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As a kind of clean and renewable energy, wind power is of great significance for
alleviating energy crisis and environmental pollution. However, the strong
randomness and large volatility of wind power bring great challenges to the
dispatching and safe operation of the power grid. Hence, accurate and reliable
short-term prediction of wind power is crucial for the power grid dispatching
department arranging reasonable day-ahead generation schedules. Targeting the
problem of low model prediction accuracy caused by the strong intermittency
and large volatility of wind power, this paper develops a novel ensemble model
for short-term wind power prediction which integrates the ensemble empirical
mode decomposition (EEMD) algorithm, the gated recurrent unit (GRU) model
and the Markov chain (MC) technique. Firstly, the EEMD algorithm is used to
decompose the historical wind power sequence into a group of relatively
stationary subsequences to reduce the influence of random fluctuation
components and noise. Then, the GRU model is employed to predict each
subsequence, and the predicted values of each subsequence are aggregated
to get the preliminary prediction results. Finally, to further enhance the prediction
accuracy, the MC is used to modified the prediction results. A large number of
numerical examples indicates that the proposed EEMD-GRU-MC model
outperforms the six benchmark models (i.e., LSTM, GRU, EMD-LSTM, EMD-
GRU, EEMD-LSTM and EEMD-GRU) in terms of multiple evaluation indicators.
Taking the spring dataset of the ZMS wind farm, for example, the MAE, RMSE and
MAPE of the EEMD-GRU-MC model is 1.37 MW, 1.97 MW, and from 1.76%,
respectively. Moreover, the mean prediction error of the developed model in
all scenarios is less than or close to 2%. After 30 iterations, the proposed model
uses an average of about 35 min to accurately predict the wind power of the next
day, proving its high computation efficiency. It can be concluded that the
ensemble model based on EEMD-GRU-MC is a promising prospect for short-
term wind power prediction.
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1 Introduction

In order to cope with the global energy crisis and climate change,
renewable energy has become the focus of the development of
countries around the world. As an important part of renewable
energy, wind power has developed rapidly in recent years due to its
low cost andmature technology (Chen et al., 2017; Yuan et al., 2022).
According to statistics from the International Energy Agency, wind
electricity generation reached 1,870 TWh in 2021 and it remains the
leading non-hydro renewable technology. To achieve the goal of net-
zero emissions by 2050, which is to generate around 7,900 TWh of
wind power by 2030, it will be necessary to increase average annual
electricity generation to almost 250 GW (International Energy
Agency, 2021). However, with the increasing penetration of wind
power into the power grids, the randomness, volatility and
intermittency of wind power bring great challenges to the safe
and stable operation of the power grids (Shafiullah et al., 2013;
Dai et al., 2019). Accurate and reliable wind power forecasting is an
effective way to cope with this problem and has therefore become
quite a hot topic of research (Tascikaraoglu and Uzunoglu, 2014;
Wang et al., 2021).

According to the length of the foresight period, wind power
forecasting can be divided into: ultra-short-term forecasting (0–4 h)
for real-time load balancing, short-term forecasting (4–72 h) for unit
commitment and flexibility reserve, and medium and long-term
forecasting (several days, weeks or months) for unit maintenance
scheduling and generation capacity evaluation. This study only
focuses on the short-term wind power prediction. In recent years,
many short-termwind power forecastingmethods have been proposed.
These can be summarized into three categories: physical methods,
statistical methods, and ensemble forecasting models.

Based on the meteorological conditions of the underlying
surface of the wind farms and the output curve of the fans, the
physical prediction methods can establish the mapping relationship
between wind power output and meteorological information using
micro-meteorology to realize the wind power prediction. Numerical
weather prediction (NWP) is the most commonly used physical
method. Charabi et al. (2011) evaluated the performance of NWP
model data for wind energy applications in Oman and demonstrated
that NWP data has better accuracy than satellite data compared to
ground measurements. Liu et al. (2022) proposed a novel NWP-
enhanced wind power prediction method based on rank ensemble
and probabilistic fluctuation awareness. Prósper et al. (2019) focused
on production prediction and validation of actual onshore wind
farms using high horizontal and vertical resolution Weather
Research and Prediction (WRF) model simulations. Ye et al.
(2017) proposed a short-term wind power prediction model
based on physical methods and spatial correlations to
characterize the uncertainty and dependency structure of
turbine’s output in wind farms. However, physical methods rely
on very precise meteorological and geographic data, which are
sometimes difficult to obtain. In addition, the physical methods
usually need significant computational time, making their
application to short-term wind power forecasting difficult.

The statistical methods do not usually consider the complex
physical mechanism of wind power generation, and only construct a
statistical model based on the historical operational data of wind
farms in order to achieve future wind power prediction. Compared

with physical methods, the statistical methods have simpler
calculation and can directly predict wind power by mapping the
relationship between historical wind power data and the prediction
target. Statistical models can be further divided into time series
models, other machine learning models and deep learning models:
1) The typical time series models include the autoregressive moving
average model (ARMA) (Torres et al., 2005), the autoregressive
integrated moving average model (ARIMA) (Chen et al., 2010;
Barbosa et al., 2017), the exponential smoothing method
(Cadenas et al., 2010), and the generalized autoregressive
conditional heteroscedasticity (GARCH) model (Jeon and Taylor,
2016). Nevertheless, time series models only analyze the potential
relationship of time series variables, whichmakes it difficult for them
to mine the nonlinear relationship between data, hence the
prediction accuracy of this kind of model is poor. 2) Machine
learning models can adaptively learn to make decisions and
predict future data based on given historical data (Liu et al.,
2019). Commonly used machine learning models, such as
support vector machine (SVM) (Liu et al., 2017; Abedinia et al.,
2022), random forest (RF) (Lahouar and Slama, 2017; Shi et al.,
2018), and Bayesian additive regression tree (BART) (Chen et al.,
2018), are widely used in wind power output prediction, wind speed
prediction and other fields. However, the effect of SVM is closely
related to the selection of kernel function and its parameters, which
is strongly dependent on the user’s experience. RF is prone to
overfitting, and the BART method requires a long computation
time. 3) With the rapid development of deep learning, artificial
intelligence (AI) technology has also been applied to wind power
prediction. The AI models, back-propagation (BP) neural network
(Zhang et al., 2018), artificial neural network (ANN) (Carolin and
Fernandez, 2008), convolution neural network (CNN) (Wang et al,
2017a; Afrasiabi et al., 2019) and recursive neural network (RNN)
(Li et al., 2019) have been the focus of previous research on
prediction models. These models have higher prediction accuracy
than other machine learning models but have the same problem
with difficulty in model training. Hence improved RNN and CNN
models, such as long short-term memory (LSTM) (Zhang et al.,
2019a; Zhang et al, 2019b; Wu et al., 2019), GRU (Ding et al., 2019;
Chen et al., 2022), and temporal convolutional network (TCN) (Gan
et al., 2021; He et al., 2022) have been widely used in wind power
prediction. In recent years, the generative adversarial network
(GAN) has attracted a lot of attention (Yuan et al., 2021; Zhou
et al., 2021; Xia et al., 2022). Its generative model maps noise
variables to multi-layer perceptron networks to make the
generated data as close as possible to the distribution of training
samples. In general, the AI models can better mine the hidden
feature information of the wind power series, improve the overall
prediction accuracy, and have strong learning ability and robustness.

Due to the high randomness and volatility of wind power, the
prediction abilities of a single model often do not meet actual needs.
In recent years, ensemble forecasting models which combine the
advantages of multiple single models have become a popular
direction for wind power prediction research. Current research
on ensemble forecasting models can be summarized in four
categories. 1) Ensemble forecasting models based on multi-model
weighting. In these models, multiple single models, such as SVM and
RNN (Yu et al., 2018), extreme learning machine (ELM), Elman
neural network (ENN) and LSTM (Abedinia and Bagheri, 2022),
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least square SVM (LSSVM) and radial basis function neural network
(RBFNN) (Shi et al., 2013), outlier robust ELM (ORELM), ENN, and
bidirectional LSTM (BiLSTM) (Chen and Liu, 2020), are used to
predict wind power series, and the prediction results are weighted to
improve the prediction accuracy. 2) Ensemble forecasting models
based on data preprocessing. To cope with the non-stationary wind
power sequence, these methods use signal decomposition and
denoising algorithms to decompose the original wind power data
into multiple stationary subsequences, and use the prediction model
to predict each subsequence separately. Commonly used mode
decomposition algorithms include empirical mode decomposition
(EMD) (Amjady and Abedinia, 2017; Abedinia et al., 2020),
variational mode decomposition (VMD) (Yin et al., 2019; Duan
et al., 2021), singular value decomposition (Wang et al., 2020),
ensemble empirical mode decomposition (EEMD) (Wang et al,
2017b), wavelet transform (WT) (Zucatelli et al., 2021; Khazaei
et al., 2022), and complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) (Lu et al., 2020) Ensemble
forecasting models based on optimization techniques. In order to
improve the prediction accuracy, the parameters of the forecasting
model are optimized by using optimization techniques. These
models include the Multilayer Perceptron (MLP) neural network
optimized by Non-dominated Sorting Genetic Algorithm II (NSGA-
ӀӀ) (Khazaei et al., 2022), SVMoptimized by cuckoo search algorithm
(SVM-CSA) (Li et al., 2021), ENN optimized by multi-objective grey
wolf optimization (ENN-MOGWO) (Wang et al., 2019a), ELM
optimized by Particle Swarm Optimization (ELM-PSO) (Tian
et al., 2019), Echo State Network optimized by MOGWO (ESN-
MOGWO) (Wang et al., 2019b) Ensemble forecasting models based
on error correction. In order to further reduce the prediction error,
error correction technology has been widely used in wind power
prediction, usually by predicting the error extracted from the initial
prediction result as a secondary prediction. The Markov chain (MC)
model (Zhang et al., 2014; Zhang et al., 2021), the GARCH (Jiang
and Huang, 2017), the temporally local moving window technique
(Yan et al., 2015), and machine learning methods (Liang et al., 2016)
are commonly used to deal with the error component.

Although many advances have been made in wind power
forecasting methods, wind power forecasting remains challenging due
to the high instability of wind power output. Moreover, few prediction
methods combine data decomposition, model prediction, and error
correction techniques to further improve the prediction accuracy. Based
on the above analysis, this research is driven by the following concepts:
The EEMD method is an improved and robust decomposition
technique, and can effectively discover the potential characteristics of
wind power output; The GRU model shows good performance in
extracting temporal correlation hidden features from time series,
hence is making a figure in short-term power prediction of new
energy sources; The MC approach is a very popular error correction
technique because it is easy to understand and implement. Hence in this
paper, following the concept of “data decomposition -model prediction -
error correction”, a novel ensemble forecasting model for short-term
wind power sequences based on EEMD-GRU-MC is developed. The
proposed model consists of three important steps: Firstly, the EEMD
method is employed to decompose the original wind power output
sequence into a set of relatively stationary subsequences and denoise the
data sequence. Secondly, the GRUmodel is used to individually forecast
each subsequence, and the predicted value of each subsequence is

superimposed to obtain the predicted result of the original data.
Finally, to further enhance the prediction accuracy, the MC is
applied to correct the preliminary prediction results. Extensive
numerical experiments are conducted to test the performance of the
proposed forecastingmodel when applied to different wind farms and in
different seasons. This testing indicates that the proposed hybrid model
outperforms the benchmark models in terms of multiple evaluation
indicators. Moreover, the mean prediction error of the developed model
in all scenarios is less than or close to 2%, proving that it is a promising
prospect for short-term wind power prediction.

The rest of this paper is structured as follows: Section 2
introduces the proposed ensemble forecasting method for short-
term wind power sequences. Case studies are presented and
discussed in Section 3. Finally, conclusions are drawn in Section 4.

2 Methodology

2.1 Data decomposition based on EEMD

EMD is a signal preprocessing analysismethod proposed byWu and
Huang (2009), which is widely used in non-stationary and nonlinear
signal processing. It progressively breaks down fluctuations or trends in
different frequencies in the signal, and finally obtains a set of intrinsic
mode functions (IMFs), where each decomposed IMF represents the
characteristic signals of different frequencies in the original signal.
However, mode mixing may occur in EMD signal processing, which
prevents the IMFs from being separated effectively. The EEMDmethod
introduces Gaussian white noise into the original signal and realizes the
automatic distribution of the signal for the appropriate timescale after
several averaging calculations, which effectively solves the mode mixing
problem. Wind power output is easily affected by wind direction, wind
speed and other factors, and presents large random fluctuations, which
result in a large number of outliers in the wind power sequence.
Therefore, the EEMD algorithm is applied to decompose and denoise
the wind power sequence, extract the main trend component in the
sequence, and eliminate the random fluctuation component. The
decomposition of the wind power sequence by EEMD can be
summarized as the following steps:

Step 1: The white noise signal sk,t is added to the original wind
power sequence Pt, and the new power sequence Pk,t is obtained
using Eq. 1:

Pk,t � Pt + sk,t, k � 1, . . . , K (1)

Step 2: The new sequence Pk,t (see Eq. 2) is decomposed into a
series of IMFs using the EMD algorithm (Naik et al., 2018):

Pk,t � ∑M

m�1C
m
k,t + rMk,t (2)

Step 3: Steps (1) and (2) are repeated K times, and white noise with
different amplitude is added each time.

Step 4: Since the mean value of the white noise spectrum is 0, the
mean value of all IMFs calculated for K iterations is the final IMF
obtained by the EEMD method (see Eq. 3):
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Cm
t � ∑K

k�1C
m
k,t/k (3)

Step 5: The original wind power sequence can be reconstructed as
Eq. 4:

Pt � ∑M

m�1C
m
t + rMt (4)

The amplitude of rMt is so small that it can be ignored in wind
power prediction.

2.2 Model prediction based on GRU
neural network

LSTM is an enhanced type of RNN, which effectively solves
the problem of the vanishing collateral gradient of traditional
RNNs. GRU is an improved version of LSTM, simplifying the
number of gating units and improving the computational
efficiency of the model while ensuring the output accuracy.
The GRU neuron is the basic unit of the GRU neural network
(GRUNN) model and its structure is shown in Figure 1. The GRU
neuron includes reset gate rt and update gate zt. The update gate
receives the current state xt and the previously hidden state ht−1.
After receiving the input and the matrix operation, the sigmoid
function σ determines whether the neuron is activated. The reset
gate receives xt and ht−1, and the result determines how much
past information needs to be forgotten. The current memory ht is
a summary of the input and output of the previous hidden layer.
~ht and ht−1 determine the final output ht by dynamic control of
the update gate and transmit ht to the next GRU neuron. The
mathematical model of GRU is shown as Eqs (5–8).

zt � σ Wz · ht−1, xt[ ]( ) (5)
rt � σ Wz · ht−1, xt[ ]( ) (6)

~ht � tanh Wh · rt ⊙ ht−1, xt[ ]( ) (7)
ht � 1 − zt( ) ⊙ ht−1 + ~ht ⊙ zt (8)

Based on the GRU neuron, the time series prediction of GRUNN
is shown in Figure 2.

2.3 Detailed description of error correlation
based on MC

2.3.1 Basic theory of Markov chain
The Markov process is a typical stochastic process proposed by

the famous mathematician Markov, which is applicable to both time
series and interval sequences. The main content of the Markov
process research is the state of a given stochastic process and its
transition law. The MC refers to the Markov process with discrete
time and state, and it can predict the changing trend of each state
according to the initial probability of each state and the transition
probability between each state. Hence the preliminary prediction
results are corrected by MC to make up for the prediction error
caused by the elimination of some components in the data
decomposition process and the corrected wind power output is
therefore closer to the actual value.

Assuming that Xt, t � 1, 2, . . . , T{ } is a random sequence where t
represents any time period, if for any state i0, i1, . . . , it−1 state i and j
satisfy Eq. 9, then Xt, t � 1, 2, . . . , T{ } is a MC. i and j represent the
possible states of the system at present and in future time,
respectively:

p Xt+1 � j
∣∣∣∣Xt � i, Xt−1 � it−1, . . . , X1 � i0{ } � p Xt+1 � j

∣∣∣∣Xt � i{ }
(9)

Supposing there are n states in state space I and, since each state
can turn to itself, each state has n turns. So, the one-step transition
probability from state i to state j can be expressed as Eq. 10:

p 1( )
ij � M 1( )

ij /Mj (10)

The matrix composed of the one-step transition probability set
of all states is called the one-step transition probability matrix, and is
expressed as Eq. 11:

P 1( ) �
p 1( )
11 p 1( )

12

p 1( )
21 p 1( )

22

. . . p 1( )
1n

. . . p 1( )
2n

..

. ..
.

p 1( )
n1 p 1( )

n2

. . . ..
.

. . . p 1( )
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

Accordingly, the matrix composed of the k-step transition
probabilities of all states is called the k-step transition probability
matrix of the system. According to the homogeneity of MC, the
k-step state transition probability matrix is expressed as Eq. 12:

P k( ) �
p k( )
11 p k( )

12

p k( )
21 p k( )

22

. . . p k( )
1n

. . . p k( )
2n

..

. ..
.

p k( )
n1 p k( )

n2

. . . ..
.

. . . p k( )
nn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � P 1( )( )k (12)

In the process of MC error correction, the classification of states
is very important. In this paper, the mean-standard deviation
classification method, which is simple in theory and widely used,
is employed to divide the state space according to the mean and
standard deviation of the samples. Let the sample sequence be
Xn, n � 1, 2, . . . , N{ }, the sample mean is �x, and the standard
deviation is δ. According to the central limit theorem in
mathematical statistics, the sample sequence can be divided into
five intervals: H1(min Xn,∀n{ }, �x − δ], H2(�x − δ, �x − 0.5δ],

FIGURE 1
Structure of the GRU neuron.

Frontiers in Energy Research frontiersin.org04

Wang et al. 10.3389/fenrg.2023.1252067

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1252067


H3(�x − 0.5δ, �x + 0.5δ], H4(�x + 0.5δ, �x + δ], H5(�x +
δ, max Xn,∀n{ }).

2.3.2 Basic theory of Markov chain
Based on the above analysis, the correction process for wind

power prediction error is as follows:

Step 1: Calculate the historical wind power error sequence using
Eq. 13:

es � ph
s − ppf

s ,∀s � 1, 2, . . . , S (13)
where ph

s denotes the actual historical wind power output value of
sample point s; ppf

s denotes the predicted value of sample point s
obtained by the EEMD-GRU model; S is the total number of
sample points.

Step 2: Calculate the mean and standard deviation of the error
sequence and divide the error sequence into five intervals
H1, H2, H3, H4 and H5 using the mean-standard deviation
classification method.

Step 3: The number of sample points belonging to different
intervals is counted, and then the one-step and k-step transition
probability matrices of each error state are calculated by using Eqs.
11 and (2), respectively.

Step 4: The states of the error sequence 5 days before the forecast
days are taken as the initial states. In the transition matrix P(5), the
row vectors corresponding to each initial state P(5)

i �
(P(5)

i1 , P(5)
i2 ,/, P(5)

i5 ), i � 1, . . . , 5 are taken to form a new
probability matrix (see Eq. 14):

R �
p 5( )
i1 p 5( )

i2

p 5( )
i1 p 5( )

i2

. . . p 5( )
i5

. . . p 5( )
i5

..

. ..
.

p 5( )
i1 p 5( )

i2

. . . ..
.

. . . p 5( )
i5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (14)

Step 5: The state corresponding to max Pj � ∑5
i�1
p5
ij, j ∈ [1, 5]⎧⎨⎩ ⎫⎬⎭,

i.e., the state to which the error is most likely to be transferred in the
future, is taken as the state of the modified error. Thus the modified
error ẽk � es + 0.5(Hel +Heu), whereHel andHeu are the lower and
upper bound of the state interval of the error to be modified.

Step 6: Correct the predicted wind power sequence on the forecast
days using Eq. 15:

pf
k � ẽk + ppf

k (15)

2.4 Overall model prediction process

The overall flowchart of the proposed EEMD-GRU-MC model
is depicted in Figure 3, and the main steps are as follows:

Step 1: Use the EEMD method to decompose the historical power
data into K IMF components (subsequences) and one
RES component.

Step 2: Divide each subsequence into a training set and a test set,
and then use the GRU model to predict each component. The
prediction results of each subsequence are aggregated as the
preliminary prediction results of the EEMD-GRU model.

FIGURE 2
Schematic diagram of GRUNN prediction.

FIGURE 3
Flowchart of the proposed forecasting model.
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Step 3: Calculate the prediction error between the historical wind
power and the predicted power, then use the MC to correct the
preliminary prediction results to get the final predicted wind
power sequence.

3 Case studies

3.1 Data description

To verify the effectiveness and practicability of the EEMD-
GRU-MC model, it was applied to the short-term wind power
prediction of two wind farms, ZMS and YMC, which are located in
Yunnan Province, China. For each wind farm, four datasets were
collected to test the forecasting performance of the proposed
model in different seasons. The datasets were collected from
1 February 2021 to 22 March 2021, from 1 June 2021 to 20 July
2021, from 1 September 2021 to 20 October 2021 and from
1 December 2021 to 19 January 2022, representing the wind
power data in spring, summer, autumn and winter, respectively.
Each dataset was recorded for a time period of 15 min. As shown in
Figures 4, 5, there is a total of 50 days, representing 4800 sample
points, included in each dataset. The first 3840 sample points are
used for the training set, the middle 864 are used for the validation
set to avoid modeling over fitting, and the last 96 are used for the
test set. This study focuses on short-term wind power prediction
24 h in advance to assist day-ahead dispatching of power grids
(Alham et al., 2016; Hu et al., 2019; Liu et al., 2021). Therefore,

96 sample points are selected as the test set in this study. The ratio
of training set, verification set and test set is usually 6:2:2. In order
to improve the prediction accuracy of the model, a longer training
set and verification set were selected in this study, which made the
data volume of the whole data set reach 4800. Table 1 lists the
statistical information for the datasets, including the maximum,
minimum, mean, median and standard deviation. It can be
observed that the power variation of each wind farm in all
seasons is close to the installed capacity, showing strong
volatility and non-stationarity. The power output of all wind
farms is larger in spring and winter, but smaller in summer.

The root mean square error (RMSE), mean absolute error
(MAE) and mean absolute percentage error (MAPE) are used as
indexes to evaluate the predictive performance of the forecasting
models (see Eqs 16–18). The smaller the RMSE, MAE and MAPE,
the better the predictive performance of the models:

RMSE �
���������������∑L

l�1 pa
l − pf

l( )2/L√
(16)

MAE � (∑L

l�1 p
a
l − pf

l

∣∣∣∣∣ ∣∣∣∣∣)/L (17)
MAPE � (∑L

l�1 p
a
l − pf

l

∣∣∣∣∣ ∣∣∣∣∣/pa
l )/L (18)

Where L is the number of sample points in the test set, which is
96 in this paper; pa

l is the actual wind power value of sample point l;
pf
l is the predicted value.
The EEMD decomposition of the wind power sequence and MC

error correction of the preliminary prediction results were realized

FIGURE 4
Wind power dataset for the ZMS wind farm.
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by Matlab 2020a, and the training and prediction of the GRU model
were realized by Python programming language. All numerical
experiments were conducted on a Dell workstation equipped
with an Intel Xeon Gold processor, with 20 cores and 40 threads,
2.1G main frequency and 64G memory.

3.2 Case 1: short-term wind power
prediction for the ZMS wind farm

Aiming to solve the problem of poormodel robustness caused by
the randomicity and intermittent nature of wind power, the EEMD

algorithm was introduced to decompose wind power data into a set
of subsequences. Due to space limitations, Supplementary Figure S1
only displays the EEMD decomposition results of the spring dataset.
It can be seen that EEMD decomposes the wind power sequence into
seven IMF subsequences and one residual subsequence with
different frequency characteristics, which facilitates the analysis of
the hidden information in the data and overcomes the shortcomings
of the original wind power sequence with its high volatility and non-
stationarity.

In order to verify the superiority, reliability and stability of the
proposed model, six other forecasting models based on LSTM, GRU,
EMD-LSTM, EMD-GRU, EEMD-LSTM and EEMD-GRU were

FIGURE 5
Wind power dataset for the YMS wind farm.

TABLE 1 Statistical information of the datasets used in this study.

Wind farm Dataset Maximum Minimum Range Mean Median Std.

ZMS Spring 145.2 0 145.2 101.4 114.4 37.2

Summer 147.6 0 147.6 66.8 61.9 41.9

Autumn 131.8 0 131.8 29.4 21.4 27.9

Winter 143.3 0 143.3 68.5 67.3 38.7

YMS Spring 83.0 0.1 82.9 53.7 58.5 20.9

Summer 81.8 0 81.8 18.9 11.5 19.7

Autumn 88.6 0 88.6 22.6 20.8 17.4

Winter 98.5 0 98.5 48.5 51.7 21.6
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constructed as comparison models. It should be mentioned that the
LSTM and GRU methods are adopted by (Duan et al., 2021; Chen
et al., 2022), respectively. The prediction results of the seven models
in different seasons are shown in Figure 6, and regression analysis of
the prediction results for the ZMS wind farm using different models
is presented in Figure 7. For further quantitative comparison, the
evaluation indicators of various prediction models, including MAE,
RMSE and MAPE are listed in Table 2. The detailed analyses are
summarized as follows: (1) The predicted wind power curves of all
models are generally consistent with the trend of the actual power
curve. However, it is clear that the predicted wind power curve
obtained by the proposed EEMD-GRU-MC model is very close to
the actual power curve, and has the smallest RMSE,MAE andMAPE
among the seven models for all seasons. In addition, the correlation
between the observed data and the predicted data generated by the
proposed model is greater than that of comparison models.
Therefore, the proposed model connecting EEMD and MC to the
GRU model has the ability to capture the dynamic characteristics of
wind power output data series. (2) The LSTM has the largest
prediction error and the prediction effect of EEMD-LSTM is also
inferior to that of EEMD-GRU for different seasons, which proves
that GRU has more advantages in predicting short-term wind power
time series data compared to LSTM. (3) EEMD-LSTM and EEMD-
GRU models are superior to LSTM and GRU respectively in various
performance evaluation indexes. Taking the summer dataset with

the strongest stochastic wind power volatility as an example, the
MAE, RSME and MAPE of the EEMD-GRU model are 1.90 MW,
3.36 MW and 1.58%, which decreased by 69.3%, 48.7% and 71.2%
compared with the GRU model. Similar results also appear in the
comparison of the EEMD-LSTM and LSTM model, whose MAE,
RMSE and MAPE decreased by 77.9%, 47.3% and 79.2%,
respectively. This proves that EEMD can separate the noise
information from the complex wind power data and facilitate the
prediction model to extract the hidden information in the data. (4)
Compared with EMD-LSTM and EMD-GRU, EEMD-LSTM and
EEMD-GRU have better predictive performance, showing EEMD
technique is more helpful for improving the prediction accuracy
than EMD technique. (5) The prediction accuracy of the EEMD-
GRU model can be further improved after MC error correlation.
Taking the spring dataset, for example, after MC correction, the
MAE, RMSE and MAPE of the EEMD-GRU model decreased from
1.87 MW to 1.37 MW, from 2.37 MW to 1.97 MW, and from 2.18%
to 1.76%, respectively.

3.3 Case 2: Short-term wind power
prediction of the YMS wind farm

In order to verify its robustness, the proposed model was applied
to the short-term power prediction of the YMS wind farm, whose

FIGURE 6
Short-term wind power forecasting results for the ZMS wind farm.
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FIGURE 7
(A) Spring Regression analysis of prediction results for the ZMS wind farm using different models. (B) Summer Regression analysis of prediction
results for the ZMS wind farm using different models. (C) Autumn Regression analysis of prediction results for the ZMS wind farm using different models.
(D) Winter Regression analysis of prediction results for the ZMS wind farm using different models.
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output characteristics are quite different from those of ZMS. The
experiments were also conducted using six comparison models as
mentioned in Section 3.1. The forecasting results from these
models and regression analysis are shown in Figures 8, 9, while
the evaluation indicators of the forecasting results are illustrated in
Table 3. It can be found that the LSTM and GRU based models
without data preprocessing fail to obtain satisfactory forecasting
results. Especially in spring and summer, the MAPE values of both
models exceed 10%. The proposed EEMD-GRU-MC model
achieves the smallest MAE, RMSE and MAPE among the
models for the four seasons, and the forecasted wind power
curves closely match the trend of the actual power curves.
Except for in spring, the MAPE values of the predicted results
of the developed model are all within 2%. Although the developed

model’s prediction accuracy dropped slightly in the spring dataset
where the wind power fluctuation is more severe, the proposed
model performs best in the wind power prediction for the YMS
wind farm. It can be concluded that the developed ensemble
forecasting model has more outstanding potential and is better
able to capture valuable information in complex and non-
stationary wind power data.

3.3 Analysis of computational efficiency of
the proposed model

Computational complexity is an important index to evaluate the
efficiency of a wind power forecasting method, which describes how

TABLE 2 Statistical indexes of short-term power prediction for the ZMS wind farm using different models.

Dataset Model MAE(MW) RMSE(MW) MAPE (%)

Spring LSTM 9.82 11.50 10.74

GRU 7.49 8.61 8.32

EMD-LSTM 6.13 7.26 7.27

EMD-GRU 3.61 4.45 4.38

EEMD-LSTM 4.03 5.15 4.59

EEMD-GRU 1.87 2.37 2.18

EEMD-GRU-MC 1.37 1.97 1.76

Summer LSTM 9.62 11.11 8.35

GRU 6.19 6.55 5.49

EMD-LSTM 3.58 7.97 2.90

EMD-GRU 2.27 6.03 1.84

EEMD-LSTM 2.13 5.86 1.74

EEMD-GRU 1.90 3.36 1.58

EEMD-GRU-MC 1.43 1.41 1.28

Autumn LSTM 5.45 7.41 9.69

GRU 4.07 5.52 7.43

EMD-LSTM 4.37 5.72 8.15

EMD-GRU 3.95 5.67 7.00

EEMD-LSTM 2.68 4.32 4.67

EEMD-GRU 2.24 3.22 4.49

EEMD-GRU-MC 0.76 0.84 1.69

Winter LSTM 6.08 6.33 11.53

GRU 2.64 2.90 4.94

EMD-LSTM 2.48 3.01 4.62

EMD-GRU 1.60 2.52 3.00

EEMD-LSTM 1.50 2.07 2.85

EEMD-GRU 0.75 1.15 1.33

EEMD-GRU-MC 0.03 0.07 0.68
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the execution time of a method changes with the increase of the
input size. The computational complexity of EEMD-GRU-MC
model mainly depends on the respective complexity of EEMD,
GRU and MC. EEMD is an adaptive signal processing method for
nonlinear and non-stationary data. The time complexity of
EEMD is actually equivalent to the time complexity of Fourier
transform. This means that although EEMD is considered
computationally intensive, it is actually a computationally
efficient method. A GRU is a recurrent neural network used
to process sequential data. The computational complexity of a
GRU depends on several factors, including sequence length,
number of network layers, and number of hidden units per
layer. In general, the computational complexity of a GRU is
proportional to these factors. An MC is a statistical model that
describes random changes in the state of a system. The
computational complexity of MC depends on the number of
states. If the number of states is fixed, then the computational
complexity of MC can be considered constant. In general,
computational complexity is related to the parameters of the
model and the amount of data.

In order to ensure that the proposed prediction model is
realizable in practical applications, the prediction efficiency of
the proposed model is analyzed, which is shown in Table 4. This
model is designed to predict the day-ahead wind power output,
rather than real-time prediction. After 30 iterations, the model

uses an average of about 35 min to accurately predict the wind
power of the next day. Considering that the accuracy of the
model prediction is very high, the prediction time is completely
acceptable and can meet the timeliness requirement of the short-
term wind power prediction.

Few prediction methods combine data decomposition,
model prediction, and error correction techniques to further
improve the prediction accuracy. The EEMD-GRU-MC model
proposed in this paper provides a novel method for wind power
prediction. By integrating EEMD algorithm, GRU model and
MC technology, this model effectively deals with the strong
intermittency and large volatility of wind power, thus improving
the accuracy of model prediction. This novel method provides a
new perspective and idea for the theoretical research of wind
power prediction. For the research community, the EEMD-
GRU-MC model has enriched the theoretical research of
wind power prediction, and provided a new reference and
inspiration for the subsequent research. For practitioners,
especially power grid dispatching departments, the research
results of this paper can help them make more accurate and
reliable short-term wind power forecasts, so as to arrange more
reasonable day-ahead generation plans. Moreover, the wind
farms’ historical operation data and the source code of the
proposed EEMD-GRU-MC model will be made available
on request.

FIGURE 8
Short-term wind power forecasting results for the YMS wind farm.
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FIGURE 9
(A) Spring Regression analysis of prediction results for the YMS wind farm using different models. (B) Summer Regression analysis of prediction
results for the YMS wind farm using different models. (C) Autumn Regression analysis of prediction results for the YMS wind farm using different models.
(D) Winter Regression analysis of prediction results for the YMS wind farm using different models.
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TABLE 3 Statistical indexes of short-term power prediction for YMS wind farm using different models.

Dataset Model MAE(MW) RMSE(MW) MAPE (%)

Spring LSTM 3.59 4.87 11.58

GRU 2.55 3.22 10.07

EMD-LSTM 2.38 3.14 12.87

EMD-GRU 1.95 2.68 10.61

EEMD-LSTM 1.49 1.96 6.94

EEMD-GRU 1.14 1.52 5.86

EEMD-GRU-MC 0.32 0.39 2.55

Summer LSTM 2.36 2.47 16.89

GRU 1.71 1.90 12.05

EMD-LSTM 1.34 1.60 9.90

EMD-GRU 1.00 1.33 6.57

EEMD-LSTM 1.41 1.57 11.55

EEMD-GRU 0.92 1.12 7.29

EEMD-GRU-MC 0.15 0.32 1.12

Autumn LSTM 4.57 5.10 7.63

GRU 3.20 3.61 5.16

EMD-LSTM 3.31 3.86 6.14

EMD-GRU 1.81 2.31 3.40

EEMD-LSTM 1.68 2.03 2.78

EEMD-GRU 1.26 1.70 2.47

EEMD-GRU-MC 0.61 0.77 1.15

Winter LSTM 4.52 5.57 6.35

GRU 3.52 4.69 4.99

EMD-LSTM 3.63 5.28 5.29

EMD-GRU 2.85 5.06 4.11

EEMD-LSTM 2.77 4.36 4.15

EEMD-GRU 2.61 3.95 4.00

EEMD-GRU-MC 0.98 1.15 1.44

TABLE 4 Prediction time for different wind farms in different seasons.

Wind farm Dataset Time (s)

Decomposition Total prediction Average

ZMS Spring 10.135 2,135 2,140

Summer 10.158 2,124

Autumn 10.206 2,138

Winter 10.319 2,162

YMS Spring 10.159 2,141 2,154

Summer 10.171 2,136

Autumn 10.238 2,150

Winter 10.338 2,170
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4 Conclusion

Accurate and reliable short-term prediction of wind power is of
important reference value for the power grid dispatching department
to arrange reasonable day-ahead generation plans. This study
innovatively combines a data decomposition technique, an AI-
based prediction model and an error correction technique, and
proposes a short-term wind power prediction method based on
EMD-GRU-MC. Two case studies, including two wind farms and
eight datasets, are used to verify the performance of the proposed
forecasting model when applied to different wind farms and in
different seasons. The conclusions can be summarized as follows:

(1) Compared with LSTM, GRU, EMD-LSTM, EMD-GRU,
EEMD-LSTM and EEMD-GRU models, the proposed
EEMD-GRU-MC model achieves the smallest MAE, RMSE
and MAPE for all datasets, and the forecasted wind power
curves very closely match the trend of the actual power curves.
Taking the spring dataset of the ZMSwind farm for example, the
MAE, RMSE and MAPE of the EEMD-GRU-MC model is
1.37 MW, 1.97 MW, and from 1.76%, respectively. Moreover,
except for the YMS wind farm in spring, the mean forecasting
error of the proposed model is always within 2%. This
demonstrates that the proposed model has excellent
forecasting performance and generalization ability, and can be
used as an effective tool for short-term wind power prediction.

(2) After 30 iterations, the proposed model uses an average of
about 35 min to accurately predict the wind power of the next
day, proving its high computation efficiency.

(3) GRU has more advantages in predicting short-term wind
power sequences than LSTM. EEMD-LSTM and EEMD-
GRU models are also achieve better prediction performance
than LSTM and GRU respectively in various scenarios,
indicating that the EEMD algorithm can overcome the
shortcomings of the original wind power sequence with its
high volatility and non-stationarity and facilitate the prediction
model to extract the hidden information in the data. Taking the
summer dataset of the ZMS wind farm as an example, the
MAE, RSME and MAPE of the EEMD-GRU model are
1.90 MW, 3.36MW and 1.58%, which decreased by 69.3%,
48.7% and 71.2%, respectively, compared with the GRUmodel.

(4) For the spring dataset of the ZMS wind farm, theMAE, RMSE
and MAPE of the EEMD-GRU model decreased by 26.73%,
16.88% and 19.27%, respectively, after MC correction. Similar
results also appear in other datasets. This proves the
effectiveness and applicability of the MC error correlation
technique in short-term wind power forecasting.

The proposed EEMD-GRU-MC model is a deterministic wind
power forecasting model, and does not take into account the complex
meteorological factors. Moreover, the process of dissecting and
projecting all of the data is not online forecasting, resulting in its
temporary can not be applied to real-time forecasting. In future studies,
the uncertainty of wind power prediction error will be considered and
meteorological factors will be embedded to build amulti-feature interval
prediction model, so as to obtain more comprehensive wind power
prediction results. Moreover, the number of decomposed IMFs of
EEMD and CEEMDAN, along with the standard EMD and its

upgraded algorithms, is uncertain for different data characteristics.
The developed model and the commercial solver Matlab 2020a can
be integrated into the wind farm short-term power prediction support
systems. In this case, the system program can automatically identify
each IMF decomposed by the EEMD method, and then give it to the
GRUmodel one by one for training and prediction. The support system
would cope with the problem that the number of decomposed IMFs is
uncertain for different data characteristics and realize online wind
power forecasting. Hence, how to integrate the hybrid prediction
model based on EEMD-GRU-MC into the decision support system
for the short-term power prediction of wind farms to realize online and
real-time prediction is our next research direction.
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Nomenclature

Sets and indices

K Total number of times white noise is added

k Index of times white noise is added

M Total number of decomposed IMFs

m Index of decomposed IMFs

t Index of time periods

S Total number of sample points

s Index of sample points

Constants

Pt Original wind power sequence

WZ Weight matrixes of the update gate

Wr Weight matrixes of the reset gate

Wh Weight matrixes of the intermediate state

phs Actual historical wind power output value of sample point s

Variables

Pk,t Wind power sequence after adding white noise for the kth time

Cm
k,t The mth IMF obtained by the EMD method for the kth time

Cm
t The mth IMF obtained by the EEMD method

rMk,t RES after EMD decomposition for the kth time

rMt RES after EEMD decomposition

rt Reset gate

sk,t White noise signal added at the kth time

zt Update gate

xt hidden state and load data of GRU neuron at time t

~ht Intermediate state

ht Output of GRU neuron

M(1)
kij

Number of times state i turns into state j after one step

Mj Total number of occurrences of state j

ppfs Predicted value of sample point s obtained by the EEMD-GRU
model

Functions

σ Sigmoid function

⊙ Element-wise multiplication (Hadamard product)

Abbreviations

MC Markov chain

GRU Gated recurrent unit

EEMD Ensemble empirical mode decomposition

NWP Numerical weather prediction

WRF Weather Research and Forecasting

ARMA Autoregressive moving average model

ARIMA Autoregressive integrated moving average model

GARCH Generalized autoregressive conditional heteroscedasticity

SVM Support vector machine

RF Random forest

BART Bayesian additive regression tree

AI Artificial intelligence

BP Back-propagation

CNN Convolution neural network

RNN Recursive neural network

LSTM Long short-term memory

TCN Temporal convolutional network

ELM Extreme learning machine

ENN Elman neural network

LSSVM Least square SVM

RBFNN Radial basis function neural network

ORELM Outlier robust ELM

BiLSTM Bidirectional LSTM

EMD Empirical mode decomposition

VMD Variational mode decomposition

WT Wavelet transform

CEEMDAN Complete ensemble empirical mode decomposition with adaptive
noise

MLP Multilayer Perceptron

NSGA- ӀӀ Non-dominated Sorting Genetic Algorithm II

MOGWO Multi-objective grey wolf optimization

PSO Particle Swarm Optimization

ESN Echo State Network

IMF Intrinsic mode function

RES Residual

GRUNN GRU neural network

RMSE Root mean square error

MAE Mean absolute error

MAPE Mean absolute percentage error
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