidity. Under the high-
temperature weather condition, the wind speed is at a lower level, so
the optimized features are wind speed at heights 30 m, 50 m, and
70 m and temperature. Under the heavy precipitation weather
condition, according to the correlation coefficient heat map, the
optimized features are wind speed at each selected height, air
pressure, and relative humidity.

A three-layer spatial pyramid pool is constructed according to
the optimized features, and the feature dimension of CNN output to
LSTM to 9 is fixed. The three-layer spatial pyramid pooling layer
divides the feature maps obtained by convolution of the input of any
dimension into two, three, and four parts and performs maximum
pooling on each part, respectively, and the results obtained by the
three-layer spatial pyramid pooling are spliced to obtain the fixed-
dimensional features that are finally input into LSTM.

The large sample data are assigned to training and testing samples
in an 8:2 split to allow for an adequate inclusion of a wide range of
transitory weather. The prediction results of the CNN–LSTM model
without feature optimization, the SPP–CNN–LSTMmodel after feature
optimization, and the SPP–CNN–LSTM–ATT model proposed in this
paper are compared in Periods 1, 2, and 3, as shown in Figures 14A–C,
respectively. Among them, time period 1 includes 192 sampling points

within 48 h of reference wind farm FD007, in which sampling points
19–37 and 118–128 are high-temperature weather and 38–117 and
129–167 are highwind speed fluctuationweather; time period 2 is heavy
precipitation weather; and time period 3 includes 96 sampling points
within 24 h of reference wind farm FD004, in which sampling points
1–60 are low-temperature icing weather.

The mean absolute error (MAE) and root mean square error
(RMSE) are used as evaluation indicators. The prediction results of
the three models under various transitional weather conditions are
shown in Table 5. Analyzing the prediction results and errors of each
model, it can be seen that the MAE of the SPP–CNN–LSTM–ATT
model proposed in this paper is between 0.9365 and 1.7661, and the
RMSE is between 2.0776 and 7.0962, which is much smaller than the
corresponding error of the CNN–LSTM and SPP–CNN–LSTM
models, and the prediction accuracy is significantly improved.
Hence, it is proved that the SPP structure and attention
mechanism designed in this paper fully learn the important
features of spatial and continuous time dimensions and have
good prediction performance for transitional weather.

The prediction error results of the SPP–CNN–LSTM–ATT model
for each reference wind farm, i.e., cluster without upscaling and cluster
with upscaling, are shown in Table 6, where the cluster power without
upscaling is obtained by the direct summation of the power predictions
of seven wind farms within it and the cluster power with upscaling is
calculated based on the predictions of the reference wind farms, as
shown in Eqs 2, 3. The comparison between the predicted power of the
cluster without and with upscaling and the actual power of cluster is
shown in Figure 15. Due to the existence of moments of very low wind
power in individual wind farms, the errors at these points have a
negative impact on the overall accuracy assessment, so the evaluation
indexes are MAE and relative root mean square error (RRMSE). The
cluster power value obtained by upscaling the power predictions of the
reference wind farm contains less redundant information and can be
seen to have a lower error than the cluster power value obtained by
direct accumulation. The combined analysis of MAE and its
corresponding installed capacity, as well as the analysis of RRMSE,
due to the smoothing effect of the cluster, and the cancellation effect of
the volatility of each wind farm contribute to the higher prediction
accuracy of the cluster than the individual wind farms.

5 Conclusion

The specific contributions of the CBAMSO-
XGB–SPP–CNN–LSTM–ATT model proposed in this study are
as follows:

(1) The CBAMSO algorithm proposed in this paper achieves a fast and
accurate classification of transitional weather, and the classification
accuracy of CBAMSO in the transitional weather of the two periods
is 99.5833% and 95.4167%, respectively, which is higher than SO,
SSA, and WOA. Compared with CNN–LSTM and
SPP–CNN–LSTM models, the MAE and RMSE of the
proposed model in each transitional weather period are
approximately reduced by 42.49%–72.91% and 65.34%–91.22%,
respectively. The above strategies have been shown to solve the
problem of lack of detailed analysis of influencing factors in wind
power prediction of transitional weather and the problem of
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ignoring time continuity by modeling separately, which effectively
improves the prediction accuracy.

(2) There is error complementarity between wind farms in the
cluster. The reference wind farm for upscaling accurately and
effectively maps cluster power, and the cluster wind power
prediction error is lower than the prediction error of each
reference wind farm. The above strategies have been shown
to solve the problem of focusing on the power prediction of a
single wind farm and the lack of analysis of the whole wind farm
cluster, and the power accuracy of the cluster is higher.

However, there are still some limitations to this study. The accuracy
of wind power prediction depends on data quality. Meteorological data
on transitional weather are abnormal compared with those on normal
weather. It is easy to be eliminated by the quartile method as the wrong
data, and the recovery and correction of the eliminated data are also
limited. Using more accurate NWP acquisition data and abnormal data
cleaning correction method can effectively improve the prediction
accuracy. Due to the limitation of data, this paper divides transitional
weather into four categories, which are relatively limited. The next work
will further study the influencemechanism of transitional weather on the
operation of wind turbines and whether it is applicable to other regions
so as tomake amore detailed division ofweather types. In addition to the
necessarymeteorological and historical power data, the next researchwill
consider the introduction of wind turbine internal features, virtual power
plants, and other features to further improve the prediction accuracy.
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