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Cascade hydropower producers face two stages of risk when participating in
medium and long-term market transactions: transaction risk during the bidding
stage; and the operational risk during the scheduling and operation stage due to
the uncertainty of runoff and market-clearing prices. Therefore, how to measure
the above risks andmake corresponding decisions has become an urgent problem
for producers.This paper combines the real market structure and rules of a certain
hydropower dominated market in Southwest China, and establishes a mid-term
operation and trading decision-making method based on the Joint Information
Gap Decision Theory (IGDT) and Prospect Theory. To address the main
uncertainty variables that producers face in participating in transactions, this
paper obtains the maximum fluctuation range of variables that satisfy the
expected revenue in a robust model based on IGDT. Then, using Prospect
Theory, a bidding strategy model that takes into account the psychological
factors of producers is constructed within this range.To solve the nonlinear
programming problem and address the accuracy issues caused by curve fitting
during the solution process, a nonlinear programming combined with an
improved stepwise optimization hybrid algorithm is employed.Using actual data
from a hydropower grid in southwest China participating in the market as an
example. The results indicate that the method provides the fluctuation range of
runoff and market prices under different expected return targets, and can
formulate reasonable bidding decisions and operation plans based on
producers different risk preferences within this range.
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1 Introduction

As the new round of power market reform gradually enters deep water area, China’s
provinces and cities have established well-regulated and well-structured medium- and long-
term power markets (Cheng et al., 2018; Liu et al., 2019; Yao et al., 2020).Because medium-
and long-term transactions have relatively low risks and stable returns, they have become a
“ballast stone” for market participants to avoid risks (Li et al., 2022). At the same time, they
also plays a role in anchoring the spot market prices. For cascade hydropower producers, the
medium and long-term market can effectively mitigate operational risks caused by
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hydrological uncertainty, especially for long-term operation and
transaction plans with large errors. Hydropower producers can
adjust long-term plans and make trading strategies through mid-
term optimization scheduling based on more accurate forecasting
results. However, when participating in monthly medium- and long-
term markets, there will inevitably be errors in the predicted values
of runoff and prices which may lead to insufficient generation
output, failure to fulfill contracts, or high bidding prices that
result in failed clearing. Therefore, how to formulate
corresponding operation plans and bidding strategies has become
an urgent practical demand for cascade hydropower producers.

In the market, the traditional dispatching method has been
significantly impacted as well (Li et al., 2012). Unlike other power
generation, when participating in the market, hydropower
producers needs to consider not only the transaction risks caused
by market structure, rules, and bidding strategies, but also the
operation risks caused by uneven and uncertain distribution of
runoff. In addition, when participating in the market every
month, producers usually take two approaches to pursue higher
profits: increasing power generation and bidding higher prices.
However, there are inevitable errors in their predicted runoff and
prices, which may lead to insufficient generation output that cannot
be fulfilled or high bidding prices that result in failed clearing.
Therefore, when participating in mid-to-long-term trading,
producers face a two-stage risk that needs to be considered: 1)
transactional risk in the mid-to-long-termmarket bidding stage; and
2) operational risk in the mid-term dispatch stage due to the
uncertainty of market-clearing electricity prices and the
randomness of daily runoff. How to jointly consider the above
risks and make reasonable decisions in the corresponding stages has
become the main practical and theoretical challenge currently faced
by hydropower producers in China.

At present, there has been some research on the above issues. In
response to the risk decision-making issue during the bidding stage, a
methodology to design an optimal bidding strategy for a generator
according to his or her degree of risk aversion is established (Rodriguez
and Anders, 2004).Based on the coordinated interaction between units
output and market clearing prices, the benefit/risk/emission
comprehensive generation optimization model with objectives of
maximal profit and minimal bidding risk and emissions is
established (Peng et al., 2012).The uncertainty model of market price
is considered based on the concept of weighted average squared error
using a variance–covariancematrix. IGDT is used to develop the bidding
strategy of a generation company (Za et al., 2013). Introducing
evolutionary game theory into the bidding strategy of thermal power
units, a thermal power peak shaving biddingmodel based on the bidding
mechanism of the auxiliary service market of Northeast China Power
Grid was established (Lu et al., 2021).A robust optimization approach is
proposed to obtain the optimal bidding strategy of retailer, which should
be submitted to pool market (Nojavan et al., 2015a).A hybrid approach
based on IGDT and modified particle swarm optimization (MPSO) is
used to develop the optimal bidding strategy (Nojavan et al.,
2015b).Proposes a bilevel stochastic optimization model to obtain the
optimal bidding strategy for a strategic wind power producer in the
short-term market (Dai and Qiao, 2015).

However, from the perspective of usage scenarios, current
research still has some shortcomings, mainly manifested in the
following three aspects: 1) Most research focuses on thermal and

wind power, which is not applicable to risk decision-making
problems for cascaded hydropower stations with close water-
electricity connections. 2) When using scenario analysis to
handle uncertainty, a sufficient number of scenarios are usually
required to make the description more accurate and comprehensive,
which can lead to low solution efficiency and overly conservative
results. 3) Current research mostly considers decision-making risks
in the bidding stage or performance risks in the operational stage
separately, while in practical use, these two types of risks need to be
coupled together. 4) Most studies use solvers to improve
computational efficiency, but this approach requires fitting some
curves, resulting in a decrease in computational accuracy.

In order to solve the above problems, this paper introduces the
power market structure and rules of a certain hydropower
dominated market in Southwest China. The trading varieties in
this market are divided into three time categories: annual, monthly,
and daily. The annual trading is bilateral, and the monthly trading is
carried out in the order of bilateral, matchmaking, and listing.
Considering the risks in the bidding stage and the dispatching
operation stage, a method for cascade hydropower producers is
proposed by combining the IGDT and prospect theory. Firstly,
considering the risk in the medium-term operation stage, the IGDT
is used in conjunction with a robust optimization model to solve for
the maximum deviation range of runoff and clearing prices from the
predicted values when satisfying the producer’s predetermined
revenue. Then, considering the trading decision risks in market
bidding stage based on the fluctuation range of uncertain variables,
the prospect theory is used to analyze and study the bidding strategy
of producer’s in the market from the perspective of limited
rationality and establish a corresponding bidding decision model.
Considering the precision problem caused by curve fitting due to the
use of optimization solvers for solving nonlinear programming
problems, this paper chooses to use a nonlinear programming
and improved stepwise optimization hybrid algorithm to solve
the problem. Finally, a cascade hydropower station is used as an
example to verify that the method provided in this paper provides
the fluctuation range of runoff and clearing prices under different
expected revenue targets, and develops reasonable bidding decision-
making and operation plans based on different risk tolerance levels
within this range.

2 Introduction to prospect theory

Prospect theory (Tversky, 1979; Amos Tversky and Kahneman,
2016) is a method that takes into account the subjective feelings of
decision-makers, where they exhibit risk aversion when facing gains
and risk-seeking behavior when facing losses, and are more sensitive
to losses than gains. In practice, decision-makers face a highly
complex and dynamic electricity market, and the many
uncertainties and risks associated with it make it difficult for
decision-makers to meet the assumption of a “perfectly rational
person". This means that their information is limited, and their
predictions of the market are always subject to some level of error. In
addition, limited insight into the essence of the problem makes it
difficult for decision-makers to maintain consistent risk preferences,
highlighting the characteristic of changing risk preferences.
Therefore, in contrast to assuming decision-makers are perfectly
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rational using the mean-variance or value-at-risk/conditional value-
at-risk methods, prospect theory assumes that decision-makers are
boundedly rational, meaning their information is limited and risk
preferences can change with different objective factors, and typically
uses prospect value as a basis for decision-making. Prospect value is
determined by both the value function and decision weights, and the
calculation formula is as follows:

V � ∑K
k�1

ω(prok)] xk( ) (1)

Where V represents prospect value; k represents a certain event
and K represents all possible events; (prok) is the probability weight
function; v (xk) is the value function; prok is the probability of event k
occurring; and xk is the index value of event k. In prospect theory, the
decision-making process of a decision-maker is influenced by two
subjective factors: their subjective value perception of the benefits
obtained from the decision and their subjective perception of the
probability of achieving those benefits.

The value function is a subjective representation of value formed
by the decision-maker, and commonly used forms of the value
function include the following:

v xk( ) � xa x≥ 0
−λ −xk( )b x< 0

{ (2)

Where the parameters a and b represent the concavity and
convexity of the power functions for gains and losses, respectively,
reflecting the decision-maker’s sensitivity to gains and losses.
Generally, a and b are greater than 1. The parameter λ reflects
the decision-maker’s aversion to losses, and is generally greater
than 1.

The probability weight function represents the decision-maker’s
subjective judgment of the probability p of an event occurring, and
commonly used forms of the probability weight function include the
following:

ω prok( )+ � prokθ

prokθ + 1 − prok( )θ[ ] 1
/θ

(3)

ω prok( )− � prokδ

prokδ + 1 − prok( )δ[ ] 1
/δ

(4)

Where (prok)
+ and (prok)

- represent the probability weight
functions when the decision-maker perceives gains and losses,
respectively. θ is the coefficient of the attitude towards risk for
gains, and σ is the coefficient of the attitude towards risk for losses.

3 The risk decision model based on the
joint information gap decision theory
and prospect theory

When market participants evaluate a decision as a gain or a loss,
they usually consider the change in wealth rather than the total
wealth. The carrier of subjective value is the change in wealth, not
the final state of wealth. Therefore, when evaluating market risks for
a cascaded hydropower producer, expected gains must be set in
advance. Next, different bidding decisions and operating plans are

evaluated based on the electricity sales revenue. Finally, the optimal
decision is chosen based on the decision-maker’s attitude
towards risk.

3.1 Medium and long term market income
model of cascade hydropower producers

Themarket share of each power producer studied in this paper is
relatively small, and their bidding method has no impact on the
transaction results, indicating that they can be considered price
takers. Transactions in the market are settled according to pay-as-
bid (PAB), which is a payment based on the offer (Federico and
Rahman, 2001; Kahn et al., 2001). When participating in market,
corresponding application decisions and operation plans will be
formulated based on the predicted runoff and the clearing price. As
the decision-makers of cascade hydropower stations are limited
rational price takers who cannot obtain unbiased estimates of
uncertain variables. Therefore, the bidding based on the
predicted clearing price may lead to excessively high bids due to
prediction error, which will eventually lead to bidding failure. In this
case, the settlement is based on the on grid price. At the same time,
due to the strong volatility of natural runoff, there are often errors in
the prediction results, resulting in the transaction contracts in the
medium-term dispatching operation stage can not be completed or
overfulfilled, so it is necessary to consider the assessment of the
default part. Therefore, the revenue for a hydropower producer is
shown as follows:

B1,i � e1,i × p1 (5)
B2,i � e2,i × p2, e1,i ≥ 0 (6)
e2,i � ei − e1,i, ei ≥ e1,i (7)

B3,i � e3,i × p3 (8)
e3,i � e1,i − e1, ei < e1,i (9)

Where B1,i and e1,i represent the medium- and long-termmarket
revenue and settlement electricity quantity, respectively, for station i;
p1 is the settlement electricity price for the mid-to-long-term
market. B2,i and e2,i represent the excess power generation
revenue and excess electricity quantity, respectively, for station i
when the bid is successful; p2 is the settlement electricity price for
excess electricity quantity. B3,i and e3,i represent the default loss and
default power quantity, respectively, ei is the power generation of
station i; p3 is the default electricity price used for assessment.

3.2 Medium term optimal operation model
of cascade hydropower producers

3.2.1 Objective function of optimal scheduling in
operation stage

Considering that the generation cost of cascaded hydropower
stations mainly consists of fixed costs and does not affect model
optimization, this paper will ignore it. With a monthly scheduling
cycle and 1 day as a time period, the optimization goal for a producer
in the market is to maximize total revenue, as shown in the following
formula.
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maxB0 � maxB+β + B− 1 − β( ) (10)

B+ � ∑N
i�1

B1,i + B2,i( ) (11)

B− � ∑N
i�1

B1,i − B3,i( ) (12)

Where, B0 refers to the total revenue of the producer; N is the
number of cascaded hydropower stations. B+ and B− correspond to
the total revenue of the producer when overcompleted and in
contract breach, respectively. β is a binary variable where β =
1 represents overgeneration and β = 0 represents an uncompleted
contract.

According to formulas (5) to (10), the generation revenue of a
producer mainly depends on the total electricity generation of the
current month. This is calculated as follows:

ei � ∑T
j�1
ηi × Qi,j × Hi,j ×Δtj (13)

Hi,j � Zi,j−1 + Zi,j

2
− Zd

i,j −Hd
i,j (14)

Where: ei is the total power generation of station i for the
period j; T is the total number of time periods; Qi,j, Hi,j, Zi,j, Z

d
i,j,

and Hd
i,j represent the average power generation, average

discharge, water head, decision-making reservoir water level,
downstream tail water level, and head loss of station i on the jth
day, respectively; ηi is the output coefficient of station i; and Δtj
is the time step length.

3.2.2 Objective function
To avoid repetition, this article follows the conventional hydro

constraints of the hydropower station as shown in reference (Lu
et al., 2021). This paper only demonstrates the relevant market-
based power constraints, which are shown below:

e1,i + e2,i − e3,i � ei (15)
e2,i × e3,i � 0 (16)

ei − βM≤ e1,i ≤ 1 − β( )M + ei (17)
Where M is a sufficiently large constant.

3.3 Robust optimization modeling and
solution based on IGDT

3.3.1 Objective function
To mitigate the impacts of uncertain runoff and prices

during the bidding and operation stages of cascaded
hydropower producers, this paper adopts the IGDT (Wright,
2004) robust model for modeling. The model calculates the
maximum deviation range between the predicted values of
runoff and clearing prices for the mid-term operation stage to
achieve expected revenue. To avoid repetition with Section 3.2,
only unique content is presented below:

�α � max
α,ei,t

i � 1, 2, ..., N (18)
s.t. B*≥Bc � 1 − σ( )B0 (19)

B* � { min
ei ,p1 ,p2 ,p3

B+β + B− 1 − β( )
ei � ∑T

j�1
ηi × Qi,j × Hi,j ×Δtj,

s.t. 1 − α( ) × �qi,j ≤ qi,j ≤ 1 + α( ) × �qi,j,
1 − α( ) × �p1 ≤p1 ≤ 1 + α( )�p,
1 − α( ) × �p2 ≤p2,
p3 ≤ 1 + α( ) × �p3}

(20)

Where ‾α represents the maximum fluctuation range of runoff
and prices compared to the predicted values. In order to better
describe the basic idea of IGDT and its applicability in solving the
problem at hand, it is assumed that the predicted errors for both
prices and runoff are the same. B* represents the optimal selling
revenue of the producers in the robust model, while Bc represents the
expected selling revenue. σ represents the risk tolerance level, which
is the degree of deviation between the expected revenue target Bc and
the actual revenue B0.‾pi represents the predicted values of various
prices, while ‾qi,j represents the predicted values of runoff. α

represents the fluctuation range of runoff and prices compared to
the predicted values.

3.3.2 Model solving method
According to the established model, the goal of the lower

layer of the model is to calculate the market revenue of the
producers based on the maximum revenue model when the
uncertain variable fluctuates within [1-α,1+α]. The goal of the
upper layer of the model is to solve for the maximum deviation
range of the uncertain variable α and obtain the corresponding
power bidding strategy e1,i when the market revenue meets the
model’s predetermined target. This paper analyzes the market
participation goals of the producers and performs an equivalent
transformation on the two-layer model constructed according to
literature (Moradi-Dalvand et al., 2015). The transformation
steps and solving process are outlined in literature (Li et al.,
2021). In order to use the Lingo or Gurobi solver to solve the
problem of maximum monthly power generation, literature (Li
et al., 2021) performed corresponding fitting on the relationship
curves between the storage capacity-water level and the runoff
rate-downstream water level of the cascade reservoir. However,
since these curves are not smooth and regular, the curve fitting
inevitably led to calculation results that deviate from the actual
operating conditions.

In order to solve the calculation error problem caused by fitting,
this article adopts a nonlinear programming and improved stepwise
optimization hybrid algorithm for solution. Firstly, the initial
scheduling process of a cascade hydropower station, which
satisfies the constraints related to water level, flow rate, and
reservoir capacity, is obtained using nonlinear optimization. And
then, building upon the initial scheduling process, a stepwise
optimization algorithm is employed, which converts the multi-
stage optimization problem into several two-stage optimization
subproblems. In each successive two-stage optimization
subproblem, a combination set is formed by drawing random
values for the variable values of each power station within their
respective ranges. The combination that yields the optimal objective
function value is then used to replace the original variable values.
And last, this process is repeated sequentially for all subproblems,
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completing one iteration. The process is iterated iteratively until the
termination condition is met, resulting in the maximum power
generation of the cascade hydropower producer for the current
month under operational constraints.

The objective function of the two-stage optimization
subproblem is defined as:

maxE′ � ∑N
i�1
∑T
t�1

Pi,t ×Δtt − γi,1 max 0, Qi,j
min − Qi,j( )[

− γi,2 0, Qi,j − Qi,j
min( ) − γi,3 0, Qi,j − Qi,j

min
∣∣∣∣∣∣∣∣ ∣∣∣∣ − ΔQi,j( )

−γi,4 0, Pi,j
min − Pi,j( )] (21)

Where E’ is the objective function value of the subproblem. γi,1,
γi,2,γi,3 and γi,4 are the penalty coefficients for station i violating the
minimum discharge constraint, maximum discharge constraint,
discharge ramp constraint, and minimum power output
constraint, respectively.

When generating the water level combination set, if there is no
reserved storage capacity constraint for the cascade hydropower
stations, the water level combination is generated by randomly
selecting n mutually exclusive random numbers within each
power station’s water level range. The Cartesian product is then
used to generate the cascade hydropower station’s water level
combination set. If there is a reserved storage capacity constraint
for the cascade hydropower stations, the water level combination set
is composed of combinations that satisfy the storage capacity
constraint.

Si,jmin ≤ Si,j ≤ Si,jmax

∑
i∈Ω

Si,j ≤Aj
max − Aj

Zi,j � fi Si,j( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (22)

The specific implementation method is as follows:
①Sort the power stations in Ωj from upstream to downstream

in ascending order and represent them as i1, i2, ..., iK, whereK = |Ωj |
is the number of power stations in the set.

②For each power station i1, randomly select nK numbers within
the following reservoir storage range:

Si1 ,j
min ≤ Si1 ,j≤min Si1 ,j

max, Aj
max − Aj − ∑

k∈ i2 ,...,iK{ }
Sk,j
min⎡⎢⎢⎣ ⎤⎥⎥⎦ (23)

③For each reservoir storage level Si1 ,j
* of power station

i1, randomly select one number within the following reservoir
storage range of power station i2 and associate it with Si1 ,j

*.

Si2 ,j
min ≤ Si2 ,j≤min Si2 ,j

max, Aj
max − Aj − Si1 ,j

* − ∑
k∈ i3 ,...,iK{ }

Sk,j
min⎡⎢⎢⎣ ⎤⎥⎥⎦ (24)

④Similarly, until the Kth power station is reached, there will be
nK combinations of reservoir storage levels. Based on the
relationship between reservoir storage and water level, the
combinations of reservoir storage levels are converted to
combinations of water levels.

⑤For the N-K power stations without reservoir capacity
constraints, randomly select n different water level combinations
from their respective water level ranges and use the Cartesian
product with the water level combination set in step ④ to

generate the water level combination set for the cascaded
hydropower stations.

The problem-solving process is shown in Figure 1.

3.4 Decision making model of mid long term
market bidding based on prospect theory

3.4.1 Modeling
The Prospect theory suggests that a decision-maker’s decision

depends on the difference between the outcome and the expected
value, rather than the outcome itself, based on different reference
points. Based on this fundamental idea, Bc = (1-σ)*B0 in 3.3 is used as
the expected revenue during the bidding phase. Therefore, the
psychological perception revenue deviation ΔB between the
revenue of selling electricity from cascade hydropower producers
and Bc is:

ΔB � B xk( ) − Bc (25)

B xk( ) �
∑N
i�1
B1,i, e1,i > 0

∑N
i�1
ei × p4, e1,i � 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(26)

where B (xk) is the revenue function of producers for proposal k
during the bidding phase, considering both successful and failed
bidding scenarios; p4 is the on-grid electricity price of power station
i, which is set to a uniform value for convenience of calculation in
this paper.

The value function reflects the subjective value perception of the
decision-maker of the producers towards the revenue deviation ΔB.
When the electricity sales revenue exceeds its expected revenue, that
is, ΔB>0, according to the characteristics of the value function, the
decision-maker is psychologically “gain-oriented” and tends to
avoid risks. Conversely, they have risk-seeking characteristics.
Therefore, combined with formulas 25 and 26, the value function
is modified as follows:

v xk( )s �
∑N
i�1
B1,i − Bc

⎛⎝ ⎞⎠a

,ΔB≥ 0, e1,i > 0

−λ Bc −∑N
i�1
B1,i

⎛⎝ ⎞⎠b

,ΔB≤ 0, e1,i > 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(27)

v xk( )s �
∑N
i�1
ei × p4 − Bc

⎛⎝ ⎞⎠a

,ΔB≥ 0, e1,i � 0

−λ Bc −∑N
i�1
ei × p4

⎛⎝ ⎞⎠b

,ΔB≤ 0, e1,i � 0

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(28)

where v (xk)s is the value function when scheme k is successfully
declared, and v (xk)d is the value function when scheme k is
unsuccessfully declared.

As the market adopts the PAB settlement method in this
paper, the higher the bidding prices of decision-makers for the
producers, the greater the revenue obtained when the bid is
successfully submitted. However, at the same time, the higher
the bidding prices, the greater the risk of bid failure faced by
them. Therefore, when bidding, decision-makers need to fully
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consider the risk of their decision-making programs and modify
formulas 3 and 4 based on the successful bidding probability, as
shown below:

ω prok( )s � F p max( ) − F pk( )[ ]θ
F p max( ) − F pk( )[ ]θ + 1 − F p max( ) + F pk( )[ ]θ{ }1/θ

(29)
ω prok( )d � F pk( ) − F p min( )[ ]σ

F pk( ) − F p min( )[ ]σ + 1 − F pk( ) + F p min( )[ ]σ{ }1/σ
(30)

where ω(prok)s is the probability weight for scheme k when it is
successfully cleared, and ω(prok)d is the probability weight for
scheme k when it is unsuccessfully cleared; pmax and pmin are the
maximum and minimum predicted clearing prices, respectively; pk
is the bidding price for the kth scheme; F (pmax), F (pmin) and F(p)
represent the probabilities corresponding to pmax, pmin and pk under
a certain distribution, respectively; F (pmax)- F (pk) and F (pk)- F
(pmin) represent the probabilities of successful and failed bidding,
respectively.

Based on the analysis of the value function and probability
weight function for producers during successful and failed
bidding as described above, the bidding decision-making
model is as follows:

maxVk � v xk( )sω prok( )s + v xk( )dω prok( )d (31)
where Vk is the comprehensive prospect value under the kth
proposal; v (xk)s and v (xk)d are the value functions for the kth
scheme when the bid is successful and unsuccessful,
respectively.

3.4.2 Model solving method
The calculation process of the bidding decision-making model

for the producers in the market based on prospect theory during the
bidding stage is shown in Supplementary Appendix Figure A1.
According to the objective function in Section 3.4.1, the
optimization process is as follows:

①Using the expected revenue Bc obtained in Section 3.3 and the
range of market clearing prices and daily discharge changes from [1-
α,1+α] that satisfy the expected revenue as the reference point and
the range of bidding prices for the prospect theory model.

②Select a representative daily flow process and use the
maximum power output model to calculate the power output of
the cascade hydropower station. Then, starting from pk = pmin,
increase the bidding price by a fixed step, and calculate the revenue
of the cascade hydropower station under various bidding decisions
according to formulas (25) to (26).

③Calculate the value function v (xk)s and v (xk)d for each
scheme when the bid is successful and unsuccessful based on the
predetermined revenue Bc and formulas (27) and (28). Then, using
formulas (29) and (30), calculate the probability weights ω(prok)s and
ω(prok)d for each proposal when the bid is successful and
unsuccessful. Finally, obtain the prospect value Vk for each scheme.

④Calculate the prospect value Vk for all scheme, and find the
scheme with the maximum Vk. This scheme is the optimal bidding
strategy for the producers.

4 Example analysis

The research background and examples of this paper are shown in
reference (Li et al., 2021). Based on actual operation data, the historical

FIGURE 1
Flow chart of the model solution.
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average is used as the predicted value. The predicted market clearing
price is 0.2553 yuan/kWh, the excess completion price is 0.19358 yuan/
kWh, and the default assessment price is 0.2734 yuan/kWh. The on-grid
price of 0.2 yuan/kWh is a constant. The basic information of each

power station and the predicted storage level are shown in Appendices
A1-A2. For the uncertainty of runoff, this paper only considers the
leading hydropower station A. The interval runoff of downstream
stations with weak regulation performance is calculated using the

FIGURE 2
Display of calculation results of two algorithms. (A) Operating Process of Station A, (B) Operating Process of Station B, (C) Operating Process of
Station C, (D) Operating Process of Station D.
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multi-year average runoff value. The reason is that the generation of
cascade hydropower stations in the dry season is mainly affected by the
generation flowof upstream leading stationwhich is not at the same level
as that of the interval runoff.

4.1 Accuracy verification of solving
algorithm

When the inflow forecast deviation α = At 0.151, the calculation
results of the two algorithms are shown in Figure 2. The results of the
hybrid algorithm are 14.417 billion kW hours, and the results of the
solver are 14.325 billion kW hours.From the operation process of the
cascade hydropower stations, the hybrid solution algorithm has a
smoother process, and there are significant fluctuations in the output
of the b and c stations in the solver’s calculation results. Overall, the
results of the hybrid algorithm are better than those of the solver.To
verify the improvement in solving accuracy of the nonlinear
programming and improved stepwise optimization hybrid algorithm
used in this article.The generation results of the two algorithms are
rechecked based on the method of controlling the water level process,
and then the operating water level process is rechecked based on the
method of controlling the outflow flow. If the difference between the
recheck results and the original calculation results is smaller, it indicates
that the corresponding algorithm has higher solution
accuracy.According to the method of controlling water level, the
review result of the hybrid algorithm is 14.42 billion kW hours, and
the review result of the solver is 13.52 billion kW hours. From the results
of the generation review, the calculation accuracy of the hybrid algorithm
is higher. Due to the linear function of the water balance equation of the
reservoir, it is only necessary to convert the water level into water volume
in advance to perform linear calculations in the solution. Therefore, there
is no deviation in the results of both algorithms when rechecking the
water level process using the method of controlling the outflow. Overall,
the hybrid algorithm has higher solving accuracy.

4.2 Risk analysis of cascade hydropower
stations in operation stage

Based on the research in reference (Li et al., 2021), the predicted
clearing price and runoff are substituted into the maximum revenue

model to solve the problem of maximizing the revenue of producers
participating in markets. The revenue B0 at this time is
3349.02 million yuan. The model established in this paper
assumes that the actual runoff and clearing price in the future
will fluctuate around the predicted values, with a fluctuation range of
α. According to the different expected revenue targets or risk
tolerance σ of producers, the curve of robust model objective
‾α(Bc) varying with risk tolerance or preference degree σ can be
obtained, as shown in Figure 3. The calculation results are shown in
Supplementary Appendix Table A3. The robust region refers to the
maximum fluctuation range of price and runoff that satisfies the
robust solution when the minimum expected revenue is met.

As can be seen from the model proposed in this paper, with the
increase of the risk tolerance of producers, the maximum fluctuation
range of uncertain variables also increases. That is, when the
expected revenue is lower, the greater the fluctuation range of
runoff and market price, the better the robustness of the power
distribution strategy obtained, which is more resistant to larger
runoff fluctuations. It is worth noting that no feasible solution can be
obtained when σ< 0.25. Analysis of the reasons shows that the end
water level of station C is 581.98 m, which is higher than the initial
water level of 575.27 m. However, σ< 0.25 represents that the actual
forecast inflow is significantly lower than the predicted value. In the
current situation of low inflow, it is impossible to meet the initial and
final water level requirements of station C.

After obtaining the maximum fluctuation range of clearing price
and runoff, in order to facilitate producers formulating
corresponding medium-term operation plans based on
predetermined revenue, this paper draws the medium-term water
level operation and output range of cascade hydropower stations
when the robust region is [1-α,1+α].The specific results are shown in
Figure 4. Figures 4A–D depict the operating water level range of
stations A, B, and C when the runoff and market clearing price
fluctuate by α = 0.151 around the predicted value. That is, when
operating within this water level range, as long as the predicted error
of electricity price and runoff does not exceed 15.1%, the marketized
revenue of stations will not be lower than the expected revenue.
Therefore, decision-makers can formulate corresponding operation
and output plans within this range according to their own risk
preferences, optimize medium-term dispatch plans, and avoid risks.

4.3 Risk analysis of cascade hydropower
station bidding decision in bidding stage

Using the calculation results from the previous section, when
1-σ = 0.75, the expected revenue of the station is Bc =
2511.86 million yuan. The maximum fluctuation range of the
actual values of runoff and clearing price relative to the predicted
values is α = 0.151.That is, when the actual daily runoff and
clearing price fluctuate by no more than 15.1% around the
predicted values, the station’s revenue can be guaranteed to
be at least Bc = 2511.86 million yuan in the worst case. Based on
Kahneman and Tversky’s experimental measurements, the risk
preference coefficient a is set to 0.88, the risk aversion coefficient
b is set to 0.88, the risk attitude coefficients θ and θ are set to
0.61 and 0.67, respectively, and the sensitivity coefficient λ is set
to 1.25. Different scenarios are then analyzed and solved.

FIGURE 3
Variation curve of the robust region with the risk tolerance factor
1-σ.
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4.3.1 Model solving method
With a fixed expected revenue of Bc = 2511.86 million yuan and

a clearing price ranging from 0.2168 to 0.2939, due to the limited
data and potential fitting errors, it is assumed that the market

clearing price follows a normal distribution of N (0.2553,0.016).
The daily runoff is set to (1-α)*qi,t, and the generation output of the
station is 11.59 billion kW hours. The bidding price is fixed at a step
size of 0.005 yuan/kWh, and the prospect value of different bidding

FIGURE 4
Operation range of cascade hydropower stations meeting the predetermined revenue. (A)Operating Process of Station (A) (B)Operating Process of
Station (B) (C) Operating Process of Station (C) (D) Operating Process of Station (D).
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strategies is calculated. Then, by varying the mean and variance of
the market clearing price, the prospect value is calculated and
plotted as shown in Figure 3.

From Figure 5A, it can be seen that the variance represents
the degree of fluctuation in predicted market clearing price. The
smaller the variance, the smaller the price fluctuation, leading to
a more concentrated price distribution and a higher probability
of falling within the given [1-α,1+α] interval. Conversely, the
larger the variance, the greater the price fluctuation, leading to a
more dispersed price distribution and a lower probability of
falling within the given interval.When the variance is 0.016, the
price distribution is mostly concentrated within the interval
specified by the IGDT robust model. To avoid losses from
quoting too high and not being able to successfully cleared,
the optimal bidding price for the decision-makers is
0.2368 yuan/kWh. When the variance is 0.064 and 0.144, the
proportion of price distribution within the interval specified by
the IGDT robust model is relatively small and dispersed. At this

time, the optimal bidding prices for the decision-makers are
0.2568 yuan/kWh and 0.2618 yuan/kWh, slightly higher than
the prices when the variance is 0.016.

As can be seen from Figure 5B, the mean has a greater impact on
the bidding strategy than the variance.The mean represents the
central location of the predicted market clearing price and affects the
probability of a successful cleared. Within the price interval specified
by the IGDT robust model, if the mean is closer to the lower bound,
the optimal bidding price to ensure a successful cleared will also
decrease. For example, when the mean is 0.22 yuan/kWh, the
optimal bidding price for the decision-makers is 0.2168 yuan/
kWh, and the prospect is negative, representing that this bidding
strategy cannot meet the expected revenue of the decision-making,
and its psychology is “loss”. When the mean is larger, the optimal
bidding price also increases. For example, when the mean is
0.2553 yuan/kWh and 0.28 yuan/kWh, the optimal bidding price
is 0.2368 yuan/kWh and 0.2568 yuan/kWh, respectively, and the
model results are consistent with the facts.

FIGURE 5
Optimal bidding price under different parameters with fixed expected return. (A) Influence of variance on optimal decision. (B) Influence of mean
value on optimal decision.
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4.3.2 Impact of bidding volume change on bidding
strategy

When the daily runoff varies within [(1-α)*qi,t, (1+α)*qi,t], the
generation output of the cascade hydropower station changes within
[9.96878, 15.36877] billion kW hours, while other parameters
remain unchanged. The optimal bidding price for the decision-
maker is calculated under different generation outputs, as shown in
Figure 6.

As shown in Figure 4, the expected revenue of the station is
Bc = 2511.86 million RMB. According to the transaction
settlement rules, when the power generation company fails to
bid, the settlement price shall be 0.2 yuan/kWh.The producers
needs to ensure at least 12.5 billion kW hours of electricity to
meet its own expected revenue, even if the bidding
fails.Therefore, when the generation output is less than
12.5 billion kW hours, that is, the sales revenue is less than the
expected revenue, the decision-maker is “loss-averse” in terms of
psychology. When facing a “loss-averse” situation, decision-
maker often have a strong risk appetite and will choose
higher-risk prices for bidding. As the generation output
increases, the revenue increase from only relying on the on-
grid tariff settlement, that is, the “loss” from failed bidding
decreases, and the risk appetite of decision-maker weakens, so
they will choose relatively lower-risk prices for clear. When the
generation output is in the range of 12.5–12.6 billion kW hours,
the optimal bidding price will increase slightly, that is, as the
decision-maker transitions from “loss” to “gain” in terms of
psychology, the comprehensive prospect value of slightly
increasing the bidding price is greater than that only relying
on the on-grid tariff settlement. When the generation output is
greater than 12.5 billion kW hours, that is, the sales revenue is
greater than the expected revenue, the decision-maker is “gain-
seeking” in terms of psychology, and has a strong risk aversion
tendency. They will choose lower-risk prices for bidding.
However, after the generation output increases to a certain
degree, the optimal bidding price of decision-maker remains
unchanged. The model in this paper reflects the characteristic
of decision-maker being loss-averse and gain-seeking in terms of
risk appetite when facing different psychological expectations,
which makes the decision results more in line with the
psychological desires of decision-maker.

5 Conclusion

Based on IGDT and prospect theory, this paper proposes a
mid-term optimization scheduling and trading decision-making
method for cascade hydropower producers in the power market
that jointly considers the bidding stages and the dispatching and
operation risks. The optimization scheduling model for the
dispatching stage is conceptually clear, operationally simple,
and the results are intuitive, enabling the calculation of the
maximum deviation range of daily runoff and market clearing
prices from the predicted values when satisfying the decision-
maker’s predetermined revenue. From the perspective of limited
rationality, the model considers the decision-maker’s risk
appetite for different revenue reference points in bidding
stages, which is more in line with the facts, and obtains the
optimal bidding strategy within a given range of clearing price
changes. In order to solve the calculation error problem caused
by fitting, this article adopts a nonlinear programming and
improved stepwise optimization hybrid algorithm for
solution. The research indicates that:

①When analyzing the risks of cascade hydropower
producers in the power market environment, it is not
sufficient to solely rely on the total revenue of each scenario.
Instead, evaluations need to be conducted based on their
psychological reference points. Therefore, the degree of risk
preference held by operators is a key factor in determining
both bidding and operating strategies. Furthermore, an
operator’s risk appetite can vary depending on their changing
psychological expectations.

②This method provides robust models that can withstand
fluctuations in daily runoff and market clearing prices for mid-
term scheduling and operation plans that meet different expected
revenue targets for producers. Then, using prospect theory, the
optimal bidding strategy in the long-term and medium-term
markets within a given range of expected revenue and electricity
price changes is obtained. Risk-averse and risk-seeking entities can
evaluate different plans and adopt corresponding strategies to
ensure expected revenue targets.

③The IGDT method requires little information about
uncertain factors and does not require obtaining the
probability distribution of uncertain parameters, making it

FIGURE 6
Influence of expected return on generation in IGDT robust model.
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suitable for dealing with risk decision-making problems with
severe uncertainty. The robustness of the model is reflected in
the maximum deviation range of the uncertain variables from
the predicted values when ensuring that the expected target is
not worse than a certain minimum preset result. Prospect theory
takes into account the decision-maker’s psychology, making
electricity price bidding decisions more in line with the actual
decision-maker’s behavioral patterns.
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