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Inverters are widely used in themilitary, industrial production and defense fields as
current conversion devices that convert direct current to alternating current. If the
inverter fails, it can cause damage to other equipment, resulting in financial losses
and, in extreme cases, compromising the safety of users. In this study, by
integrating neural networks, the input signals of inverters are quickly converted
to Fourier spectrum amplitudes, and from fault signals (such as load phase voltage)
to feature vectors. In order to realize automatic extraction and fault detection of
inverters, an optimizationmethod is used to determine the appropriate number of
nodes in the hidden layer of complex neural networks. The ability to efficiently
allocate limited computing, storage, and network resources to meet user demand
for services; Continuously optimize quality of service (QoS), including reducing
latency, improving bandwidth, and increasing reliability. These problems directly
affect the performance and user experience of MEC systems. By studying these
issues and proposing corresponding solutions, we aim to improve the
performance of MEC systems and provide higher quality services. The
accuracy of defect diagnosis can reach higher than 99%, and the method has
a high remission rate, demonstrating its effectiveness and benefits.
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1 Introduction

Inverter failure should be given high priority because it may result in damage to the
equipment and device, causing financial loss, and, in severe cases, endangering personal
safety. It is crucial to perform fault diagnosis on inverters because they are widely used in
national defence, military, and industrial production as current conversion devices to
convert DC to AC. (Shang et al., 2021; Liu et al., 2020), although it appears to be a
burden for coordinate transformation and other qualities, may efficiently diagnose errors.
The fault diagnostic method is executed in accordance with the model created by the
literature (Xu et al., 2019) and others, but it is necessary to create a precise mathematical
model since failure to do so will have an impact on the fault identification outcomes. The
performance of the inverter directly affects the following aspects: Energy conversion
efficiency: When the inverter converts direct current to alternating current, there will be
a certain amount of energy loss. Efficient inverters are able to minimize energy loss and
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convert more DC energy into useful AC energy. Therefore, the
energy conversion efficiency of the inverter directly affects the
overall efficiency of the system. Efficient inverters can provide
more power supply, reduce energy waste, and reduce energy
costs for users.

The output voltage and frequency stability of the inverter is very
important for the connected load equipment. The stable output voltage
and frequency ensure the normal operation of the load equipment and
avoid damage or performance degradation. The failure of the inverter
may cause fluctuations in the output voltage and frequency, which
affects the normal operation of the load device. For example, voltage
fluctuations can cause electronic devices to notwork properly or even be
damaged. Current quality: The current quality of the inverter refers to
the ripple and harmonic content of the inverter output current. High
quality current can reduce interference and damage to load equipment.
Inverter failuremay lead to an increase in current ripple and harmonics,
which affects the normal operation of the load device. For example,
harmonic currents can lead to increased motor noise and vibration,
reducing equipment life. The importance of resolving inverter failures to
ensure optimal system operation is to maintain the performance and
reliability of the inverter. The failure of the inverter may cause the
energy conversion efficiency to decrease, the output voltage and
frequency to fluctuate, and the current quality to deteriorate, which
will affect the normal operation of the load equipment and the overall
performance of the system. Therefore, timely diagnosis and solution of
inverter failure is very important. Through fault diagnosis, you can
determine the type and location of the fault, and take appropriate repair
measures. Timely repair of faults can restore the performance and
reliability of the inverter and ensure the optimal operation of the system.

In addition, preventive maintenance and monitoring are also
important means to solve the inverter failure. Regular inverter
inspection and maintenance can prevent potential failures and
ensure the long-term stable operation of the system. Real-time
monitoring of inverter performance parameters and fault
indicators can find and solve problems in time, improve the
reliability and security of the system.

In short, resolving inverter failures to ensure optimal system
operation is critical to maintaining inverter performance and
reliability. The performance of inverter directly affects the energy
conversion efficiency, output voltage and frequency stability, current
quality and so on. Through fault diagnosis, timely repair, preventive
maintenance and monitoring, the efficiency, stability and reliability
of the inverter system can be improved to ensure the normal
operation of the load equipment.

Compound failure refers to the situation where multiple failures
occur at the same time, which can cause serious impact on inverter
performance. Here are some common compound failures and the
impact they can have on inverter performance: Input voltage fault and
output current fault: Input voltage fault may cause the inverter to fail to
work properly, and output current fault may cause the output power of
the inverter to decrease.When these two failures occur at the same time,
the inverter may completely lose power output. Fault current and
temperature failure: Fault current can cause overload and damage to the
internal components of the inverter, while temperature failure can cause
the inverter to overheat. When these two faults occur at the same time,
the inverter may face a greater risk of damage and may lead to serious
safety problems such as short circuit or fire. Fault voltage and
communication failure: The fault voltage may cause the inverter

output voltage to be abnormal, and the communication failure may
cause the inverter to be unable to communicate with the monitoring
system.When these two faults occur at the same time, the inverter may
not be able to report the fault information in a timely manner, resulting
in the fault cannot be resolved in a timely manner.

The challenges faced by traditional diagnostic techniques mainly
include the following aspects: Compound fault diagnosis: The traditional
diagnostic technology can only diagnose a single fault, and the diagnostic
ability of compound fault is limited. The interaction and influence of
multiple faults need to be considered in the diagnosis of complex faults,
which is a challenge for traditional diagnosis techniques. Fault feature
extraction: Traditional diagnostic techniques often rely on manual fault
feature extraction, which requires specialized knowledge and experience.
However, compound faultsmay lead to changes inmultiple fault features,
which may increase the complexity of feature extraction. Data volume
and complexity: Inverter systems typically generate a large amount of
data, including sensor data, operation logs, and so on. Traditional
diagnostic techniques may not be able to handle large-scale data and
complex data structures, which may lead to poor diagnostic results. Real-
time and reliability: Inverter systems often require real-time fault
diagnosis, as well as timely measures to avoid further losses and risks.
However, traditional diagnostic techniques may not be able to meet the
requirements of real-time and reliability, which may lead to failures not
being resolved in time. To sum up, the impact of compound faults on the
performance of inverters may be very serious, and the traditional
diagnostic techniques are faced with challenges in compound fault
diagnosis, feature extraction, data volume and complexity, real-time
and reliability. Therefore, it is necessary to develop and apply model-
based fault diagnosis methods to solve these challenges and improve the
reliability and safety of inverter systems.

The idea of compound faults was first introduced in a 1971 study by
Schertz, who claimed that redundant circuits cause compound failures
to appear in large-scale digital circuits (Wu et al., 2022). Multiple faults
of the same kind occurring simultaneously, multiple faults of the same
type coming from distinct fault sources, multiple faults occurring in
various subsystems of the system interacting to produce new fault
characteristics are all examples of compound faults (W et al., 2021). The
majority of complex faults occur in complex systems, which are
typically made up of numerous subsystems, subsystems, etc. Each
functional module interacts with the others to increase the system’s
level of uncertainty, increasing the system’s size and complexity relative
to general systems. Compound faults are created when multiple faults
occur at once and the system exhibits various, erratic, and mutually
connected characteristic parameter changes for each of them.
Traditional diagnosis techniques are challenging to use, and the
likelihood of misdiagnosis and misdiagnosis is high. These
techniques cannot accurately locate the fault location or identify the
fault type and seriously jeopardise the system’s safe operation because
there is a vague correspondence between fault characteristics and fault
categories (Xie et al., 2022a).

In the early research on composite fault diagnosis, power grids
and complex circuits were the primary research objects. Researchers
divided the complex power grid structure into multiple
substructures and designed to diagnose each substructure’s faults
separately, before diagnosing the faults of the entire network as
composite faults (Wu et al., 2019). The structure, connections
between components, and faults produced in the system all get
increasingly complex as the system scales up in engineering practise.
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As a result, numerous novel theories and techniques for composite
fault identification are put forth. The methods for diagnosing
compound defects produced in various systems have been
thoroughly investigated in both domestic and foreign literature
(Chandr et al., 2018). The power generation system’s capacity
efficiency and cost, as well as its availability and whole-life
maintenance costs, are directly impacted by the inverter’s
performance condition (Jena et al., 2022).

Inverter failure can lead to the following specific consequences,
which reinforces the importance of resolving inverter failure:
Equipment damage: The inverter is a key device that converts
direct current to alternating current. If the inverter fails, it may
cause the entire inverter system to fail to operate normally and even
damage other related devices. For example, an inverter failure can
cause the voltage to be too high or too low, which can damage the
motor, transformer and other equipment connected to the inverter.

Economic losses: Inverter failures can lead to increased
downtime and repair costs, resulting in economic losses. For
example, in a solar inverter system, if the failure of the inverter
causes the solar panels to not work properly, it will lead to energy
loss and a reduction in power generation, which will affect power
generation revenue.

Risk to personal safety: Inverter faults may pose a threat to
personal safety. For example, in a wind power inverter system, if the
inverter fails and the wind turbine cannot be stopped, it may pose a
danger to maintenance personnel and the surrounding
environment. In summary, inverter failures can lead to
equipment damage, economic losses, and personal safety risks,
and these consequences highlight the importance of resolving
inverter failures. By timely detection and resolution of inverter
failures, potential losses and risks can be reduced, and the
reliability and safety of the inverter system can be improved.

In this paper, a compound fault diagnosis method of inverter based
on compound neural network is proposed. This method combines
multiple neural network models to more accurately diagnose the fault
type and location of the inverter. Compared with traditional methods,
this method has higher accuracy and robustness. In addition, I will
highlight the practicability and extensibility of the method, as well as its
potential applications in power systems.

2 Related work

According to a review of domestic and foreign literature, the current
methods for diagnosing compound faults can be broadly divided into
two categories, namely, qualitative analysis methods and quantitative
analysis methods, as a result of the rapid advancement of fault diagnosis
technology (Xie et al., 2023). In order to diagnose compound faults
using quantitative analysis methods, there are primarily two approaches
that combine analytical and data-driven models. The data-driven
approach is a novel approach that combines knowledge-based and
signal-based methods, and it has become a hot topic in recent years’
research on compound fault diagnosis (Palanisamy et al., 2021). As
more branches of each class of methods have been created, the idea of
compound fault diagnostic methods has become more complex (Fazai
et al., 2019).

Compared with power grids and complex circuits, inverter
systems have some special characteristics and requirements. For

example, inverter systems often need to meet the requirements of
high precision, high efficiency and high reliability. In addition, the
inverter system also needs to consider the control and protection of
multiple parameters such as voltage, current, frequency, and power
factor. Therefore, while there are some similarities between power
grid and inverter systems, such as the concept and diagnostic
methods of compound faults, there are some differences in the
specific application and implementation. The relevance of this study
lies in the application of composite fault diagnosis methods in power
grids and complex circuits to inverter systems, and the improvement
and optimization for the special needs of inverter systems. Through
this research, we hope to better understand the characteristics and
effects of compound faults in inverter systems, develop and apply
fault diagnosis methods suitable for inverter systems, and improve
the reliability and safety of inverter systems. This will provide useful
reference and guidance for the design, operation andmaintenance of
inverter system.

Utilising the historical data of the system to build a model,
quantitative analysis examines how the parameters of the diagnostic
item vary over time in order to assess the health of the objectives.
The quantitative analysis fault diagnostic techniques typically use
two types of data-driven and analytical models.

1) Analytical model-based method

To reflect the differences in the system after various types of
faults occur and to detect and diagnose the faults in accordance,
these diagnostic methods use an accurate analytical model of the
system and construct residual signals by computing the observable
input and output quantities of the system model (Alsubari et al.,
2022).

Model-based fault diagnosis methods increase the contribution
to fault diagnosis accuracy and system availability by selecting
relevant features, training models, classifying prediction and
discovering unknown fault modes. It can help achieve fast,
accurate and reliable fault diagnosis in practical applications and
minimize equipment damage, economic losses and personal safety
risks.

2) Data-driven approach

Big data-based analysis techniques use measurement data for
different system parameters, from which the characteristics of a
composite fault are extracted through specific data processing
techniques. This makes it possible to diagnose composite faults
without being aware of the exact analytical model of the system.
Data-driven compound defect diagnosis techniques can
considerably increase the efficiency of diagnosis while reducing
the amount of time required to construct system models for
many systems in engineering practise. Machine learning, signal
processing, information fusion, and multivariate statistics are the
key categories of data-driven approaches. Figure 1 illustrates the
many branches of data-driven composite defect diagnosis
techniques.

The domestic study of composite fault identification is
productive. (Liu et al., 2019). proposed a multiwavelet adaptive
diagnosis method to extract fault features by redundantly
decomposing the signal with cragginess as the optimisation
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objective. This method solved the diversity and strength imbalance
problem of compound faults of mechanical equipment and was
applied to the diagnosis of compound faults such as the outer and
inner rings of rolling bearings of electric locomotives to verify; for
the compound faults of rolling bearings of electric motors. With the
advantages of an easy algorithm implementation, high accuracy,
quick convergence, etc., (Bansode et al., 2016), proposed a particle
swarm optimization-based blind source separation method that was
successfully applied to the actual inner and outer ring composite
fault blind source separation. In (Xie et al., 2022b), they proposed an
online diagnosis method using the optimised composite neural
network with L-M algorithm, and improved the accuracy of the
composite neural network’s classifier by recursive least squares
method to reduce the signal’s noise. They also used wavelet
packet decomposition to amplify the fault features, which
resolved the issue of it being difficult to separate the sensor faults
after the occurrence of the composite fault (Abd et al., 2016; Al-Azab
et al., 2022) achieved the separation and extraction of composite
fault features for the composite faults of CNC machine tools by
performing EEMD decomposition on the composite fault signal and
single fault signal simultaneously, performing correlation analysis
on each of their IMF components, and then decomposing the
composite fault signal in accordance with the proportion of
correlation coefficients. In order to achieve pattern recognition of
various composite faults of CNC machine tools, (Alqahtani et al.,
2022), used the KPCA method to reduce the dimensionality of the
extracted features from the original composite signals. The
composed kernel principal feature set was then used as the input
of the GRNN network for training. Compound fault diagnostic
techniques are the subject of numerous overseas studies as well. In
(Pan et al., 2022), features were extracted from fault data with
varying severity of multiple components for vehicle engine start
system compound faults. Separate classifiers were then trained using

regular polynomial regression, and finally the classifiers were
combined by an integrated approach to construct a fault
diagnosis framework, diagnosing compound faults and also
predicting the severity of the fault, solving the issue of a strong
correlation of fault characteristics of engine characteristics (Ali et al.,
2015). In their analysis of gearbox problem diagnosis techniques,
(Xie et al., 2021), suggested a hybrid model integrating a case-based
inference classifier and an artificial immune system. Innovatively,
(Cheng et al., 2020), realised fault diagnosis of gearboxes under
various operating conditions by extracting features from the
extended spectrum to perform automatic fault detection,
localization, and separation. This was done in addition to the
current signal order spectrum coherence. (Tang et al., 2020).
developed a hybrid approach combining qualitative models and
quantitative data that is targeted at the dynamic PLS system for
compound defect identification.

In order to solve this problem, the optimization method is used
to determine the appropriate number of nodes in the hidden layer of
complex neural networks, and it is applied to automatic extraction
and fault detection of inverters. By rapidly changing the amplitude
of the Fourier spectrum of the fault signal, such as the load phase
voltage, it is converted into a feature vector that serves as the input to
the neural network. The experimental results show that the defect
diagnosis accuracy of this method can reach more than 99%, and has
a high remission rate, which proves its effectiveness and benefits.

3 Composite neural network

The popular circuit topology for three-phase voltage inverters
in different sectors is shown in Figure 2. Complex neural
networks are effective in automatically classifying models and
extracting characteristics. However, as demonstrated in Figure 3,

FIGURE 1
Data-driven composite fault diagnosis method.
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their grid categorization is sensitive to factors. The voltage
between N and the load midpoint is the load phase voltage
(UaN, UbN, UcN ) (Pidikiti et al., 2023). The load phase voltage
can be expressed as,

�UaN� ⌈ 2 −1 −1 �Sa�[ ⌉
UbN � 1

6
Ud − 1 2 − 1Sb

�UcN� �−1 − 1 2� �Sc�
(1)

Where, Sa, Sb, Sc is the switching function of the three-
bridge arm switching device, and Sa, Sb, Sc ∈ −1, 0, 1{ }. Since
the current signal is easily affected by the load change, and
the voltage has stronger robustness than the current signal, and
the load phase voltage is easier to monitor than the bridge arm
phase voltage, therefore, in this paper, the load phase voltage

UaN, UbN, UcN is used as the monitoring signal, 13 compound
fault types are taken into account, as shown in Table 1, where
F0 denotes the inverter’s normal operating state, and
F1 through F12 denote the two power switching tubes on the
same bridge arm that are simultaneously experiencing an open
circuit failure.

3.1 Bat optimization algorithm (BOA)

The BOA is a brand-new population-based heuristic stochastic
search algorithm, and its central idea is to use the biological
mechanism of bats’ ultrasonic prey hunting (Bansode et al.,
2016). Each bat in the BOA algorithm is comparable to a
workable solution in the current search space. Suppose the
dimension of the search space is Ns ,

FIGURE 2
Three-phase voltage-type PWM inverter circuit.

FIGURE 3
Schematic diagram of inverter structure.
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xi
k � xi

k−1 + vik
vik � vik−1 + xi

k − x*
k( )fi}

fi � f min + f max − f min( )β
⎫⎪⎬⎪⎭ (2)

The present optimal solution is randomly perturbed when the
bat search process is a local search, and a new local solution is
produced by each bat wandering at random and may be
expressed as:

xi
new � xi

old + ηAk (3)
where xi

old is the selected optimal solution; η is a random number,
and η ∈ [−1, 1]; Ak is the average of the loudness of the sound waves
emitted by all bats.

The bat’s acoustic loudness and emission rate alter continuously
during the iterative search, and once a prey item is located, the bat’s
acoustic loudness decreases and its emission frequency rises. The
bat’s sound volume and emission rate are updated in the manner
described below:

Ai
k+1 � αAi

k

rik+1 � ri0 1 − exp −γk( )[ ] } (4)

Where α is the increase coefficient of acoustic loudness and
α ∈ [0, 1]; γ is a constant greater than 0; α is the initial
emission rate.

3.2 DBN modeling

The composite algorithm can be optimized by combining a DBN
model with a multi-layer RBM as the main model. The RBM model,
shown in Figure 4, consists of a visible layer consisting of all visible units
h and an implicit layer consisting of all implicit units v. In order to
improve classification efficiency, this model aims to: 1) reduce the
dimensionality of the input data while preserving its distribution
characteristics to the greatest extent possible; 2) use the parameters
obtained from the unsupervised layer-by-layer RBM pre-training as the
initial values for the parameter adjustment of the supervised composite
algorithm.

The parameters of the RBM include the weight matrix Wn×m, the
visible layer bias threshold vector C, and the hidden layer bias threshold
vector B, where the matrix element wij of the weight matrixWn×m.The
energy function between the visible cell vi and the implicit cell hj is

E � −∑n
i�1
civi −∑m

j�1
bjhj −∑n

i�1
∑m
j�1
viwijhj (5)

The three entirely related layers in the CNN model are replaced
by a three-layer RBM. Prior to creating the learning parameters for
directing the synthesis method, RBM is actually inserted without
being controlled by the RBM preparation procedure. Figure 5
illustrates the parameter adjustment process, in which the DBN

TABLE 1 NPC-type three-level inverter compound fault mode type.

Fault number Fault mode description Fault number Fault mode description

F0 Normal F7 Qb2&Qb3 open circuit

F1 Qa1&Qa3 open circuit F8 Qb2&Qb4 open circuit

F2 Qa1&Qa4 open circuit F9 Qc1&Qc3 open circuit

F3 Qa2&Qa3 open circuit F10 Qc1&Qc4 open circuit

F4 Qa2&Qa4 open circuit F11 Qc2&Qc3 open circuit

F5 Qb1&Qb3 open circuit F12 Qc2&Qc4 open circuit

F6 Qb1&Qb4 open circuit

FIGURE 4
Schematic diagram of RBM.
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model starts the RBM learning process with the unnoticed image
without supervision, trains the first level of RBM to the appropriate
hidden layer, applies the activation probability of the hidden layer
module to the second level of RBM without first training the second
level of RBM, and then locally modifies the model parameters using
the marked data and the synthesis algorithm.

3.3 Parameter training of the composite
neural network model

The preparation of CNN control parameters, the unsupervised
preparation of RBM level, and the controllable adjustment of DBN
parameters are the three stages of parameter preparation for the neural
network synthesis model that correspond to the simulation process
(Krishna et al., 2022). In particular, the forward and back propagation
processes, as well as the preparation process of the monitored CNN
parameters, are consistent with those of the first CNNmodel parameters
(Krishna et al., 2023). The fully linked CNN layer is replaced with the
DBN model without the RBM layer being preprocessed. The
experimental parameters of the neural network comprehensive model
are designed along with the reservoir parameters obtained from CNN
parameter observation and training, and then the combination
algorithm is used to perform a priori correction through the
controllable adjustment process of DBN parameters.

The paper uses the nonlinear Relu function as neurons in each
layer of the CNN model, denoted by f, and the squared error as the
overall cost function, denoted by J. In the premise of 4 classes of m
learning data sets, Xi represents the input data set with annotations,
Wij represents each type of weight matrix, ai represents each bias
threshold matrix, Y′

i represents the actual output, and Yi represents
the initial annotation of the input data set Xi. The computational
procedure of forward propagation and the model cost function are

Y′
i � f WijXi + ai( ) (6)

J Wij ,ai ,Xi,Yi( ) �
1
2
∑m
i�1

Y′
i − Yi( )2 (7)

The forward propagation process of DBNmodel is the same as that
of CNN except for the softmax layer, the cost function Q is the cross-
entropy function, and the training goal is to minimize the cost function,
the computation process and cost function of softmax layer are

Si � ey
′
i

∑ey′i (8)

Q � −∑
i

yi ln Si (9)

4 Results and discussion

13 failure modes yield a total of 1300 fault characteristics. The
amplitude spectrum obtained by FFT when the a-phase bridge arm
power switch tube malfunctions is depicted in Figure 6. Before each

FIGURE 5
Training process for DBN parameter.

FIGURE 6
Qa1 ,Qa2 Load phase voltage amplitude spectrum at 11 faults.
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load stage, 500 matching spectral component forces are intercepted,
analysed, and overlapped to create a 1500-dimensional fault vector,
and the number of hidden layer nodes is determined using the boa
optimisation algorithm. This makes it easier to automatically extract
the depth characteristics of the DBN network.

The error profiles for further testing of the composite NN
training are shown in Figure 7 and Figure 8. In this study, we
use a composite neural network for inverter fault diagnosis and
automatic extraction. In order to evaluate the performance of the
network and the effect of the training process, we analyzed the error
curve of the test phase in detail, as shown in Figure 7. Figure 7 shows
how the loss function changes during training. It can be observed
from the figure that in the initial stage, the value of the loss function
is higher, which is caused by the random initialization of the initial
weights of the network. With the progress of training, the loss
function gradually decreases, indicating that the network gradually
improves the accuracy of the prediction during the learning process.

In the later stages of training, the rate of decline of the loss function
slows down because the network is close to convergence and further
optimization becomes more difficult. In addition, we also analyzed
the error curve of the validation phase, as shown in Figure 8. The
figure shows how the value of the loss function on the verification set
changes with the number of training iterations. It can be observed
from the figure that the loss function value on the verification set
gradually decreases during the training process, indicating that the
generalization ability of the network is constantly improving.
However, if overfitting occurs during training, the value of the
loss function on the validation set may begin to rise. Therefore,
in practical applications, we need to monitor the error curve on the
verification set to determine if the network is overfitting or
underfitting, and adjust the structure or training strategy of the
network accordingly.

Through the detailed analysis of the error curve of the test stage,
we can evaluate the training effect of the composite neural network,
and make a reasonable explanation and verification of its
performance. This helps us to further optimize the network
structure and training strategy for more accurate and reliable
inverter fault diagnosis and automatic extraction.

As seen in Figure 7, when the complex neural network has
undergone approximately 125 iterations, the global MSE of the
training samples approaches the expected error value. However, the
error curves of the test and validation samples deviate from the
expected error, and the overall classification effect is subpar. As seen
in Figure 8, the composite neural network improved by the
momentum factor and iteration step self-adjustment method
converges after roughly 100 iterations, and the learning rate of
the network is significantly improved. The error curves of the
validation and test samples are close to the expected error and
show a stable trend, indicating that the improved complex neural
network’s classification effect has been improved. Fifty sets of data
for each of the three failure modes were collected and tested using a
modified composite neural network classifier.

With a few instances of misinterpretation for single and
composite fault data, Table 2 shows that the upgraded composite
neural network obtains an overall right diagnosis rate of over 95%
for no fault, single fault with U-phase sensor bias, and composite
fault with U/V two-phase sensor bias. The efficiency of the
composite defect diagnosis algorithm has been experimentally
verified.

The classic integrated neural network and SVM diagnosis
methods are contrasted, and each complex fault of the three-
stage inverter is diagnosed in accordance with the accuracy
depicted in Table 3 and Figure 9 to confirm the efficacy and
viability of the suggested method. In inverter systems, neural
networks can be integrated and put into play by following steps:

Data collection: First of all, the normal operation data and fault
data of the inverter system need to be collected. These data can
include sensor readings, current, voltage, temperature and other
parameters.

Data preprocessing: Data needs to be preprocessed before it is
fed into the neural network. This may include steps such as data
cleaning, de-noising, normalization, etc., to ensure data accuracy
and consistency.

Feature extraction: Next, the neural network can automatically
extract features related to the fault by learning a large amount of

FIGURE 7
Composite NN training error curve.

FIGURE 8
Training error of the improved complex neural network.
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data. These features can be statistical features of sensor readings,
spectral features, etc.

Model training: Once the features are extracted, the labeled fault
data can be used to train the neural network model. Through
iterative training, the neural network can learn the difference
between failure mode and normal operation mode.

Fault detection: After the training is completed, new data can be
input into the trained neural network model for fault detection. The
neural network will determine whether there is a fault according to the
characteristics of the input data and the previously learned pattern,
and output the corresponding fault type or abnormal situation. In the
inverter system, the specific role of neural network is to realize fault
detection and diagnosis. It can automatically extract features from
sensor data and learn to identify fault patterns. In this way, operators
can detect and resolve faults in a timely manner, improving system
reliability and availability. At the same time, the neural network can
also detect unknown failure modes, help find potential failures, and
take appropriate measures to repair and repair.

Inverter composite fault classification accuracy utilising composite
NN, SVM, and compound neural network is 90.77%, 95.38%, and
99.23%, respectively, according to Figure 9. As a result, the suggested

compound neural network inverter’s comprehensive fault diagnosis
accuracy is higher than that of the conventional comprehensive neural
network and auxiliary vector machine. It can be challenging to accurately
discern the fault type between the conventional recombinant NN and
SVM since the fault nature may be identical. The in-depth features are
further collected using the compound neural network in-depth research
approach, and various fault types are precisely identified.

In addition to the metrics evaluated in the experiment, an
integrated approach to resolving inverter failures can provide the
following additional benefits: Improve the accuracy of fault
diagnosis: By integrating the method of solving the inverter fault,
the accuracy of fault diagnosis can be improved. The identification
and solution of inverter faults can help the system diagnose and locate
faults more accurately, and reduce the possibility of false positives and
misdiagnosis. Improve the efficiency of fault diagnosis: Integrating the
method of solving the inverter fault can also improve the efficiency of
fault diagnosis. The feature extraction and fault diagnosis algorithm of
inverter faults can quickly identify and locate faults, and reduce the time
and cost of fault diagnosis. Improved system reliability: By integrating
the method of solving inverter faults, the reliability of the system can be
improved. Timely identification and resolution of inverter failures can
reduce system downtime and production losses, and improve system
availability and reliability. Reduced maintenance costs: Integrated
solutions to inverter failures can also reduce maintenance costs.
Through automatic fault repair mechanism and fault alarm
notification mechanism, manual intervention and maintenance costs
can be reduced. In summary, integrating the method to solve the
inverter fault into the existing composite fault diagnosis system can
improve the accuracy and efficiency of fault diagnosis, improve the
reliability of the system, and reduce the maintenance cost. These
additional benefits can further improve the performance and
reliability of the system, providing a better user experience.

5 Conclusion

This paper classifies the performance flaws of the fault inverter, uses
the advanced depth persuasion network to automatically extract the
depth features, and uses a variety of complex regional faults to obtain
the feature information. This is due to the difficulty in extracting the

TABLE 2 Diagnostic results of the improved composite neural network classifier.

Fault mode No fault U-phase sensor bias U/V two-phase sensor bias

Number of test samples 50 50 50

Number of correct diagnoses 50 49 48

Diagnosis correct rate 100 98% 96%

TABLE 3 Classification accuracy of each compound fault mode of inverter %.

Fault diagnosis algorithm F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12

BPNN 80 85 100 85 90 100 85 80 100 85 100 95 90

SVM 95 100 100 95 95 100 90 85 100 90 100 100 95

compound neural network 100 100 100 100 100 100 95 100 100 100 95 100 100

FIGURE 9
Comparison of results using different fault diagnosis algorithms.
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complex nature of the fault. The issue of choosing hidden layer nodes in
a DBN network is also resolved by the concept of compound neural
network diagnosis reorganisation. The experimental findings
demonstrate the usefulness and viability of the diagnosis technique
based on compound neural networks, which has higher fault certainty
and higher classification degree than the conventional integrated NN
and SVM. In future work, we will expand the scope of the experiment to
includemore fault situations and data sets to verify the applicability and
robustness of the composite neural network in a wider range of
scenarios. This will help further develop and advance fault diagnosis
techniques based on composite neural networks and provide more
accurate and reliable results.
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