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To effectively develop the shale gas in the southern Sichuan Basin, it is essential to
accurately predict and evaluate the single-well production and estimated ultimate
recovery (EUR). Empirical production decline analysis is most widely used in
predicting EUR, since it is simple and can quickly predict the gas well
production. However, this method has some disadvantages, such as many
parameters of the model, difficulty in fitting and large deviation. This paper
presents an efficient process of EUR prediction for gas wells based on
production decline models. Application of nine empirical production decline
models in more than 200 shale gas wells in the Changning block of the
Sichuan Basin was systemically analyzed. According to the diagnosis of flow
regime, it was determined that all models are applicable in the prediction of
production and EUR in this area, with the fitting degree higher than 80% for gas
wells producing for more than 12 months. Based on the fitting and prediction
results, the parameter distribution charts of the nine production decline models
with initial parameters constrained were plotted for shale gas wells, which greatly
improved the prediction accuracy and efficiency. Coupled with the probability
method, the EUR was evaluated and predicted effectively, and the average EUR of
more than 200 shale gas wells in the Changning block is 1.21 × 108 m3. The EUR of
Well CNH1 predicted by the proposed process and charts is believed reliable. The
study results provide meaningful guidance for the efficient prediction of gas well
production and EUR in the Changning block.
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1 Introduction

As a hot spot in unconventional gas exploration and development, shale gas has
renovated the energy framework in the United States and around the world. In China,
with the transformation of the economy from rapid development to high-quality
development and the adjustment of energy structures, the demand for clean energy
represented by natural gas is increasing. According to a global survey by the U.S. Energy
Information Administration (EIA), the shale gas reserves in China are about 31.6 × 1012 m3

(ElA’s, 2019), suggesting a major option for gas production in the country. With focus on the
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marine shale areas shallower than 3,500 m in the Sichuan Basin,
China produced 240 × 108 m3 of shale gas in 2022 (Liu et al., 2023).

Through trials and tests in recent years, significant
breakthroughs have been made in the exploration of marine
shales in the Ordovician Wufeng formation–Silurian Longmaxi
formation (“Wufeng–Longmaxi”) in the Sichuan Basin. Typically,
in Changning, a major block of the Changning–Weiyuan National
Shale Gas Demonstration Area, the technology for effective
development of marine shale gas layers shallower than 3,500 m
has been formed, which allows the EUR per well to increase
gradually, providing a valuable basis for production allocation,
working system optimization, and new well drilling (Ma and Xie,
2018; Xie, 2018). Nevertheless, as a kind of self-generating and self-
storing artificial gas reservoir, shale gas reservoirs are developed by
“long horizontal well + volume fracturing,” and the gas seepage
mechanism is complex. These bring difficulties in the analysis of
shale gas production decline and EUR prediction. Scholars have
analyzed and predicted the production performance of shale gas
wells by using various methods, such as the experimental results
analysis (Xu et al.; Xu et al., 2023), analytical and numerical
simulation (Samandarli et al., 2011; Stalgorova and Mattar, 2012),
data-driven production decline curve analysis (Fetkovich, 1973;
Blasingame et al., 1991), and machine learning and artificial
intelligence algorithms (Wang et al., 2018; Zeng et al., 2018;
Wang et al., 2021; LuoDingCheng et al., 2022; Wang et al.,
2023). The analytical methods take into account complex seepage
mechanisms and rock–fluid interactions such as adsorption,
desorption, slippage, and diffusion effects (Yao et al., 2013; Du
et al., 2021; Cui et al., 2023). However, the analytical and numerical
simulation methods are computationally expensive, difficult, and
time-consuming; also, a complete set of parameters required by
analytical models are hard to obtain, and their prediction results are
highly dependent on the accuracy of input parameters. In contrast,
the data-driven production decline model is simple and efficient in
predicting shale gas production and provides quick and reasonable
prediction of production, so it is most widely used in EUR
prediction. However, it involves a large number of parameters
and the unclear value range of initial fitting parameters, possibly
causing a large deviation between the prediction result and the actual
production. Thus, the range of the model parameters should be
clarified to ensure the prediction accuracy.

Taking shale gas wells in the Changning block as examples,
and based on the field production data, the deviation in
production fitting and prediction using empirical production
decline models were analyzed, and the range of model
parameters was defined. The probability method is considered
reasonable in the EUR evaluation of shale gas wells. The study
results provide a reference for reservoir engineers to adjust the
production decline model, and also guide the high-quality, large-
scale, and effective development of shale gas and production
evaluation in the southern Sichuan Basin.

2 Geological setting

The Changning block in the low gentle structural belt, southern
Sichuan Basin, includes the Changning anticline, without faults in
the main part. Vertically, there are six sets of marine and continental

shale strata, among which the favorable strata are the Lower
Cambrian Qiongzhusi Fm and the Ordovician Wufeng
Fm–Silurian Longmaxi Fm (“Wufeng–Longmaxi”). The major
target interval from the Wufeng Fm to the first sub-member of
the first member of the Longmaxi Fm (“L1

1”) is composed of black
siliceous carbonaceous shale and organic-rich black carbonaceous
shale of outer shelf subfacies. In Wufeng–Longmaxi, most of strata
are buried at depths of less than 3,500 m, and the high-quality shale
is distributed continuously and stably with a thickness of about
30–60 m. The source rocks are highly enriched. The reservoir rocks
are characterized by high Total Organic Carbon, high gas content,
high brittleness, and medium porosity. The pressure system is
basically overpressure, suggesting a good gas storage condition. The
physical properties and gas-bearing properties vary slightly within the
same interval. Therefore, Wufeng–Longmaxi is the major series of
development strata and also the principal source of commercial shale
gas productivity (Yang et al., 2016; Ma and Xie, 2018).

The establishment of the Changning–Weiyuan National Shale
Gas Demonstration Area in 2012 inaugurated a new journey in the
efficient development of shale gas in the southern Sichuan Basin. By
2022, in the Changning block, over 510 wells had been put into
production, revealing a single-well decline rate of about 50% in the
first year of production. The Changning block has become a major
shale gas province, with the daily production over 1,500 × 104 m3

and the annual production over 50 × 108 m3.

3 Production decline analysis method

3.1 Empirical production decline models

The characteristics of the production stage of shale gas wells are
easy to observe; the production has an obvious decline phenomenon,
mainly showing rapid initial decline and then, with the passage of
time, generally 6-12 months, there is a slow decrease, and the overall
has obvious “long tail” behavior.

Over the years, production decline models for shale gas wells
have emerged one after another and been used widely. Arps (1945)
proposed the approach for analyzing production decline with
empirical formulas, and developed exponential decline,
hyperbolic decline, and harmonic decline models according to
the production data of actual gas wells, which enable the
qualification of production decline of gas wells. Later, other
scholars put forward more production decline curve analysis
methods. Ilk et al. (2008) proposed a power-law exponential
decline (PLE) method for shale gas wells in North America,
and verified the method with numerical simulation data and
actual data. Valko (2009) proposed the stretched exponential
production decline (SEPD) method for shale gas wells, and
applied it with the production data of Barnett shale gas wells in
North America. Duong (2010) indicated that long term fracture
linear flow exists in gas well production process, and proposed a
production decline analysis model for wells in fractured shale gas
reservoirs, or the DUONG model, which has also been
satisfactorily used in Barnett gas wells. Clark (2011) adopted
the logistic growth model (LGM) to predict shale gas
production. Duong found that the log–log curve of the ratio of
daily gas production to cumulative gas production versus time is a
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straight line when the flow in fractures is dominant (Duong, 2011),
and he proposed a modified DUONG method applicable in EUR
prediction in linear flow and boundary-dominated flow by
adjusting the empirical analysis (Duong, 2014). Zhang et al.
(2016) proposed an extended exponential decline curve analysis
(EEDCA) method for shale gas reservoirs based on field data. Qi
et al. (2016) established a hyperbolic-exponential hybrid decline
(HEMD) model based on Ilk’s PLE model. Wang et al. (2017)
proposed a new production decline model (theWangmodel) based
on the basic theories of the Arps, SEPD, and DUONG methods to
predict the production and EUR of gas wells in fractured
reservoirs. Gupta et al. (2018) revised the Arps exponential
decline equation and proposed a variable exponential decline-
modified (VDMA) model for analyzing the production decline in
shale gas reservoirs. From 2020 to 2022, based on the above
models, many scholars derived or re-established the production
decline model of shale gas wells considering different factors.
However, in practical application, the production data need to
be complicated and have not been widely used on a large scale
(BAO, 2022; Hao et al., 2022). These models have their respective
application conditions and scope, and thus should be used
properly depending on the actual production performance of
shale gas wells. Most models ensure accurate prediction when
the boundary flow state is reached in gas wells. Table 1 compares
these models.

3.2Workflowof data analysis and processing

3.2.1 Preprocessing of production data
The empirical production decline model is mainly applied in the

production decline stage. To apply the model effectively and
accurately, it is necessary to preprocess the production data as
follows:

1) Eliminate the data in the early non-decline stage to improve the
fitting accuracy of the empirical model (the portion of gas
production that was eliminated prior to analysis will be added
to projected total cumulative gas production), so that the
production and EUR of gas wells can be predicted more
accurately;

2) Eliminate the data at the zero-production points in the
period of shut-in which is possibly done for production
arrangement, workover, or other purposes, so that the
data continuity can be maintained to realize a higher
fitting accuracy.

The specific data processing process is shown in Figure 1.

3.2.2 Selection of fitted data segment
Four production decline typical curves are shown in Figure 2

(the abscissa in the figure indicates the production time of shale

TABLE 1 Comparison of empirical production decline models.

Models Formula Parameters Application scope Remarks

Arps (Arps,
1945)

q � qi
[1+bDi(t−ti)]1/b qi, Di, and ti are the initial production,

decline rate, and time, respectively; b is
the decline index

Boundary-dominated flow period,
or the whole production period
depending on the production data

The production period is limited when
predicting the cumulative shale gas
production. Otherwise, the production
is overestimated

PLE (Ilk et al.,
2008)

q � q̂i exp(−D∞t − D̂ntn) D∞ is the decline rate when t goes to
infinity; D̂n � Di

n is the power law term
Boundary-dominated flow period,
or the whole production period
depending on the production data

Several model parameters. The fitting
parameters can be improved

SEPD (Valko,
2009)

q � q̂i exp[−(t/τ)n] τ and n are the empirical parameters Boundary-dominated flow period,
or the whole production period
depending on the production data

There is a large deviation in prediction
when the production history is too
short

DUONG
(Duong, 2010)

q
qi
� t−m exp[a(t1−m − 1)/(1 −m)] a and m are the model fitting

parameters and represent the intercept
and slope, respectively

The whole production period Also applicable for early production

EEDCA
(Zhang et al.,
2016)

q � q1 exp[−(βl + βee
−tn )t] βe is a constant and explains the

characteristics of early production; βl is
a constant characterizing the late
production; n is an empirical index

The whole production period βl can be set as a constant to simplify
the parameter fitting process

HEMD (Qi et
al., 2016)

q � q1 exp[−λ(ln t)2] m is the time factor, dimensionless, and
it is a real number greater than zero;
other parameters are the same as those
in the PLE model

The whole production period Predicted production is bounded and
cannot be overestimated

Wang (Wang
et al., 2017)

q � q1 exp[−Dit(1−a)] λ is an empirical parameter Linear flow in fractures period, or
the whole production period
depending on the production data

Fewer parameters to be determined,
easy to adjust and determine

VDMA (Gupta
et al., 2018)

q � Knat(n−1)
(a+tn )2 a is the decline index and is also the

slope of the double logarithmic curve of
the decline rate

The whole production period
depending on the production data

The model corresponds to a EUR cap,
which does not lead to the
overestimation of reserves

LGM (Clark,
2011)

q � qi

(1+mDi t)
1
m (1−D∞

Di
)
eD∞ t

K is the bearing capacity, n is the
hyperbolic, and a is a constant

The whole production period
depending on the production data

The fitting parameters have several
solutions in the case of uncertain
bearing capacity
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gas wells, and the ordinate indicates the gas well production; ①
represents the trend of the first curve and② represents the trend
of the second curve). When the shale gas well maintains
continuous and stable production, the curve characteristics
are mainly shown in Figure 2A. If the gas well is temporarily
shut in due to uncontrollable factors such as on-site workover,
the curve characteristics may be as shown in Figure 2B. If the
choke size of the gas well is temporarily adjusted (reduced) due
to production management requirements in the production
process, the curve characteristics may be as shown in
Figure 2C. If the production decline trend changes due to the
influence of technological measures and inter-well interference
during the production of gas wells, the curve characteristics may
be as shown in Figure 2D. For the curves in Figures 2A–C,
i.e., the overall production data fall on one trend line (as one-
segment distribution), the effect of a temporary increase or
decrease of production on the predicted EUR can be ignored,
and the whole-segment data are selected for fitting with the
empirical model. For the curve in Figure 2D, which is multi-
segmented, the production data of the terminal segment are
selected for fitting.

3.3 Analysis of deviation in model fitting and
prediction

Generally, the parameters of production decline models are
obtained through equation linearization or numerical
computation (e.g., non-linear least squares method) (Zhang
et al., 2012). There are three or more unknown parameters in
the models in Table 1, except in the Wang model. This makes
equation linearization very difficult. The non-linear least square
method has no special requirements on the model parameters.
Thus, it is popular that non-linear regression is incorporated into
the fitting of production data in multi-parameter models. In least
squares fitting analysis, the determination coefficient or goodness
of fit R2 is used to measure the difference between the actual data

and the fitted value. The value of R2 is taken as the fitting accuracy
and expressed as:

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �y( )2 (1)

where yi is the actual data point, ŷi is the fitted data point, and �y is
the average of the actual data. R2 is used to measure the fitting degree
of the empirical model and judge the fitting effect of the model. R2

closer to 1 indicates the higher fitting degree between the fitted value
and the actual value, and the predicted EUR of gas wells is more
accurate.

The analysis of fitting effect and deviation for gas wells with
a production history of more than 12 months with the empirical
production decline models in Table 1 provides a basis for the
optimization of the empirical model and accurate prediction of
the EUR. The fitting effects of more than 200 shale gas wells
with a production history of more than 12 months in the
Changning block were analyzed. As shown in Figure 3, the
R2 of all nine models is above 0.8, and the fitting deviation is
small and is within the acceptable range. This indicates that the
empirical models have good adaptability to the production of
shale gas wells and guarantee the accuracy of subsequent EUR
prediction.

The duration of production data is different for gas wells that
are put into production at different times. To track and predict the
production and EUR of gas wells at different production times for
providing a reference to the improvement of the development
effect, it is necessary to understand the fitting and prediction
accuracy of the empirical model at different production times.
The differences in fitting and prediction of production by the same
model at different times were analyzed to determine the best fitted
production time, improve the applicability of the empirical model,
and enhance the accuracy in predicting EUR. We used a similar
prior approach to split the actual gas production data into two
parts of historical production data. The first part of historical
production data was used to fit and obtain model parameters,
which were used to predict gas production, and the second part of
historical production data was used to compare with the predicted
gas production, so as to verify the accuracy of the model
prediction. If the predicted value is closer to the actual value,
the prediction deviation is smaller, and the model is more accurate.
The prediction deviation is characterized by the standard
deviation, or root mean square error (RMSE). RMSE is always
used as a standard for measuring the prediction results of machine
learning models and the deviation between the predicted value and
the actual value. RMSE is expressed as:

RMSE �
������������
1
n
∑n
i�1

ŷi − yi( )2√
(2)

where yi is the actual data point, ŷi is the predicted data point.
The range of RMSE is [0, +∞]. When the predicted value is
completely consistent with the actual value, RMSE is equal to 0,
i.e., the model is perfect. The RMSE is higher when the prediction
effect is worse.

FIGURE 1
Workflow of data analysis and processing.
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3.4 Analysis of uncertainty in EUR prediction
using the probability method

All nine production decline models mentioned are applicable to
shale gas wells. In practice, the predicted production is constrained
to a reasonable range by controlling the value of the model
parameters. Nevertheless, there are large differences in the
prediction results from multiple models. Measurement of the
uncertainty in the prediction results is of great significance to
ensure the highest accuracy of predicted production of gas wells
and provide a basis for the evaluation of gas production and
decision-making in investment. According to the definition of
reserves by the Society of Petroleum Engineers (SPE) and the
United States Securities and Exchange Commission (SEC) in
1997, the probability method can be used as a tool for evaluating
oil and gas resources (Jia et al., 2009) and it has been widely used
around the world. The probability method is one of the conventional
methods for the estimation of resource/reserves and evaluation of
predicted EUR reliability. In this paper, the probability method was
integrated with the cumulative distribution function (CDF) to
describe the probability distribution of the prediction results
from different production decline models and evaluate the
uncertainty in prediction results (Figure 4).

In the evaluation of the EUR of shale gas wells with the
probability method here, the cumulative probability P10, P50,
and P90 values in the evaluation criteria are used as the EUR
evaluation level. The P90 value indicates the optimistic result, the
P50 value indicates the best result, and the P10 value indicates the
conservative result. The P50 value will serve as the final gas well
EUR, further reducing the uncertainty of the gas well EUR forecast,
helping shale gas companies to reasonably calculate the return on
investment of shale gas, and supporting effective development
technology decisions. At the same time, the values of P10-P90
are used as the EUR range of gas wells to understand the
possible risks of shale gas production.

4 Discussion

4.1 Production fitting and prediction result

4.1.1 Diagnosis of flow regime in typical wells
To analyze the application effect of the Arps, PLE, SEPD,

DUONG, EEDCA, Wang, HEMD, VDMA, and LGM models, the
production data frommore than 200 shale gas wells in the Changning
block were analyzed, and the P10, P50, and P90 typical curves were

FIGURE 3
Distribution of fitting deviation.

FIGURE 2
Production decline type curves (① represents the trend of the first curve and ② represents the trend of the second curve); (A–D) represent four
possible production curve characteristics of shale gasWells, respectively; the green dashed line represents the change trend of the production curve, and
the blue dashed line represents the point of sudden change of the production curve.
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obtained after calculation. P10 is a cumulative probability of 10% and
means that the daily gas production in this typical curve has at least
10% reliability, and P50 and P90 have a similar meaning to P10
(Figure 5). To meet the conditions for the application of models,
diagnosis of the flow regime was performed in the typical curve, and
the linear flow regime with the slope of −1/2 and the boundary flow
regime with the slope of −1 were determined (Figure 6). It was judged
that the time for the gas wells to reach boundary-dominated flow
regimes was not less than 12 months. More than 200 gas wells that
have reached the boundary-dominated flow stage were selected from
themore than 300 gas wells in the Changning block and analyzedwith
the nine empirical models illustrated above.

4.1.2 Analysis of fitting and prediction deviation for
typical wells

The P50 typical curves of gas wells in the Changning block were
analyzed with the method described in Section 3.2. It can be seen
from Figure 7 that the prediction results from the models are
different at varied fitted production times. Given the same
model, the longer the fitted production time, the better the fitting
effect and the smaller the prediction deviation. When the fitted
production time reaches 12 months and above, all models have high
fitting accuracy and low prediction deviation. It is recommended
that the time of production data reaches 12 months when using the
model to predict gas production, so as to ensure the accuracy of
production and EUR prediction to a certain extent.

4.1.3 Parameter distribution range
According to the results of production fitting and prediction of

shale gas wells, the production decline models have good
applicability in production prediction through the fitting
algorithm. It should be noted that the non-linear regression
algorithm requires a higher accuracy on the initial parameters of
the models, and input of initial parameters may cause local optimal
in non-linear regression, resulting in large deviation in the historical
fitting of gas well production and inaccurate prediction results.
Therefore, it is of significance to provide the distribution range
of model parameters to constrain the regression algorithm.

The parameter distribution charts of models were obtained by
analyzing the data of more than 200 gas wells in the Changning
block with the production decline models; some of the models’
parameter distributions are shown in Figures 8–12. The initial
parameter range of models was obtained through statistics of the
parameters’ distributions (Table 2). Constraint of the referred ranges
of the initial parameters of the models provides a reference for
application of the production decline models.

4.2 Process of EUR prediction based on
production decline models

Based on the analysis results above, a simple and reliable process
of shale gas production and EUR prediction for shale gas wells was
proposed (Figure 13). It can realize rapid production prediction and
accurate EUR evaluation, thus improving the efficiency of
production and EUR prediction. Through the EUR prediction
process, the efficiency and accuracy of EUR results of more than
200 shale gas wells in the Changning block are realized, and the

FIGURE 6
Log–log curves for the Changning block.

FIGURE 4
Distribution of cumulative probability. (The abscissa indicates the
different EUR values of gas wells predicted by different production
decline models, and the ordinate indicates the cumulative probability
percentage of these EUR values.)

FIGURE 5
Typical curves for the Changning block.
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FIGURE 8
Distribution range of parameters of the PLE model; (A–C) represent the distribution ranges of different key parameters in the PLE model.

FIGURE 7
Fitted different production times and prediction results; (A–F) represent the production history of 3, 6, 9, 12, 15, and 18 months of fifitting,
respectively.

FIGURE 9
Distribution range of parameters of the SEPD model; (A–C) represent the distribution ranges of different key parameters in the SEPD model.
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average EUR of gas wells in this block is predicted to be 1.21 ×
108 m3.

4.3 Application example

With the above-mentioned production decline models,
production prediction was carried out with the production data
of Well CNH1 in the Changning block, and the predicted

production was compared with the predicted EUR. Based on the
historical production data of Well CNH1, the production data after
peak production was obtained with the above workflow of data
processing. The historical production was fitted by referring to the
range of the initial parameters of the models, and the fitting accuracy
was higher than 80%. The production and EUR were predicted
based on the model parameters (Figures 14, 15). The comparison
shows the differences in the EUR prediction results of various
models. The probability method was used to analyze the

FIGURE 11
Distribution range of parameters of the EEDCA model; (A–C) represent the distribution ranges of different key parameters in the EEDCA model.

FIGURE 10
Distribution range of parameters of the DUONG model; (A–C) represent the distribution ranges of different key parameters in the DUONG model.

FIGURE 12
Distribution range of parameters of the LGM model; (A–C) represent the distribution ranges of different key parameters in the LGM model.
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distribution of the EUR predicted by different models, and the
P50 value was used as the final EUR, which was 1.25 × 108 m3

(Table 3). Well CNH1 has produced for more than 3 years, with a

cumulative gas production of 7,660 × 104 m3. According to the
production performance and the recovery percentage, the predicted
production is reliable.

TABLE 2 Distribution of the parameters of models.

Model Parameter Range Model Parameter Range

Arps b 0.4–2 SEPD τ 50–150

Di 0–0.05 n 0.4–0.6

qi 15–35 qi 20–45

PLE n 0.2–0.6 HEMD Di 0–0.06

Di 0.03–0.09 D∞ <0.00001

D∞ <0.00001 m 1–2.5

DUONG a 1–2 EEDCA βe 0.1–0.3

m 1.1–1.25 n 0.2–0.3

qi 15–30 qi 25–40

VDMA Di 0.03–0.4 LGM K 5,000–15,000

a 0.5–0.8 n 0.75–0.95

qi 20–45 a <500

Wang λ 0.3–0.7

qi 20–40

FIGURE 13
Process of EUR prediction based on production decline models.
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5 Conclusion

After systematic analysis and application of the production
decline models for shale gas wells in the Changning block, the
process of EUR prediction based on production decline models was
proposed. The conclusions are obtained as follows:

1) Diagnosis of flow regime shows that shale gas wells in the
Changning block have been producing for more than
12 months, and the Arps, PLE, SEPD, DUONG, Wang,
VDMA, HEMD, EEDCA, and LGM models can all be used
in the prediction of production and EUR for these wells, with
the fitting accuracy higher than 80%.

2) Based on the results of fitting and prediction for more than
200 gas wells, the parameter distribution charts of nine
production decline models suitable for shale gas wells in the
Changning block were plotted. The initial parameters of the
models were constrained to avoid the local optimum in
production fitting. Thus, the production and EUR of shale gas
wells could be predicted more rationally and efficiently.

3) The process of EUR prediction proposed in this paper was used to fit
and predict the production of Well CNH1. The EUR predicted
at different cumulative probabilities was obtained. The EUR
corresponding to P50 was selected as the final EUR to ensure the
highest accuracy of the predicted EUR and provides a basis for the
evaluation of gas well production and decision-making in investment.

Data availability statement

The data that support the findings of this study are available from
the Shale Gas Research Institute of the PetroChina Southwest Oil and

FIGURE 14
Fitted and predicted production of Well CNH1, where (A) represents the fifitting results of the historical gas production of CNH1 by different models
and (B) represents the results of gas production prediction of CNH1 by different models.

TABLE 3 EUR of Well CNH1 at different cumulative probabilities.

Cumulative probability (%) EUR (108 m3) Cumulative probability (%) EUR (108 m3)

10 1.11 60 1.34

20 1.15 70 1.35

30 1.21 80 1.41

40 1.22 90 1.49

50 1.25 100 1.53

FIGURE 15
Predicted EUR of well CNH1.
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Gas Field Branch. Restrictions apply to the availability of these data,
whichwere used under license for this study. Data are available from the
authors with the permission of the Shale Gas Research Institute of the
PetroChina Southwest Oil and Gas Field Branch.

Author contributions

SL contributed as the lead author of the article, including
conceptualization, methodology, and data processing. CC, WX,
and HL determined the context of the article and modified the
details of the article. All authors contributed to the article and
approved the submitted version.

Funding

The authors acknowledge the financial support of the Shale Gas
Research Institute of the PetroChina Southwest Oil and Gas Field
Branch (NO. 20220304-16).

Conflict of interest

Authors SL, CC, and WX were employed by Shale Gas Research
Institute, PetroChina Southwest Oil and Gas Field Branch.

The remaining author declares that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from the
Shale Gas Research Institute of the PetroChina Southwest Oil and
Gas Field Branch The funder had the following involvement in the
study: data collection, and the decision to submit it for publication.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Arps, J. J. (1945). Analysis of decline curves. Trans. AIME 160 (01), 228–247. doi:10.
2118/945228-g

Bao, K. (2022). Variable pressure-variable production decline model and its
application in shale gas wells. Unconv. Oil Gas 9 (6), 81–86. doi:10.19901/j.fcgyq.
2022.06.12

Blasingame, T. A., McCray, T. L., and Lee, W. J. (1991). “Decline curve analysis for
variable pressure drop/variable flowrate systems,” in Proceedings of the paper SPE
21513 presented at the SPE gas technology symposium, Houston, Texas, United States,
January 1991, 23–24.

Clark, A. J. (2011). Decline curve analysis in unconventional resource plays using
logistic growth models. Master Dissertation. Austin, TX, USA: University of Texas at
Austin.

Cui, Q., Zhao, Y., Zhang, L., Chen, M., Gao, S., and Chen, Z. (2023). A semianalytical
model of fractured horizontal well with hydraulic fracture network in shale gas reservoir
for pressure transient analysis. Adv. Geo-Energy Res. 8 (3), 193–205. doi:10.46690/ager.
2023.06.06

Du, D., Zhang, Y., Zhang, L., et al. (2021). Research progress and prospect of seepage
mechanism in shale gas reservoirs. Unconv. Oil Gas 8 (3), 1–9. doi:10.19901/j.fcgyq.
2021.03.01

Duong, A. N. (2010). “An unconventional rate decline approach for tight and
fracture-dominated gas wells,” in Proceedings of the SPE paper 137748 presented at
the Canadian Unconventional Resources and International Petroleum Conference,
Calgary, Alberta, Canada, October 2010.

Duong, A. N. (2011). Rate-decline analysis for fracture-dominated shale reservoirs.
SPE Reserv. Eval. Eng. Soc. Petroleum Eng. 14 (3), 377–387. doi:10.2118/137748-pa

Duong, A. N. (2014). “Rate-decline analysis for fracture-dominated shale
reservoirs: part 2,” in Proceedings of the SPE paper 171610 presented at the
SPE/CSUR Unconventional Resources Conference, Calgary, Alberta, Canada,
September 2014.

ElA’s (2019). Annual energy outlook shows continued growth in oil & gas production
and big spike in renewables over the next decade. Electr. Mark. 44 (3), 2.

Fetkovich, M. J. (1973). “Decline curve analysis using type curves,” in Proceedings of
the paper SPE 4629 presented at the Fall Meeting of the Society of Petroleum Engineers
of AIME, Las Vegas, Nevada, United States, September 1973.

Gupta, I., Rai, C., Sondergeld, C., et al. (2018). “Variable exponential decline-modified
arps to characterize unconventional shale production performance,” in Prcoceedings of
the URTEC paper 2902794 presented at the SPE/AAPG/SEG Unconventional
Resources Technology Conference, Houston, Texas, USA, July 2018.

Hao, M., Chen, Y., Zhuang, Y., et al. (2022). “Establishment and application of the
multi-peak forecasting model,” in Proceedings of the International Petroleum
Technology Conference, Riyadh, Saudi Arabia, February, 2022.

Ilk, D., Rushing, J. A., Perego, A. D., et al. (2008). “Exponential vs. Hyperbolic Decline
in Tight Gas Sands: understanding the origin and implications for reserve estimates
using arps’decline Curves,” in Proceedings of the SPE paper 116731 presented at the SPE

Annual Technical Conference and Exhibition, Denver, Colorado, USA, September
2008.

Jia, C., Jia, A., Deng, H., et al. (2009). Application of probabilistic method in
calculation of oil and gas reserves. Nat. Gas. Ind. 29 (11), 83–85. doi:10.3787/j.issn.
1000-0976.2009.11.026

Liu, H., Pu, X., Zhang, L., Lue, W. L., Chen, J., and Suen, D. F. (2023). Beneficial
development of shale gas in China: theoretical logic, practical logic and prospect. Nat.
Gas. Ind. 43 (4), 177–198. doi:10.1093/plphys/kiac494

LuoDingCheng, S. C. H., Zhang, B., Zhao, Y., and Liu, L. (2022). Estimated
ultimate recovery prediction of fractured horizontal wells in tight oil reservoirs
based on deep neural networks. Adv. Geo-Energy Res. 6 (2), 111–122. doi:10.46690/
ager.2022.02.04

Ma, X., and Xie, J. (2018). The progress and prospects of shale gas exploration and
exploitation in southern Sichuan Basin, NW China. Petroleum Explor. Dev. 45 (1),
161–169. doi:10.11698/PED.2018.01.18

Qi, Y., Wang, J., Pang, Z., et al. (2016). A novel empirical model for rate decline
analysis of oil and gas wells in unconventional reservoirs. J. China Univ. Min. Technol.
45 (4), 772–778. doi:10.13247/j.cnki.jcumt.000471

Samandarli, O., Al Ahmadi, H. A., and Wattenbarger, R. A. (2011). “A Semi-analytic
method for history fitting fractured shale gas reservoirs,” in Proceedings of the paper
SPE 144583 presented at the Western North American Region Meeting, Anchorage,
Alaska, USA, May 2011, 7–11.

Stalgorova, E., and Mattar, L. (2012). “Analytical model for history fitting and
forecasting production in multifrac composite systems,” in Proceedings of the paper
SPE 162516 presented at the SPE Canadian Unconventional Resources Conference,
Calgary, Alberta, Canada, October, 2012.

Valko, P. P. (2009). “Assigning value to stimulation in the Barnett Shale: a
simultaneous analysis of 7000 plus production hystories and well completion
records,” in Proceedings of the SPE paper 119369 presented at the SPE Hydraulic
Fracturing Technology Conference, The Woodlands, Texas, USA, January 2009.

Wang, H., Chen, Z., Chen, S., Hui, G., and Kong, B. (2021). Production forecast and
optimization for parent-child well pattern in unconventional reservoirs. J. Petroleum
Sci. Eng. 203, 108899. doi:10.1016/j.petrol.2021.108899

Wang, H., Wang, S., Chen, S., and Hui, G. (2023). Predicting long-term production
dynamics in tight/shale gas reservoirs with dual-stage attention-based TEN-Seq2Seq
model: a case study in Duvernay formation. Geoenergy Sci. Eng. 223, 211495. doi:10.
1016/j.geoen.2023.211495

Wang, K., Li, H., Wang, J., Jiang, B., Bu, C., Zhang, Q., et al. (2017). Predicting
production and estimated ultimate recoveries for shale gas wells: a new
methodology approach. Appl. energy 206, 1416–1431. doi:10.1016/j.apenergy.
2017.09.119

Wang, Q., Song, X., and Li, R. (2018). A novel hybridization of nonlinear grey model
and linear ARIMA residual correction for forecasting US shale oil production. Energy
165, 1320–1331. doi:10.1016/j.energy.2018.10.032

Frontiers in Energy Research frontiersin.org11

Liu et al. 10.3389/fenrg.2023.1252980

https://doi.org/10.2118/945228-g
https://doi.org/10.2118/945228-g
https://doi.org/10.19901/j.fcgyq.2022.06.12
https://doi.org/10.19901/j.fcgyq.2022.06.12
https://doi.org/10.46690/ager.2023.06.06
https://doi.org/10.46690/ager.2023.06.06
https://doi.org/10.19901/j.fcgyq.2021.03.01
https://doi.org/10.19901/j.fcgyq.2021.03.01
https://doi.org/10.2118/137748-pa
https://doi.org/10.3787/j.issn.1000-0976.2009.11.026
https://doi.org/10.3787/j.issn.1000-0976.2009.11.026
https://doi.org/10.1093/plphys/kiac494
https://doi.org/10.46690/ager.2022.02.04
https://doi.org/10.46690/ager.2022.02.04
https://doi.org/10.11698/PED.2018.01.18
https://doi.org/10.13247/j.cnki.jcumt.000471
https://doi.org/10.1016/j.petrol.2021.108899
https://doi.org/10.1016/j.geoen.2023.211495
https://doi.org/10.1016/j.geoen.2023.211495
https://doi.org/10.1016/j.apenergy.2017.09.119
https://doi.org/10.1016/j.apenergy.2017.09.119
https://doi.org/10.1016/j.energy.2018.10.032
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252980


Xie, J. (2018). Practices and achievements of the Changning–Weiyuan shale gas
national demonstration project construction. Nat. Gas. Ind. 38 (2), 1–7. doi:10.3787/j.
issn.1000-0976.2018.02.001

Xu, C., Zhang, H., Kang, Y., Zhang, J., Bai, Y., Zhang, J., et al. (2022). Physical plugging of
lost circulation fractures atmicroscopic level. Fuel 317, 123477. doi:10.1016/j.fuel.2022.123477

Xu, C., Zhang, H., She, J., Jiang, G., Peng, C., and You, Z. (2023). Experimental study
on fracture plugging effect of irregular-shaped lost circulation materials. Energy 276,
127544. doi:10.1016/j.energy.2023.127544

Yang, H., Zhang, X., Chen, M., et al. (2016). Optimization on the key parameters of
geologic target of shale-gas horizontal wells in Changning Block, Sichuan Basin. Nat.
Gas. Ind. 36 (8), 60–65. doi:10.3787/j.issn.1000-0976.2016.08.008

Yao, J., Sun, H., Fan, D., et al. (2013). Transport mechanisms and numerical
simulation of shale gas reservoirs. J. China Univ. Petroleum (1), 91–98. doi:10.3969/
j.issn.1673-5005.2013.01.015

Zeng, B., Duan, H., Bai, Y., and Meng, W. (2018). Forecasting the output of shale gas
in China using an unbiased grey model and weakening buffer operator. Energy 151,
238–249. doi:10.1016/j.energy.2018.03.045

Zhang, H., Rietz, D., Cagle, A., Cocco, M., and Lee, J. (2016). Extended
exponential decline curve analysis. J. Nat. Gas Sci. Eng. 36, 402–413. doi:10.
1016/j.jngse.2016.10.010

Zhang, Y., Xi, M., and Chen, X. (2012).Numerical computing methods and algorithms.
Beijing, China: China Science Press.

Frontiers in Energy Research frontiersin.org12

Liu et al. 10.3389/fenrg.2023.1252980

https://doi.org/10.3787/j.issn.1000-0976.2018.02.001
https://doi.org/10.3787/j.issn.1000-0976.2018.02.001
https://doi.org/10.1016/j.fuel.2022.123477
https://doi.org/10.1016/j.energy.2023.127544
https://doi.org/10.3787/j.issn.1000-0976.2016.08.008
https://doi.org/10.3969/j.issn.1673-5005.2013.01.015
https://doi.org/10.3969/j.issn.1673-5005.2013.01.015
https://doi.org/10.1016/j.energy.2018.03.045
https://doi.org/10.1016/j.jngse.2016.10.010
https://doi.org/10.1016/j.jngse.2016.10.010
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252980

	Process of EUR prediction for shale gas wells based on production decline models—a case study on the Changning block
	1 Introduction
	2 Geological setting
	3 Production decline analysis method
	3.1 Empirical production decline models
	3.2 Workflow of data analysis and processing
	3.2.1 Preprocessing of production data
	3.2.2 Selection of fitted data segment

	3.3 Analysis of deviation in model fitting and prediction
	3.4 Analysis of uncertainty in EUR prediction using the probability method

	4 Discussion
	4.1 Production fitting and prediction result
	4.1.1 Diagnosis of flow regime in typical wells
	4.1.2 Analysis of fitting and prediction deviation for typical wells
	4.1.3 Parameter distribution range

	4.2 Process of EUR prediction based on production decline models
	4.3 Application example

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


