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Sidetracking technology is an important measure to increase production and
efficiency, too many complex factors affect the development effect of
sidetracking wells. At present, most of the research on sensitive factors of
sidetracking wells is based on theory, numerical simulation, or application analysis
of limited wells. In this study, we adopt a data-driven research paradigm to conduct
data mining studies on the actual data of a large number of sidetracking wells
accumulated in the oil fields. Actual data from more than 130 sidetracking wells in
oil fields within 5 years is collected and cleaned. An index system including
25 indicators for the analysis of sidetracking effect and a sample set of influencing
factors are established. On this basis, scatter plots between various influencing factors
and sidetracking development effect parameters are drawn to achieve intuitive
qualitative understanding through visualization. The correlation coefficients
between each parameter are calculated by Pearson and Spearman correlation
analysis methods to quantitatively characterize and analyze the linear and
nonlinear correlation degrees between each indicator. A feature importance
calculation method based on a decision tree is constructed to calculate and rank
the importance of each influencing factor for the development effect of sidetracking
wells. The results show that compared with Pearson, the Spearman correlation
coefficient can more accurately reflect the complex nonlinear correlation
relationship between each indicator. Four indicators such as sidetracking target
point position show medium or above correlation with sidetracking development
effect. Through the calculation of the feature importance of the decision tree, it can
be known that the importance of remaining recoverable reserves to the development
effect of sidetracking wells exceeds 10%. The importance of six indicators, such as
perforation thickness, is small, all less than 3%. This research work can provide
guidance for future sidetracking well design and development work.
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1 Introduction

Sidetracking well development technology is an important means of reviving and resuming
production in old oil fields. This technology is essential for exploring and recovering oil reserves
from previously unexplored reservoir zones, allowing for the exploration of resources in areas
once considered inaccessible. As a result, sidetracking technology plays a pivotal role in the
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adjustment of old oil fields. There are many factors affecting the
development effect of sidetracking wells, including geological factors,
production systems, and new well sidetracking methods. Studying the
influence of laws and degrees of various factors on the development
effect of sidetracking wells has important guiding significance for the
scientific design of sidetracking development plans (Magizov et al.,
2021; Xu et al., 2023).

In order to analyze the relationship between the development effect
of sidetracking wells and many influencing factors, as well as to further
reveal the sensitivity degree of influencing factors, scholars around the
world have carried out a series of studies. Varushkin analyzed the degree
of influence of reserves and geological factors for sidetracking wells on
the design and decision-making of sidetracking well development
(Varushkin and Khakimova, 2018). Chen et al. (2021) carried out
the planning and design of sidetrack drilling branch wells in the study
area, through geological research and numerical simulation.Wang et al.
(2022a) used theoretical research and numerical models to study the
impact of 7 indicators, like reservoir pressure and porosity, on the
development of aging reservoirs. While their work guided well
placement, their focus was limited in terms of considered
influencing factors (Wang et al., 2022a). Wang et al. (2022b)
employed a three-dimensional geological model, formation
inclination assessment, and other techniques along with well data to
establish location criteria for sidetracking wells based on economic
evaluation. They discussed 3 sidetracking indicators including
horizontal segment length, horizontal segment direction, and target
front distance (Wang et al., 2022b). Yuan et al. (2022) established
multiple linear regression equations, as well as evaluation models for
recovery and key control factors. They performed a sensitivity analysis
using 7 indicators, including permeability and gas injection rate, to
study the influence of various factors on the side-rail gravity fire flood.
However, their study had limitations due to the relatively small number
of indicators considered (Yuan et al., 2022). Voronin (Voronin et al.,
2017), Akhmetov (Akhmetov et al., 2019), and Gao (Gao, 2023)
analyzed the relationship between the development effect and
influencing factors of different types of sidetrack drilling by studying
a small number of actual production cases of individual sidetrack
drilling.

Through the above research, it is found that most of the current
research on the influencing factors of the sidetracking development
effect mostly uses theoretical analysis and numerical simulation, or
empirical analysis of actual production data of a small number of
sidetracking well cases. Due to the high complexity of the real
reservoir, a large number of assumptions and simplified conditions
are required in theoretical analysis and numerical simulation
research, which leads to an overly idealized research
understanding; while the sample coverage of individual
sidetracking well cases is limited, resulting in certain one-
sidedness in analysis understanding. Therefore, although the
above research has achieved a certain understanding, there are
still certain deviations between the research results and the actual
situation, and there are certain limitations in practical application.

In recent years, the use of sidetracking technology in oil
fields has been increasing. This has led to the accumulation of a
significant number of actual sidetracking well cases, which
include both successful and unsuccessful instances. The data
from these cases offers a wealth of valuable information about
the relationship between the sidetrack drilling performance

and factors such as geology, development schemes, and
wellbore design. By using effective data mining methods to
analyze and extract insights from this data, we can better
understand the factors and patterns that influence the
success of sidetracking well development. This can provide
valuable guidance for future sidetracking development
decisions. However, to our knowledge, there is currently a
lack of research that analyzes a large number of actual
sidetracking well cases from oil fields.

With the development of big data and data science, using data to
discover and reveal rules, modeling and describing complex
problems, and then improving the understanding of problems,
this research method has become a new scientific research
paradigm after experiments, theory, and numerical simulation,
and is revolutionizing the progress of various disciplines (Yang
et al., 2021; Yuan et al., 2021; Purbey et al., 2022; Xu et al., 2022). In
this study, our goal is to collect as many actual sidetracking well
cases as possible and use data mining techniques to analyze and
extract insights from the data. By taking a data-driven approach, we
aim to identify the factors that influence the success of sidetrack
drilling operations and gain a better understanding of their
importance in the design of sidetracking wells.

We collected actual data from over 130 sidetracking wells used
in oil fields over the past 5 years. Through data cleaning and feature
engineering, we have gathered a total of 25 data indicators, including
reservoir geological parameters, sidetracking well design parameters,
and sidetracking well development effect parameters. These
parameters were then used to establish a sample set of
influencing factors. Exploratory data analysis was conducted on
the sample set of influencing factors, including scatter plot analysis
to examine the single-factor relationship between each factor and
the sidetracking well development effect parameter. Pearson and
Spearman correlation analysis methods were also employed to
characterize the influence law of each influencing factor on the
sidetracking well development effect using the correlation coefficient
as an index. Additionally, we introduced a feature importance
calculation method based on adaptive boosting decision trees for
multi-factor analysis, allowing us to rank each influencing factor’s
importance on the sidetracking development effect parameter.

The organization of this article is as follows: Section 2 introduces
the selection method of each influencing factor indicator and the
establishment of the sample set. Section 3 introduces three
sensitivity analysis methods, firstly, two single-factor analysis
methods are used to study the sample set of influencing factors
qualitatively and quantitatively, and the other uses the decision tree
importance calculation method to comprehensively consider the
impact of the interaction between each influencing factor and
calculate and rank the importance of each influencing factor.
Section 4 provides results and discussions.

2 Establishment of a sample set for
sidetrack drilling

2.1 Data sources

The samples of this study come frommore than 130 sidetracking
wells implemented in oil fields between 2018 and 2022, covering
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TABLE 1 Indicator system.

Category Indicator name Indicator definition Unit

Geological parameters of reservoirs Remaining recoverable reserves The remaining recoverable reserves of the target layer where the target sidetrack
drilling is located

t

Single well control area The control area of the target layer where the target sidetrack drilling is located km2

Recovery degree The ratio of cumulative oil production of the target sidetrack drilling to the single
well control reserves

%

Comprehensive water cut The water cut of the target sidetrack drilling %

Connectivity coefficient The connectivity of sand bodies in the target layer where the target sidetrack
drilling is located

on a plane ranges from 0 to 1. The larger the value, the better the connectivity

/

Permeability Average permeability of each layer opened by the sidetrack drilling mD

Porosity The average porosity of each layer opened by the sidetrack drilling /

Effective thickness The average effective thickness of each layer opened by the sidetrack drilling m

Oil saturation Average oil saturation of each layer opened by sidetrack drilling /

Permeability variation coefficient The ratio of the mean square deviation of permeability of each layer opened by the
sidetrack drilling to the mean permeability of each layer opened by the sidetrack

drilling

/

Porosity variation coefficient The ratio of the mean square deviation of porosity of each layer opened by the
sidetrack drilling to the mean permeability of each layer opened by the sidetrack

drilling

/

Effective thickness variation coefficient The ratio of the mean square deviation of the effective thickness of each layer
opened by the sidetrack drilling to the mean permeability of each layer opened by

the sidetrack drilling

/

Permeability ratio The ratio of maximum permeability to minimum permeability of each layer
opened by the sidetrack drilling

/

Porosity ratio The ratio of maximum porosity to minimum porosity of each layer opened by
sidetrack drilling

/

Effective thickness ratio The ratio of maximum effective thickness to minimum effective thickness of each
layer opened by the sidetrack drilling

/

Streamline position Characterization index of the flow line position of the sidetrack drilling, with a
value of 0 or 1. 0: Main streamline area; 1: Separated streamline area

/

Design parameters of sidetracking
wells

Distance between the target point and
the old well point

The distance between the sidetrack drilling target point and the old well before the
sidetrack drilling

m

Injection-production well spacing The average distance between the sidetrack drilling target point and surrounding
water injection wells

m

Sidetracking target point position The longitudinal position of the sidetrack drilling target point in the target layer is
characterized by a value ranging from 0 to 1. The smaller the numerical value, the
closer the target point is to the top of the target layer; conversely, the larger the

numerical value, the closer it is to the bottom of the target layer

/

Perforation thickness The thickness of the target layer is opened by the sidetrack drilling well m

Development effect parameters of
sidetracking wells

Stable production time The total production time from when oil production
rises to its highest point after sidetrack drilling

months

Average oil production The average monthly oil production after sidetrack drilling t/
month

Recovery rate The ratio of annual oil production after sidetrack
drilling to controlled reserves

/

Water cut rise rate The ratio of the difference between water cut at late and early stages of
development after sidetracking to the difference between recovery degree at late

and early stages of development after sidetracking

/

Production decline rate The ratio of the difference between late and early decline periods of production
after sidetracking to the production during the early decline period

/
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8 reservoir blocks. The relevant data of each sidetracking well is
taken from various data sources such as the new well design book of
each sidetracking well, the monthly database of oil well
development, and the numerical simulation model of the
reservoir. Among them, the new well design book of the
sidetracking well mainly includes the geological conditions of the
original well area of the sidetracking well and the new well design
plan; the monthly database of oil well development contains
monthly production data before and after the development of
each sidetracking well, such as monthly oil production, monthly
water production, water cut, etc.; the numerical simulation model of
the reservoir block where the sidetracking well is located contains
stratum position, porosity, permeability, saturation and other data
information related to the location of the sidetracking well in the
reservoir block. It can also in-directly analyze inter-well connectivity
and reservoir heterogeneity based on the model. After data
collection, data cleaning is performed to ensure accuracy. By
verifying with the oilfield, we have supplemented the missing
values and corrected the outliers in the data to guarantee data
accuracy.

2.2 Construction of indicator system

For a sidetracking well, there are many supporting data
indicators. In the task of mining the influencing factors of the
development effect of sidetracking wells and conducting
sensitivity analysis, we are concerned about the data indicators
that have an impact on the development effect of sidetracking
wells. The accuracy of data mining depends on the quality of the
sample data. Analyzing an excessive number of irrelevant factors
together not only results in an excessive workload and calculation
burden but also introduces the issue of dimensional overload. On the
other hand, irrelevant numerical indicators will introduce a large
amount of interference and noise, which may lead to inaccurate data
mining results. Therefore, it is necessary to construct a scientific
indicator system to remove irrelevant features while ensuring that
important feature indicators are not lost and reduce computational
complexity.

Based on the actual data collected from more than
130 sidetracking wells in the oil fields, combined with expert
practical experience and reservoir engineering theory knowledge,
the indicator system for sidetracking effect analysis is established,
which includes three categories of reservoir geological parameters,
sidetracking well design parameters and sidetracking well
development effect parameters. The specific indicator definitions
and ranges are shown in Table 1.

From Table 1, it can be seen that the reservoir geological
parameters include a total of 16 indicators: remaining recoverable
reserves, single well control area, recovery degree, comprehensive
water cut, connectivity coefficient, permeability, porosity, effective
thickness, oil saturation, permeability variation coefficient, porosity
variation coefficient, effective thickness variation coefficient,
permeability ratio, porosity ratio, effective thickness ratio and
streamline position; the sidetracking well design parameters
include 4 indicators: distance between the target point and the
old well point, injection-production well spacing, sidetracking target
point position, and perforation thickness; the sidetracking well

development effect parameters include 5 indicators: stable
production time, average oil production, recovery rate, water cut
rise rate, production decline rate. More precisely, in addition to
giving the name of each indicator in Table 1, the definition and unit
of each indicator are also given.

2.3 Establishment of sample sets

For the constructed indicator system, each indicator is analyzed
one by one, and the data source and acquisition method of each
indicator are clarified. There are mainly two ways to obtain data: one
is direct acquisition, that is, the data can be directly obtained from a
certain data source; the other is indirect acquisition, which requires
calculation or transformation based on the directly obtained data.
After analysis, the acquisition methods of each indicator in the
indicator system are summarized in Table 2.

For indirectly acquired data indicators, their calculation
methods are further explained as follows.

Indicators such as average permeability, average porosity,
average effective thickness, average oil saturation, permeability
variation coefficient, porosity variation coefficient, effective
thickness variation coefficient, permeability ratio, porosity ratio,
effective thickness ratio, etc., require reading the permeability,
porosity, effective thickness, oil saturation, and other data of all
layers to be perforated by the sidetracking well from the reservoir
numerical simulation model. Then refer to the following formula for
calculation.

Taking permeability as an example, first read the permeability
values K1, K2, . . ., Kn of each layer according to the numerical
simulation layer corresponding to the layer to be perforated by the
sidetracking well. Then calculate parameters such as the average
permeability value, permeability variation coefficient, and permeability
ratio. The formula for calculating the average permeability value is:

�K � ∑n
i�1Ki

n
(1)

Where �K represents the average permeability, mD;Ki represents
the permeability of the ith perforated layer, mD; n represents the
total number of perforated layers.

The formula for calculating the permeability variation
coefficient is:

Vk �
�����������∑n

i Ki − �K( )2√
�K

(2)

Where Vk represents the permeability variation coefficient.
The formula for calculating the permeability ratio is:

Kmn � max K1,K2, . . .Kn[ ]( )
min K1,K2, . . .Kn[ ]( ) (3)

Where Kmn represents the permeability ratio.
For porosity, effective thickness, etc., their mean value, variation

coefficient, and ratio can be calculated by analogy according to the
calculation formula of permeability, which will not be repeated here.

The connectivity coefficient, injection-production well spacing, and
streamline position need to be analyzed and determined based on the
distribution of sand bodies where the target sidetrack drilling is located
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and the location relationship with surrounding oil-water wells, etc.,
combined with the numerical simulation model of the reservoir.

The formula for calculating the connectivity coefficient is:

S � ∑n
i�1Mi

4n
(4)

Where S represents the connectivity coefficient; Mi represents
the number of orientations in which the target sidetrack drilling is
connected to the ith perforated layer sand body.

The formula for calculating injection-production well spacing is:

D � ∑a
i�1di

a
(5)

Where D represents Injection-production well spacing, m; di
represents the distance between the wells to be drilled on the side
and the surrounding ith injection well, m; a represents the
number of injection wells around the well to be drilled on
the side.

In order to enhance understanding of the calculation process for the
connectivity coefficient and injection-production well spacing, Figure 1
and Formulas 4, 5 can be used together.We use well S1 as an example, as
shown in Figure 1. In this illustration, water injection wells w1, w2, and
w3 are located around well S1. The connectivity coefficient can be

determined by observing the connections of the sand body indicated
by the red and purple arrows in Figure 1. The direction of the red arrow
signifies that the sand body ofwell S1 is connected, while the purple arrow
indicates that it is not connected in this particular direction. Therefore, the
connectivity coefficient can be calculated through Formula 4. For the
distance between injection and production wells, the black arrow between
w1, w2, w3, and S1 well represents their distance. The distance between
injection and production wells can be calculated through Formula 5.

Stable production time, average oil production, recovery rate,
water cut rise rate, and production decline rate. First, query and
download the production history data of the corresponding
sidetracking well from the monthly database of oil well
development, plot the oil production curve and water cut curve,
and calculate the above indicators according to the following
formula:

The formula for calculating average oil production is:

�q � ∑T
i�1qi
T

(6)

Where �q represents average oil production, t/month; qi
represents oil production in the ith month of production, t; T
represents total production time, months.

The formula for calculating the recovery rate is:

v � 12�q
Q

(7)

Where v represents recovery rate; Q represents remaining
recoverable reserves, t.

The formula for calculating the water cut rise rate is:

f T � f wt − f w0
Rt − R0

(8)

Where fT represents water cut rise rate; fwt represents terminal
water cut;fw0 represents initial water cut;Rt represents the degree of
end-of-stage extraction; R0 represents the degree of initial
extraction.

The formula for calculating the production decline rate is:

QT � qt − q0
q0T0

(9)

Where QT represents production decline rate; qt represents
decreasing end-of-life oil production, t; q0 represents decrease
initial oil production, t; T0 represents decrement time, months.

TABLE 2 Distribution of indicator sources.

Acquisition
method

Data sources Indicator name

Direct acquisition New well design book of each
sidetracking well

Remaining recoverable reserves, Single well control area, Recovery degree, Comprehensive water cut,
Distance between the target point and the old well point, Sidetracking target point position, and

Perforation thickness

Indirect acquisition Simulation model of the reservoir Connectivity coefficient, Permeability, Porosity, Effective thickness, Oil saturation, Permeability
variation coefficient, Porosity variation coefficient, Effective thickness variation coefficient,

Permeability ratio, Porosity ratio, Effective thickness ratio, Streamline position, Injection-production
well spacing

The monthly database of oil well
development

Stable production time, Average oil production, Recovery rate, Water cut rise rate, Production decline
rate

FIGURE 1
Example diagram of reservoir numerical simulation model.
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In order to explain some complex indicators more intuitively in
the above calculation process, such as stable production time,
production decline time, terminal water content, initial water
content, oil production at the initial stage of decline, and oil
production at the end of decline, we have drawn the oil
production curve and water cut curve as shown in Figures 2, 3.

2.3.1 Direct access based on the design book
As shown in Table 3, the influencing factors of residual

recoverable reserves and single well control area can be directly
obtained from the sidetrack drilling design book.

2.3.2 Indicator acquisition based on the numerical
simulation model

Through investigation of the original numerical simulation
model of the target sidetrack drilling well “S1,” it can be known
that the original old well opened up strata 21, 22, and 23. Then, data
collection and statistics are carried out layer by layer as needed, and
according to the statistical results and combined with Formula 1, the
index values of oil saturation, permeability, porosity, and the
effective thickness of the S1 well can be calculated. Combined

with Formulas 2, 3, the variation coefficient and gradient value of
permeability, porosity, and effective thickness can be calculated. The
specific results are shown in Table 4.

From Figure 1, the completeness of the four-direction model of
the old well drilled on this side can be judged by whether it is
connected. Among them, the purple arrow indicates disconnection,
the red arrow indicates connectivity, and the combined Formula 4
shows that the azimuthM of the S1 well connected in this open layer
is 2, and the combined Formula 4 can calculate the connection
coefficient of the S1 well as 0.5. The larger the connectivity
coefficient, the better the connectivity.

In the corresponding well network, the distance between each
injection well and the target sidetrack drilling well S1 is counted, and
the value of the “injection and production well spacing” of well S1 is
calculated in combination with Formula 5 as 178.821.

By observing the position relationship between the target
sidetrack drilling well and the surrounding water injection wells
in Figure 1, it is judged that the drilling on this side is at the position
of the mainstream line or the shunt line. Among them, the main line
position is represented by 1, and the shunt line position is
represented by 0, that is, the S1 well is located at the shunt line
position.

2.3.3 Metric acquisition based on production
dynamic datasets

By observing Figure 3, it shows that the oil production of the
S1 well began to gradually increase in November 2019 until the
production began to decline in January 2020, which shows that the
stable production time of the S1 well is 2 months.

According to Figure 3, the cumulative oil production of well
S1 from November 2019 to December 2020 is 307 tons, with a total
production time of 14 months, and the average oil production of
well S1 is 21.929 tons in combination with Formula 6.

Based on the average oil production calculated above,
combined with the remaining recoverable reserves value in the
original geological parameter index, combined with the
calculation method of Formula 7, the value of the recovery
rate is 0.044.

Figure 3 shows that the water cut of the S1 well at the
beginning and end of production is 91.98% and 99.36%,
respectively, combined with the data in the production
dynamic data table, the production degree of the S1 well in
the early and late production stages is 0.9% and 5.12%,
respectively, combined with the calculation method of
Formula 8, the value of water cut rise rate is 1.749.

According to Figure 3, the oil production at the end of the
decline period, that is, December 2020, is 9 tons, and the
production in January 2020 is 51 tons in January 2020, and
the decline time is 11 months, and the value of the production
decline rate of S1 well can be obtained in combination with
Formula 9 as −0.424.

According to the above data statistics method of the S1 well, the
actual data of more than 130 sidetrack drilling mines collected are
collated, and then the sample set of influencing factors is established.
The obtained sample set is cleaned and sorted, and the missing
values and outliers in the preliminary obtained data were counted
and processed, and the sample set that finally met the research
requirements retained the data of 31 sidetrack drilling wells.

FIGURE 2
S1 oil production curve.

FIGURE 3
S1 water cut curve.
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3 Influencing factor sensitivity analysis

For the sample set of factors affecting sidetrack drilling, the
relationship between each influencing factor and the data
parameters of the sidetrack drilling development effect is initially
unknown and fuzzy. Therefore, firstly, a single-factor analysis is
carried out on each influencing factor and the development effect
parameters of sidetrack drilling. The relationship between reservoir
geological parameters, sidetrack drilling scheme well design
parameters, and sidetrack drilling development effect parameters
are qualitatively analyzed by drawing an oil scatter plot. After
obtaining a preliminary understanding, Pearson and Spearman
correlation analysis methods are used to quantitatively represent
the correlation between influencing factors and development effects
with correlation coefficients. Based on the above methods, multiple
factor analysis is continued to more comprehensively consider the
interaction between indicators. Therefore, a feature importance
calculation method based on a decision tree is introduced to
analyze the importance of each influencing factor on the
development effect of sidetrack drilling and sort them.

3.1 Qualitative analysis based on scatter
plots

The scatter plot is one of the most commonly used charts in data
mining. It can intuitively show the relationship between two
continuous variables, including linear and non-linear
relationships, increasing and decreasing relationships, and outlier
situations (Rajagopalan and Rajagopalan, 2021). When there are
multiple quantitative variables with multiple numerical types in the
dataset, they can be analyzed by linking each variable together. In
this study, the Seaborn tool is used to draw a scatter plot of the
impact factor between two factors of a horizontal well and a
parameter factor of the horizontal well development effect.
Seaborn is a powerful and easy-to-use data visualization tool that
is particularly well-suited for drawing high-quality statistical charts.

Each point represents an observation sample point (Cihan Sorkun
et al., 2022).

Visual analysis of the correlation between 20 influencing
factor indicators and 5 different parameters for drilling
efficiency in sidetracking wells is conducted using scatter-plots
generated by Seaborn’s scatterplot () function. A total of
100 images are produced. Due to space limitations, this paper
analyzes and discusses the recovery rate as an example. Figure 4
shows the scatterplot between various influencing factors and the
recovery rate.

From Figure 4, it can be seen that the influencing factors such
as single well control area, perforation thickness, etc., and
recovery rate show a positive correlation, while the influencing
factors such as permeability variation coefficient, streamline
position, etc., and recovery rate show a negative correlation.
However, the overall impact of each influencing factor on the
recovery rate of sidetracking wells is not clear enough. This may
be because the influence of the indicators of influencing factors
on evaluation indicators is not strong enough, or because the
relationship between influencing factors and development effect
parameters is more complex. Qualitative analysis through
visualization alone may not capture clear impact patterns, and
further research using other data mining methods is needed to
study the relationship between various influencing factor
indicators and development effects.

3.2 Quantitative analysis of indicator
correlation

From Figure 4, it is difficult to accurately identify the
correlation between the influencing factors and the
development effect by visualizing scatter plots alone.
Therefore, Pearson correlation coefficient and Spearman
correlation coefficient analysis methods are used to further
analyze the sample set. Pearson correlation coefficient is
suitable for data that follows normal distribution or

TABLE 3 Data statistics table of the numerical simulation model of S1 well.

Remaining
recoverable
reserves (t)

Single well
control

area (km2)

Recovery
degree (%)

Comprehensive
water cut (%)

Sidetracking
target point
position

Perforation
thickness (m)

Distance between
the target point and

the old well
point (m)

6,000 0.6 27.9 97.7 0.553 1.3 60

TABLE 4 Initial data statistics table of S1 well numerical simulation model.

Well name Shoot open layer Oil saturation Permeability (mD) Porosity Effective thickness (m)

S1 21 0.472 1,171.4 0.384 1.491

22 0.413 1,769.2 0.345 1.535

23 0.392 1,057.1 0.348 4.543

Average value 0.426 1,332.567 0.359 2.523

Coefficient / 0.287 0.061 0.693

Differential / 1.674 1.114 3.046
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approximate normal distribution, Spearman correlation analysis
is mainly used to analyze the relationship between two variables
that do not satisfy the normal distribution, or when the variable
distribution type is unknown. The Pearson correlation coefficient
is mainly used to evaluate linear relationships, while the
Spearman correlation coefficient is mainly used to evaluate
monotonic relationships (Gu, 2021; Janse et al., 2021).

3.2.1 Pearson correlation
The Pearson correlation coefficient reflects the strength of the

linear correlation between the two variables. The higher the absolute
value, the stronger the correlation. With different positive and
negative shapes, the correlation is also different. This is shown in
Table 5.

Through the study of the Pearson correlation, the sample values
are substituted for calculation, and the calculation results of the
Pearson correlation coefficient between the reservoir geological
parameters, the sidetrack drilling design parameters, and the
sidetrack drilling development effect parameters are shown in
Figure 5.

The correlation strength of the variables was judged by the range
of the absolute value of the Pearson correlation coefficient after
calculation, and the specific evaluation criteria are shown in Table 6.

Combining Figure 5; Table 6, it can be seen that 8 indicators are
positively correlated with stable production time, and twelve
indicators are negatively correlated with stable production time.
From the perspective of correlation degree, the absolute value of the
correlation coefficient calculated statistically can be found that for
eleven indicators such as remaining recoverable reserves and
effective thickness, the absolute value of their correlation
coefficient is between 0 and 0.2, which belongs to extremely weak
correlation; for seven indicators such as connectivity coefficient and
permeability, the absolute value of their correlation coefficient is
between 0.2 and 0.4, which belongs to weak correlation; for two
indicators such as single well control area and sidetracking target
point position, the absolute value of their correlation coefficient is
between 0.4–0.6, which belongs to moderate correlation. Therefore,
a single well control area and sidetracking target point position are
indicators that are strongly linearly correlated with stable
production time.

FIGURE 4
Scatter plot between influencing factors and recovery rate.
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Nine indicators are positively correlated with the average oil
production and eleven indicators are negatively correlated with it.
Among them, ten indicators such as oil recovery degree and
comprehensive water cut have an absolute value of correlation
coefficient between 0 and 0.2, which belongs to extremely weak
correlation; eight indicators such as remaining recoverable reserves
and single well control area have an absolute value of correlation

coefficient between 0.2 and 0.4, which belongs to weak correlation;
one indicator such as permeability variation coefficient has an
absolute value of correlation coefficient between 0.4–0.6, which
belongs to moderate correlation; one indicator such as streamline
position has an absolute value of correlation coefficient between
0.6–0.8, which belongs to strong correlation. Therefore, the
permeability variation coefficient and streamline position are
indicators that have a strong linear correlation with average oil
production.

Seven indicators are positively correlated with the recovery rate,
and thirteen indicators are negatively correlated with it. Among
them, ten indicators such as connectivity co-efficient and
permeability have an absolute value of correlation coefficient
between 0 and 0.2, which belongs to extremely weak correlation;
eight indicators such as remaining recoverable reserves and single
well control area have an absolute value of correlation coefficient
between 0.2 and 0.4, which belongs to weak correlation; one
indicator such as perforation thickness has an absolute value of
correlation coefficient between 0.4–0.6, which belongs to moderate

TABLE 5 Pearson Correlation division.

Pearson correlation coefficient Relationships between variables

ρX, Y >0 Positive linear correlation

ρX, Y <0 Negative linear correlation

ρX, Y = 0 Nonlinear relationships

FIGURE 5
Pearson correlation coefficient heat map.

TABLE 6 Correlation coefficient evaluation criteria.

Define scope Degree of correlation

0.8–1.0 Extremely strongly correlated

0.6–0.8 Strong correlation

0.4–0.6 Moderately relevant

0.2–0.4 Weakly correlated

0.0–0.2 Very weak or no correlation
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correlation; one indicator such as streamline position has an
absolute value of correlation coefficient between 0.6–0.8, which
belongs to strong correlation. Therefore, perforation thickness
and streamlined position are indicators that have a strong linear
correlation with the recovery rate.

Eleven indicators are positively correlated with the water cut rise
rate and nine indicators are negatively correlated with it. Among
them, sixteen indicators such as remaining recoverable reserves and
Recovery degree have an absolute value of correlation coefficient
between 0 and 0.2, which belongs to extremely weak correlation;
four indicators such as single well control area and coefficient of
variation of single effective thickness have an absolute value of
correlation coefficient between 0.2 and 0.4, which belongs to weak
correlation. Overall, it shows that various geological parameters of
oil reservoirs and sidetrack drilling design parameters do not have a
significant linear correlation with the water cut rise rate of sidetrack
drilling.

Eight indicators are positively correlated with the production
decline rate and twelve indicators are negatively correlated with it.
Among them, eleven indicators such as remaining recoverable
reserves and single well control area have an absolute value of
correlation coefficient between 0 and 0.2, which belongs to
extremely weak correlation; nine indicators such as Recovery
degree and connectivity coefficient have an absolute value of
correlation coefficient between 0.2 and 0.4, which belongs to
weak correlation. It shows that various geological parameters of
oil reservoirs and sidetrack drilling design parameters do not have a
significant linear correlation with the production decline rate of
sidetracking.

3.2.2 Spearman correlation
The above Pearson correlation analysis is used to measure the

linear relationship between two variables. In contrast, Spearman
correlation analysis does not require making such an assumption
about a linear relationship between the two variables. It involves
transforming each variable’s values into ranks and calculating the
rank differences between them. Spearman correlation analysis is
employed to measure the monotonic relationship between the two
variables (Alsaqr, 2021; Hou, 2023).

The formula for calculating Spearman Correlation is:

ρs � 1 − σ∑d2
i

n n2 − 1( ) (10)

Where di represents the difference in the position value of the ith
data pair; n represents the total number of observed samples.

The calculation process is first to sort the data of the two
variables X and Y, and then note the position after sorting (X’,
Y’). The value of (X’, Y’) is called a rank. The difference in rank is di
in the above formula. n is the number of data in the variable, and
finally, the formula can be brought into the solution.

Through the study of Spearman’s rank correlation coefficient,
the sample values are substituted for calculation, and the Spearman
correlation coefficient calculation results between reservoir
geological parameters, sidetrack drilling design parameters, and
side-track drilling development effect parameters are shown in
Figure 6.

According to Figure 6, under the Spearman correlation analysis,
the correlation results between the sidetrack drilling development

effect parameters and the influencing factors of sidetrack drilling are
not much different from the Pearson correlation analysis results, but
there are still certain differences. By differentiating the correlation
coefficient calculated by Pearson correlation analysis and Spearman
correlation analysis, and plotting the heat map as shown in Figure 7
in absolute form, the indicators with large differences are analyzed
separately, and the darker the color, the greater the difference.

According to Figure 7, factors with absolute differences greater
than 0.25 are defined as factors with significant differences. Among
them, the results of stable production time and average oil
production under Pearson and Spearman correlation analysis are
relatively similar, and it is believed that the two have a consistent
understanding, so it will not be discussed here.

For the recovery rate, the factors with significant differences are
perforation thickness, and Figure 4 shows a scatter plot of perforation
thickness and recovery rate. The Pearson correlation coefficient between
perforation thickness and recovery rate is 0.426, which is moderately
correlated, while the Spearman correlation coefficient is 0.164, which is
extremely weakly correlated, and the former is significantly higher than
the latter. From the scatter plot of perforation thickness and recovery rate,
it can be seen that the recovery rate increases with the increase of
perforation thickness, showing a positive correlation
relationship. Although the Pearson correlation coefficient and
Spearman correlation coefficient reflect slightly different degrees of
correlation, they both accurately reflect its basic trend.

For the water cut rise rate, the factors with significant differences are
the connectivity coefficient, porosity variation coefficient, and effective
thickness variation coefficient. For further analysis, Figure 8 shows a scatter
plot of the connectivity coefficient, porosity variation coefficient, effective
thickness variation coefficient, and water cut. The Pearson correlation
coefficient between the connectivity coefficient and water cut is 0.035,
while the Spearman correlation coefficient is −0.256. Not only are the two
correlation coefficients numerically different, but they also show a reversal
of positive and negative correlations. The scatter plot of the connectivity
coefficient andwater cut shows that thewater cut decreaseswith increasing
connectivity coefficient, and the rate of decrease becomes slower and
slower, showing a nonlinear negative correlation relationship. Here, the
Spearman correlation coefficient more accurately describes it.

The Pearson correlation coefficient between the porosity
variation coefficient and water cut is 0.178, which is extremely
weak, while the Spearman correlation coefficient is 0.459, which
is moderately correlated, and the latter calculation result is
significantly higher than the former. From the scatter plot of the
porosity variation coefficient and water cut, it reflects that the rising
rate of water cut shows a certain upward trend with the increase of
porosity variation coefficient, but it is not significant and belongs to
a weak correlation. Although the Pearson correlation coefficient and
Spearman correlation coefficient reflect slightly different degrees of
correlation, they both accurately reflect its basic trend.

The Pearson correlation coefficient between the effective
thickness variation coefficient and the water cut rise rate is
0.315, which is a weak correlation, and the Spearman
correlation coefficient is 0.022, which is a very weak
correlation. Although the results are significantly higher than
the latter. However, from the scatter plot of the effective thickness
variation coefficient and the rising rate of water cut, there is no
obvious water cut rise rate and there is a certain upward trend
with the increase of effective thickness variation coefficient, but
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there is no obvious regularity, and the Spearman correlation
coefficient here describes it more accurately, so it is more
accurate to describe it by combining Pearson correlation
coefficient and Spearman correlation coefficient.

For the production decline rate, the Pearson correlation coefficient
between perforation thickness and the production decline rate is−0.293,
which is a weak correlation, and the Spearman correlation coefficient is
0.006, which is a very weak correlation. The two correlation coefficients
not only have a large numerical difference but also have positive and
negative reversals. Figure 9 shows the scatter plot of perforation
thickness and production decline rate, from which there is no
obvious regularity between perforation thickness and production
decline rate, whereas the Spearman correlation coefficient describes
it more accurately.

By comparing the results of the Person correlation analysis
and Spearman correlation analysis, it can be found that the
Spearman correlation coefficient is more accurate for
describing the complex nonlinear correlation between the
influencing factors and the sidetrack drilling development
effect, so the results of the Spearman correlation analysis are
used as the final quantitative characterization results of the
correlation between the reservoir geological parameters, the
sidetrack drilling design parameters and the sidetrack drilling
development effect parameters.

According to the results in Figure 6 and the evaluation
criteria in Table 6, the influencing factor that meets the
medium correlation degree and above for stable production
time is oil saturation; For average oil production, the

influencing factors that meet the medium correlation degree
and above are the permeability variation coefficient and the
streamline position, among which the correlation between the
streamline position and the average oil production is the
strongest. For recovery rate, the influencing factors that meet
the medium correlation degree and above are the control area
and streamline position of a single well, among which the
streamlined position has the strongest correlation with the
recovery rate. For the water cut rise rate, the influencing
factors that meet the medium correlation degree and above
are porosity variation coefficient, porosity ratio, and
injection-production well spacing, among which the
correlation between porosity ratio and water cut rise rate is
the strongest. For the production decline rate, there are no
influencing factors that meet the moderate degree or above,
which indicates that the correlation between the production
decline rate and the influencing factors is not significant enough,
but in general, the index with the strongest correlation with the
production decline rate among the influencing factors is the
remaining recoverable reserves.

3.3 Ranking analysis of metric importance
based on decision trees

Qualitative analysis of the influencing factor sample set and
quantitative analysis of the correlation between each influencing
factor and the sidetrack drilling development effect parameter is

FIGURE 6
Spearman correlation coefficient heat diagram.
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conducted using two single-factor analysis methods, scatter plots,
and correlation analysis. These two methods explore the
relationship between each influencing factor and the sidetrack
drilling development effect factor to some extent. However,
single-factor analysis methods have certain limitations. On the
one hand, single-factor analysis cannot fully consider the
interrelationships between various factors, such as
permeability and porosity often showing a strong positive
correlation. On the other hand, single-factor analysis is
difficult to indicate the size of each influencing factor’s role in
the sidetracking development effect. Therefore, further research
is needed using multi-factor analysis methods.

With the development of digital oilfields, decision trees have
been widely used in economic evaluation, production
forecasting, and decision analysis in the petroleum industry
as an effective method for processing data sets with complex
relationships. At the same time, to explore the degree of
influence of geological parameters of oil reservoirs, sidetrack
drilling design parameters and other indicators on sidetrack
drilling development effect parameters, decision tree algorithms
can be used to calculate the importance of each influencing
factor on sidetrack drilling development effect parameters and
sort the final results. This can intuitively reflect the relationship
between various sidetracking influencing factors and

FIGURE 7
Correlation coefficient difference heat diagram.

FIGURE 8
Scatter plot of water cut rise rate: (A) Connectivity coefficient- Water cut rise rate scatter plot; (B) Porosity variation coefficient—Water cut rise rate
scatter plot; (C) Effective thickness variation coefficient—Water cut rise rate scatter plot.
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sidetracking development effect parameters while fully
considering the mutual influence between various factors
(Zhou and Hooker, 2021).

The decision tree is a basic classification and regression method. A
decision tree consists of nodes and directed edges, with two types of
nodes, internal nodes, and leaf nodes. Internal nodes represent a feature
or attribute, while leaf nodes represent a category or a value. The
decision tree classification algorithm is an instance-based inductive
learning method that can extract a tree-like classification model from
given unordered training samples. The decision treemodel is also a type
of white-box model whose prediction results can be explained by
humans. We call this feature of machine learning models
interpretability, but not all machine learning models have
interpretability. As part of the interpretability attribute, feature
importance is an indicator that measures the contribution of each
input feature to the model’s prediction results.

In a decision tree, each branch represents the result of testing an
attribute. The test is represented by each internal node, and each
node controls a class label. The decision tree algorithm is based on a
top-down recursive divide-and-conquer strategy. The top node of
the tree is the root node, representing the first decision. For
subsequent decisions, each decision may result in one or more
events in their natural state that can produce very different results.
Essentially, the decision tree represents a partition of data space.
Therefore, decision trees can intuitively show the importance of each
attribute to the target attribute (Pappalardo et al., 2021).

For decision trees, in order tomeasure the importance of features, it
is necessary to study how each feature plays a role in the final “decision”
of the model. In each split, the final decision (the leaf node) is closer.
Therefore, we can say that at each decision node, the chosen
segmentation feature determines the final prediction result.

3.3.1 Importance calculation method (DT feature
importance)

Specifically, the formula for calculating the importance of the
initial characteristics of the decision tree is shown in Formula 11
(Guo et al., 2021).

FI � Nt

N
G − NtRGR − NtLGL

Nt
( ) (11)

Where FI represents feature importance; N represents the total
number of samples; Nt represents the number of samples for the
current node; NtR represents the number of samples for the right
subtree of the node;NtL represents the number of samples of the left
subtree of the node; G represents the Gini Index; GR represents the
Gini index of the right subtree of the node; GL represents the Gini
index of the left subtree of the node.

For the initial feature importance value, it is necessary to
normalize the value between 0 and 1 to obtain the final
importance value of each feature. For each feature, their
importance is a number between 0 and 1, where 0 means “not
used at all,” 1 means “perfectly predicted target,” and the sum of the
importance of all metric features is always 1.

Taking the decision tree map of Figure 10 as an example, the
initial feature importance of the sample indicators X [0], X [1], and X
[2] are calculated by using the Formula 11.

Combining the information in Formula 11 and Figure 10, it can
be seen that the initial feature importance corresponding to X [0], X
[1], and X [2] is respectively:

FI0 � 2
4

0.5 − 0 − 0( ) � 0.25

FI1 � 3
4

0.444 − 2 × 0.5
3

− 0( ) � 0.083

FIGURE 9
Perforation thickness-production decline rate scatter plot.

FIGURE 10
A computational instance based on a decision tree map.
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FI2 � 4
4

0.375 − 3 × 0.444
4

− 0( ) � 0.042

Normalizing the above results, it can be obtained that the
importance of X [0], X [1], X [2] samples FI0, FI1, and FI2 are
0.667, 0.221, and 0.112.

Due to space limitations, the production decline rate is
used as an example to analyze and discuss. According to the
above calculation method, the calculation results of
the importance of ordinary decision trees are shown in
Figure 11.

For the production decline rate, the importance ranking of
each influencing factor is shown in Figure 11. From the Figure,
it can be seen that the effective thickness variation co-efficient
accounts for more than 80% of the importance of the
production decline rate, while the permeability variation
coefficient accounts for more than 10% of its importance.
The importance of other indicators is less than 1%. Similar
results were obtained for other characteristics of sidetracking
development effect parameters, with only one or two
indicators accounting for more than 80% of the importance
of sidetracking development effect parameters among all
influencing factors. This is quite different from theoretical
and mining practice knowledge. Analysis believes that this
situation may be due to the imbalance of sample data
distribution in actual mining field data. Ordinary decision
tree models lack effective mechanisms to deal with
imbalanced samples, leading to overfitting.

3.3.2 Adaptive enhanced decision trees (Ada
feature importance)

In order to alleviate the calculation overfitting caused by the
imbalance of the distribution of actual sample data in the mine, the
adaptive enhanced decision tree method (AdaBoost) is used to
calculate the feature importance of the samples (Panhalkar and
Doye, 2022).

The basic principle of the AdaBoost (Adaptive Boosting)
algorithm is to reasonably combine multiple weak classifiers
(weak classifiers generally use a single-layer decision tree) to
make it a strong classifier. The adaptation is that the samples
misclassified by the previous basic classifier will be weighted, and
the weighted entire sample will be used again to train the next
basic classifier, while the weights of the correctly classified
samples of the previous round will be reduced. At the same
time, a new weak classifier is added to each round until a
predetermined sufficiently small error rate is reached or a pre-
specified maximum number of iterations is reached. Figure 12
shows the schematic diagram of the adaptive decision tree
algorithm (Zhang and Bifet, 2020).

According to Figure 12, the histogram in the leftmost
rectangle represents each sample, the different widths
represent its weight size, and the weight distribution of the
initialized training sample has the same weight; Training a
weak classifier, if the sample classification is correct, its weight
will be reduced when constructing the next training set; On the
contrary, improve. Train the next classifier with the updated
sample set; After the training process of each weak classifier is

FIGURE 11
Histogram of the importance of each feature under the calculation of the production decline rate in a regular decision tree.
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completed, increase the weight of the weak classifier with a small
classification error rate and reduce the weight of the weak
classifier with a large classification error rate. Compared with
ordinary decision tree models, adaptive enhanced decision trees
have the advantages of high classification accuracy, and strong
flexibility, and are not easy to overfit (Kumari and Sai, 2022).

According to Formula 11, the feature importance of each
influencing factor under model training for sidetrack drilling
development effect parameters can be obtained according to
Formula 11. Similarly, taking the production decline rate as an
example, the results of the importance calculation using the adaptive
enhanced decision tree method are shown in Figure 12.

FIGURE 12
Schematic diagram of adaptive enhanced decision trees.

FIGURE 13
Histogram of the importance of each feature in adaptive enhanced decision tree calculation based on production decline rate.
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According to the results of Figure 13, the importance of each
influencing factor to the production decline rate is calculated based
on the adaptive enhanced decision tree method, and the top 10 are
the permeability variation coefficient, effective thickness variation
coefficient, permeability ratio, effective thickness ratio, recovery
degree, porosity, the distance between the target point and the
old well point, porosity variation coefficient, remaining
recoverable reserves, and injection-production well spacing. The
combined importance of these top 10 indicators to the production
decline rate exceeds 80%.

3.3.3 Comprehensive calculation
According to the influencing relationship between the five

sidetrack drilling development effect parameters and each
influencing factor, the importance calculation method of the
adaptive enhanced decision tree is used to calculate the
importance between the five sidetrack drilling development effect
parameters and their various influencing factors, and the final results
are summed and then averaged, which is used as a comprehensive
evaluation index to analyze and study the importance of each
influencing factor to the sidetrack drilling development effect
parameters. Figure 14 shows the ranking results of the feature
importance values comprehensively calculated by each
influencing factor on the sidetrack drilling development effect
parameters.

4 Conclusion

This article proposes a study on sensitivity analysis of oil well
drilling development effect factors based on actual mining field data.
Based on the actual data of more than 130 sidetracking wells in an oil
field and combined with expert experience, an influence factor
sample set was established. Through three sensitivity analysis
methods under single-factor and multi-factor analysis, the value
law between geological parameters of oil reservoirs, sidetracking well
design parameters, and development effect parameters of
sidetracking wells was accurately and objectively described.

In single-factor analysis, scatter plots of each influencing factor
and development effect parameters of sidetracking wells are drawn
to qualitatively study the relationship between each influencing
factor and the development effect of sidetracking wells. The
correlation coefficient between each influencing factor and the
development effect parameters of sidetracking wells is calculated
through Pearson and Spearman correlation analysis methods, which
quantitatively characterized the correlation between each
influencing factor and the development effect of sidetracking
wells. Finally, it is determined that the Spearman correlation
analysis method can more accurately describe the complex
nonlinear correlation between each influencing factor and
development effect parameters of sidetracking wells. The
correlation between influencing factors such as oil saturation,

FIGURE 14
Histogram of the importance of each feature in adaptive enhanced decision tree calculation using comprehensive indicators. According to Figure,
the characteristic importance of each influencing factor after the calculation of the adaptive enhanced decision tree is the remaining recoverable
reserves, the permeability variation coefficient, distance between the sidetracking target point position and the old well point, oil saturation, permeability
ratio, comprehensive water cut, porosity ratio, effective thickness variation coefficient, recovery degree, connectivity coefficient, porosity variation
coefficient, effective thickness, injection-production well spacing, perforation thickness, single well control area, streamline position, effective thickness
ratio, sidetracking target point position, porosity, permeability. Among them, only the remaining recoverable reserves aremore than 10% important to the
development effect of sidetrack drilling; In addition, the total value of streamline position, effective thickness variation coefficient, sidetracking target
point position, porosity, and permeability on the importance of sidetrack drilling development effect only exceeds 10%, which indicates that the above
indicators have a weak influence on the importance of sidetrack drilling development effect.
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permeability variation coefficient, streamline position, single well
control area, porosity variation coefficient, porosity ratio, and
injection-production well spacing and development effect
parameters of sidetracking wells meets a moderate or higher
degree of correlation.

To avoid the limitations of using a single-factor analysis, a multi-
factor analysis method is used to fully consider the interaction
between influencing factors. Based on the calculation method of
decision tree feature importance, the self-adaptive enhanced
decision tree feature importance calculation method is used to
calculate and rank the feature importance of various influencing
factor indicators and 5 sidetracking development effect indicator
parameters. Among them, only the remaining recoverable reserves
have an importance of more than 10% on the sidetracking
development effect; in addition, the importance of 6 indicators,
such as perforation thickness, is small, all less than 3%.

In this study, we have analyzed the relationship between various
influencing factors and the parameters of the development effect of
sidetracking wells in a relatively accurate and objective manner. In
subsequent studies, more data can be collected sustainably to expand
the sample set of influencing factors and continuously improve
understanding based on this research method. After capturing
certain rules that affect the development effect of sidetrack
drilling, the method of association rules can be used to further
find efficient development models. On this basis, research on
predicting the effect of sidetrack drilling development measures
can be carried out.
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