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In order for user-side resources to participate in demand response (DR) more
accurately, schedulable potential assessment of user-side resources is required.
An improved G1 method using Spearman rank correlation (SRC) has been
proposed to evaluate the schedulable potential for user-side resources. First,
the DR potential evaluation indicator is established on the basis of the
characteristics of user-side resources. Second, the resource potential score is
calculated by using the improved G1 method using SRC, and the DR potential is
obtained. Finally, the resource schedulable capacity of a certain region is obtained.
The results show that the method realizes the potential evaluation of user-side
resources in a region to participate in DR and provides data support for the power
supply company to reasonably schedule user-side resources. Moreover, when
compared with existing methods, the proposed method greatly improves the
availability of the power company–scheduled regional resources to participate
in DR.
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1 Introduction

In the traditional coal-based power system, the regulation capacity of the power supply
side is no longer sufficient to ensure the safe, reliable, and economic operation of the new
energy power system (Niu et al., 2021). In response to achieve the goal of double carbon,
clean energy construction, the user-side management can be actively developed (Ibrahim
et al., 2022; Mohseni et al., 2022) that shifts from source-follow-loads to source–load
interactions (Huang et al., 2019) and the importance of user-side management is increased.
The right region at the right time participates in demand response (DR) (Mansouri et al.,
2022) to achieve the goal of leveling off load fluctuations, reducing the load peak-to-valley
difference, and promoting more renewable energy consumption. When the loads are at their
peak, the user-side resources of the region can be called upon to reduce the peak; when the
loads are at their trough or when there is a gap in consumption, the user-side resources of the
region can be called upon to fill the trough by adjusting the capacity upward. In order to
achieve these roles, the user-side resources that can participate in DR have to be reasonably
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dispatched to improve the stability and economy of grid operations
(Vahedipour-Dahraie et al., 2020).

There have been extensive studies on the participation of user-
side resources in DR. In practice, DR was initially launched in
2012 in China. It was first applied in several major cities, like Beijing
and Suzhou. Then, it has been gradually promoted to many other
provinces. The scope, frequency, and intensity of the
implementation of DR have been significantly enhanced over the
past decades. Since industrial consumption dominates the demand
side of the electricity system, China has a significant potential of
peak load reduction by implementing DR, and many electric power
companies have issued either priced-based or incentive-based
policies for DR (Wang et al., 2009; Dong et al., 2016).

By establishing a stage planning–operation model, when the
resources participate in power regulation, the impact of different
operational characteristics on user-side resources has been analyzed
by Pan et al. (2023). Cao et al. (2022) presented a flexibility
evaluation method based on a composite sensitivity matrix of
water levels with respect to power injections to quantify the
time-varying adjustable power domain of pump loads. Chen
et al. (2023) establishes a two-tier optimal dispatch model for
DR, in which the upper layer considers the user power purchase
cost and satisfaction with power consumption and optimizes the
user load curve using dynamic tariffs and load transfer
characteristics. Zhang et al. (2022) used user historical data to
build an evaluation model for DR potential and studied the DR
potential of users and devices under different incentives. A K-means
clustering algorithm was proposed to identify clustered user loads in
Zhang (2022) to evaluate the schedulable potential of user loads for
different power usage modes. Nojavan et al. (2017) considered the
economic and environmental operation of the battery and
photovoltaic (PV) hybrid energy system and proposed a multi-
objective optimization model to reduce the dependence of the
hybrid system on the power supply load.

The G1 method (Ye et al., 2023) is an improved method of
analytic hierarchy process (AHP). The AHP (Dos Santos et al., 2019;
Raghav et al., 2022) focuses on the importance of indicators
themselves and carries out importance-weighting through the
comparison of two indicators, which requires consistency testing.
If the inspection is not qualified, it has to be re-weighted.When there
are more indicators to be compared, the calculation volume is large
and conclusion accuracy is poor. The G1 method determines the
order relationship of indicators according to their importance level
and sequentially judges the importance of adjacent indicators. The
quantitative values are obtained using this method. This method
reduces the number of comparisons of indicators and does not
require consistency test, which overcomes the aforementioned
defects of AHP. Liu et al. (2020) introduced the fuzzy
G1 method to quantify the qualitative model to obtain better
reliability and robustness. Ye et al. (2023) proposed an improved
G1-based method to assess university collaborative innovation
performance. However, the determination of indicator
importance still lacks objectivity in the G1 method. Therefore,
this work objectively determines the importance of adjacent
indicators using Spearman rank correlation (SRC) (Stephanou
and Varughese, 2021) after expert ranking and then determines
the weight of each indicator through the G1 method. The objectivity
of the evaluation method is increased to some extent.

This work is organized as follows: in Section 1, an assessment
model for DR potential is established. In Section 2, a case study is
conducted using the model. In Section 3, the performance of
potential models using different comprehensive evaluation
methods is compared. The conclusions are provided in
Section 4.

2 Schedulable potential assessment
model

User-side resources typically include distributed PV, user loads,
and energy storage. When the power system issues dispatch
instructions for DR, the power system operator shall reasonably
request user-side resources to participate in DR based on the
situation of user-side resources.

2.1 Flowchart of assessment model

First, the indicator is established for each resource, and then
the improved G1 method using SRC is used to obtain a
comprehensive score of each resource to evaluate the
potential of user-side resources to participate in DR in the
region (Eyer and Corey, 2010a; Eyer and Corey, 2010b).
Finally, the schedulable capacity of resources is calculated,
and the schedulable capacity and time of resource
participation in DR are determined on the basis of the
schedulable capacity, as shown in Figure 1.

2.2 Schedulable potential assessment
indicators

Indicators are established on the basis of the characteristics of
distributed PV, user loads, and energy storage. The indicator weights
are calculated by the improved G1 method using SRC. The
schedulable potential of a region to participate in DR is also
determined through simulations.

2.2.1 Distributed PV
The historical PV output data for the same situation are

extracted on the basis of the weather and temperature of the
regulation day, and the LSTM algorithm (Manowska, 2020; Lin
et al., 2022) is used to predict the PV output on the regulation day.

2.2.1.1 DR costs
While the distributed PV participate in the DR process, there is a

certain revenue lost and maintenance cost incurred. The DR cost is
the sum of the revenue lost per kilowatt of power regulated by
distributed PV and the increased maintenance cost.

The DR cost calculation formula is as follows:

c1 � CI,DG + CM,DG

∑T
t�1
Pred t( )

, (1)

where CI,DG is the potential reduction in revenue from distributed
PV participation in DR during the day, CM,DG is the potential
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increase in the maintenance cost, and Pred(t) represents the PV
output on the regulation day.

2.2.1.2 DR duration
Since this work sets the upper limit of distributed PV power as

the expected power that is generated on the regulation day, the
duration of distributed PV being at the upper limit of power can be
ignored. Due to the construction cost limitation, distributed PV
cannot be at the lower power limit all the time, and the duration of
the distributed PV response is the sustainable time in which
distributed PV is at the lower power limit when participating in
the response under the condition of guaranteed construction costs.
Distributed PV has to be consumed to a great extent. Therefore, the
duration of distributed PV at the lower limit of power cannot be
too long.

2.2.1.3 Schedulable capacity
For distributed PV, the schedulable capacity is the predicted

regulated daily output, which is also the upper limit of its output,
with a lower limit of 0. The schedulable capacity is as follows:

PA1 � ∑T
t�1
Pred t( ). (2)

where PA1 is the total schedulable capacity of PV in a day, and
A1 represents the first schedulable capacity in this work. Pred(t) is the
predicted PV output on the regulation day and red represents
prediction.

2.2.2 Users
2.2.2.1 DR costs

The participation of user-side resources in DR will inevitably
affect how or when the user uses electricity. For some large-scale
equipment, the loss will be extremely high if their electricity
consumption is changed, such as in hospitals and plants,
therefore it is inappropriate for such users to participate in DR.
However, for some users, changing the way that they use electricity
will not affect their production life too much and the cost of loss
could be small, such as residential communities and commercial
buildings. and such users are suitable to participate in DR. DR costs
are calculated by

c2 � Cl,u

PA2

c2′ � Cl,u
′

PA2
′

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (3)

where c2 is the downward adjustment of DR costs, c’2 is the upward
adjustment of DR costs, Cl,u is the cost of loss to the users in DR, C’l,u
is user consumption costs when filling valleys for participation in
DR, PA2 is the downwardly schedulable capacity for users
participating in DR, and P’A2 is the downwardly schedulable
capacity for users participating in DR.

2.2.2.2 DR duration
The user load duration indicates the duration for which the user

loads can be at the upper or lower power limit with minimal
disruption. Considering the coupling between the temperature
and power of the thermal storage type industrial loads, the power

limit regulation of the loads can last for a short period as the power
regulation for a long period can cause the temperature to exceed the
range required by the production.

2.2.2.3 Schedulable capacity
For user loads, its schedulable capacity is schedulable loads.

Schedulable loads are divided into up- and down-schedulable loads.
First, the baseline loads and maximum loads are calculated by using
the 7-day working loads before the user regulation day, and the
baseline loads are calculated by

Pu t( ) � 1
Xd∈DMid

∑
X,Y( )Ld t( ), (4)

where Pu(t) denotes the baseline loads estimated for the time period t on
the regulation day; Ld(t) denotes the actual load value of the user for the
time period t on the d-th working day;Y is the number of working days,
which is set to 7; X is the number of days after removing the highest
loads day and the lowest loads day, which is 5; and DMid is 5 days.

The highest load is the average of the highest value of the loads
during the day and night in 7 days, and the formula is as follows:

FIGURE 1
Flowchart for schedulable potential assessment model.

TABLE 1 Distributed PV information.

ΣPred (kW) CI, DG (Yuan) CM, DG (Yuan) dt1(h)

PV 1 3059.63 986.12 611.93 6

PV 2 10.91 2.60 2.40 7

PV 3 5,402.95 1,416.11 1,254.03 8
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Pm � 1
Y

∑
d∈D Y( )

max
t�1,2,/,T

Ld t( )( ). (5)

The base loads Pb is the minimum daily electricity consumption
of the user, which can be reported by the user himself or calculated
by using the holiday loads of the last 3 days of the regulation day, as
shown in the following equation:

Pb � 1
X

∑
d∈Dv X( )

min
t�1,2,/,T

Ld t( )( ), (6)

where Ld(t) denotes the actual load value of the user at time t of the d-th
holiday; X is the number of holiday days, which is 3; and Dv is 3 days.

The difference between the baseline loads and base loads gives the
user downward schedulable loads PAu, which is used to participate in
peak shaving. The difference between the highest loads and baseline
loads gives the user upward schedulable load PAu

′, which is used to
participate in valley filling, and the calculation formula is as follows:

PAu t( ) � Pu t( ) − Pb

PAu
′ t( ) � Pm − Pu t( ){ . (7)

The schedulable capacities are as follows:

PA2 � ∑T
t�1
PAu t( )

PA2
′ � ∑T

t�1
PAu
′ t( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (8)

2.2.2.4 Peak-to-valley difference
The formula for calculating the peak-to-valley difference (PVD)

is as follows:

PVD � maxPu t( ) −minPu t( )
maxPu t( ) . (9)

2.2.3 Energy storage
2.2.3.1 DR costs

Distributed energy storage, as a new type of load management
tool, is generally installed inside industrial and commercial users or
parks and plays an increasingly important role in the power system.
Currently, energy storage has the advantages of fast response,
flexible configuration, short construction cycle, etc. It charges
during the valley time but discharges within the peak time. The
DR cost of energy storage is determined by the cycle life of the
batteries and system cost. DR costs are calculated as follows:

c3 � cl,e
cn
, (10)

where cl,e is the cost of the energy storage system and cn is the cycle
life of energy storage.

2.2.3.2 Rechargeable capacity
The capacity of energy storage systems for regulation purposes is

constrained by several factors, such as the amount of energy stored on
the previous day, the rated capacity, and its ability to charge and
discharge deeply. The schedulable capacity at time t is limited by the
capacity stored at the previous time, its rated capacity, and its deep
charging and discharging capacity. Meanwhile, when selecting energy
storage power stations for DR, it is also necessary to consider whether
they can perform deep charging or discharging. For those that can be
deeply charged and discharged, its deep charging and discharging
capacity is set to 1; for the energy storage system whose deep
charging and discharging will affect its life, its capacity is set
according to the minimum and maximum intervals of its charge
state. If its suitable charge state interval is 15%–85%, its deep
discharging capacity is 0.85, and its deep charging capacity is 0.85.
Consequently, the higher the deep charging and discharging capacity of
energy storage, the greater its potential for DR. Energy storage can be
charged and discharged at moment t with a capacity of

PA3 t( ) � Ee t − 1( ) − 1 −De( ) · Er

PA3
′ t( ) � De · Er − Ee t − 1( ){ , (11)

where PA3(t) is the available discharge capacity, P’A3(t) is the
available charge capacity, De is the deep charge and discharge
capacity, Er is the rated capacity, and Ee is the stored charge.

The greater the schedulable capacity of the energy storage, the
greater the potential for the energy storage to participate in DR at
that moment.

2.3 Integrated evaluation methodology

In this work, the improved G1 method using SRC is used to
establish indicators to obtain assessment scores to evaluate the
potential for user-side resource aggregation in the region. SRC is
a correlation analysis that uses the rank-order magnitude of two
variables. It does not require the distribution of the original variables
and is a non-parametric statistical method with a wide range of
applications. The calculation formula is as follows:

rs � 1 − 6∑d2
i

n n2 − 1( ), (12)

where di = (xi − yi), and xi and yi are the ranks of the two variables
sorted by size or superiority, and n is the sample capacity. The range
of SRC is [−1, 1], and the larger the absolute value, the stronger the
correlation. The stronger the correlation between the indicators, the

TABLE 2 Distributed PV indicators.

c1 (Yuan) dt2 (h) PA1 (kW)

PV 1 0.52 2 3,059.63

PV 2 0.46 3 10.91

PV 3 0.49 4 5,402.95

TABLE 3 User parameters.

C’l,u (Yuan) Cl,u (Yuan) dt2(h)

User 1 95,624 156,874 4

User 2 201,584 265,849 3

User 3 3,322 2,365 5

User 4 1,255 1,584 6

User 5 254 265 8

User 6 85 72 8
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less information is obtained from them and the smaller the role that
they play in comprehensive evaluation. Conversely, the weaker the
correlation between indicators, the more information is obtained
from them and the greater the role that they play in comprehensive

evaluation, with a higher weight. Therefore, the weight ratio of two
adjacent indicators is calculated as follows:

wj � 1������
1 − rs| |√ . (13)

The improved G1 method using SRC can be implemented
according to the following steps:

Step 1: Calculate the values of each indicator and perform
normalization. Normalization includes positive indicators and
negative indicators, and the expressions are presented in Eq.
14 as follows:

FIGURE 2
User load curves: (A) workday; (B) holiday.

TABLE 4 Indicators for the user load assessment.

c’2 (Yuan) c2 (Yuan) dt2 (h) P’A2 (kW) PA2 (kW) PVD

User 1 47.41 32.78 4 2,016.91 4,785.49 25.00

User 2 18.85 18.86 3 10,693.96 14,097.81 93.22

User 3 0.25 0.21 5 13,203.26 11,533.20 242.68

User 4 0.10 0.11 6 12,237.63 14,092.88 251.20

User 5 0.11 0.15 8 2,300.73 1,744.44 59.89

User 6 0.09 0.13 8 927.95 549.35 16.82

TABLE 5 Parameters of energy storage.

Battery System costs
(Yuan)

Cycle life
(time)

Rated
capacity (kW)

Capacity stored on the
previous day (kW)

Deep charge and
discharge capability

Energy
storage 1

Vanadium redox
flow battery

6000 18000 900 602.85 1

Energy
storage 2

Lithium-ion battery 2,500 5,000 800 453.6 0.85

Energy
storage 3

Pb-C battery 1,800 3,000 900 444 0.6

TABLE 6 Indicators of energy storage.

c3 (Yuan) Initial P’A3 (kW) Initial PA3 (kW)

Energy storage 1 0.33 297.15 602.85

Energy storage 2 0.5 226.4 333.6

Energy storage 3 0.6 96 84
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Yj �

Mj −min Mj( )
max Mj( ) −min Mj( ), Mjis a positive indicator

max Mj( ) −Mj

max Mj( ) −min Mj( ), Mjis a negative indicator

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
. (14)

Step 2: Calculate the importance of indicators by providing
information on the indicators to the expert group;

Step 3: Calculate the correlation degree of adjacent indicators by
using SRC;

Step 4: Calculate the indicator weighting factors based on
correlation coefficients;

Step 5: Calculate the overall user score. The formula for the
comprehensive score is as follows:

E � ∑N
j�1

Wj × Yj( ) × 100. (15)

2.4 Calculation of schedulable potential
capacity

The score of the user-side resources in the region
participating in DR is obtained by the comprehensive
evaluation method, and they are selected from the highest to
the lowest according to the score, and the expected regulable
capacity of the selected resources on the regulation day is
aggregated to obtain the regulable capacity of the region
participating in DR on the regulation day.

The regulable capacity of the region on the regulation day is as
follows:

D � PAu t( ) + PA3 t( )
D′ � Pred t( ) + PAu

′ t( ) + PA3
′ t( ){ , (16)

where D is the schedulable amount when cutting the peak and D′ is
the schedulable amount when filling the valley.

3 Case study

According to the data sets, which include actual electricity load
data, actual distributed PV generation, energy storage capacity, and
battery performance in a certain region, as well as cost and duration
data provided by users to the power company, this study selected the
end of a certain month as the regulation day.

3.1 Evaluation indicator

3.1.1 Distributed PV
Using the LSTM model, the PV output of the month with the

same weather as the regulation day is used as input to predict the
distributed PV output data of the regulation day. The total output
data of distributed PVs on the regulation day is shown in Table 1.
Table 1 also includes the potential loss of participating DR reported
by distributed PVs to the power supply company, increased
maintenance costs, and duration of responsiveness.

Distributed PV 2 has the smallest output but also has the
smallest lost revenue and smallest increased maintenance costs,

TABLE 7 Weighting of resource potential evaluation indicator.

Indicator Weighting of peak shaving indicator Weighting of valley filling indicator

PV

c1 — 0.67

PA1 — 0.24

dt1 — 0.09

Users

c2/c’2 0.75 0.76

PA2/P’A2 0.19 0.18

PVD 0.05 0.05

dt2 0.01 0.01

Energy Storage
c3 0.95 0.88

PA3/P’A3 0.05 0.12

FIGURE 3
Resource potential score.
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FIGURE 4
Schedulable capacity curves for each resource: (A) peak shaving; (B) valley filling.

FIGURE 5
Resource aggregation schedulable capacity curve: (A) peak shaving; (B) valley filling.

FIGURE 6
Scores between the two methods: (A) AHP; (B) entropy weight method.
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and PV 3 has the largest output but also has the largest lost revenue
and largest increased maintenance costs.

The potential evaluation indicators of distributed PV were
calculated, and the calculation results of the evaluation indicators
obtained are shown in Table 2.

3.1.2 User load
The loss cost of 1 day when the user is in the base load state (each

user only maintains basic electricity), the consumption cost of 1 day
when the user is in the highest load state (maintaining high-intensity
operation), and the duration of DR are shown in Table 3.

User 2 has the highest consumption and loss costs and the lowest
DR duration. By contrast, User 6 has a low cost of consumption and
loss, with a DR time of up to 8 h.

Calculating the user potential assessment indicator also requires
the user’s weekday load for the first 7 days and holiday load for
3 days, as shown in Figure 2.

The potential assessment indicators for the users are calculated as
described in Section 2.2. The computational results are listed in Table 4:

3.1.3 Energy storage
There are three energy storages in this region, and the basic

information is shown in Table 5:
According to Table 5, the potential evaluation indicators of

energy storage in this region are calculated as shown in Table 6:

3.2 Resource score

First, the indicators are ranked by importance. In the distributed
PV indicator, the importance is c1 >PA1 > dt1, in the user indicator,
the importance is c2/c’2 > PA2/P’A2 > PVD > dt2, in the storage
indicator, the importance is c2/c’2 >PA2/P’A2 > dt2, in the storage
indicator, the importance of c1 > PA1 > dt2.

Then, SRC is used to calculate the correlation degree rs of adjacent
indicators and the weight ratio wij. Finally, the weight Wj of each
indicator is calculated according to the weight ratio, and the weight of
each resource indicator is obtained as shown in Table 7.

According to Eq. 15, the comprehensive score of each resource is
calculated, and the results obtained are shown in Figure 3.

According to the resource potential score, resources that can
participate in peak shaving or valley filling in DR are known. For
peak shaving, user 4 has the highest score among users, and energy
storage 1 has the highest score among energy storages; for valley filling,
user 3 has the highest score among users, PV 2 has the highest score
among PVs, and energy storage 1 has the highest score among energy
storage. Those with high scores will have priority to participate in DR.

3.3 Schedulable capacity calculation

The customer-side resources involved in DR in the region are
aggregated and the schedulable capacity for each time period calculated.
The schedulable capacity of energy storage has to change according to
the response capacity of the previous moment, as shown in Eq. 11.
However, only potential assessments are carried out without the
demand response, so the adjustable capacity of energy storage is left
unchanged. The obtained schedulable capacity of each resource in the
region is shown in Figure 4.

TABLE 8 Indicators of the two methods.

Indicator AHP Entropy weight method

Shave the peak Fill the valley Shave the peak Fill the valley

PV

c1 — 0.06 — 0.34

PA1 — 0.22 — 0.34

dt1 — 0.72 — 0.32

Users

c2/c’2 0.04 0.04 0.17 0.15

PA2/P’A2 0.13 0.13 0.25 0.24

PVD 0.23 0.23 0.31 0.36

dt2 0.60 0.60 0.27 0.25

Energy storage
c3 0.25 0.25 0.48 0.54

PA3/P’A3 0.75 0.75 0.52 0.46

FIGURE 7
Load curves of three methods.
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The resulting schedulable capacity after the aggregation of user-
side resources in this area is shown in Figure 5.

As shown in Figure 6, when peak shaving is required, this area
between collection points 32 and 92, i.e., between 8 and 23, has a greater
schedulable potential and can be adjusted to a capacity of 850 kW or
more for peak shaving, and when valley filling is required, this area
between collection points 0 and 36, 43, and 59, i.e., between 0 and 9 and
between 10:30 and 14:00, has a greater schedulable potential and the
capacity of 750 kW or more can be adjusted to fill the valley. Therefore,
if the grid is to respond to demand, this area can be selected forDR if the
peak shaving time is between 8:00 and 23:00 or the valley filling time is
between 0:00 and 9:00 and between 10:30 and 14:00.

4 Comparative analysis

4.1 Schedulable potential score

The AHP described by Settou et al. (2021) and the entropy weight
method described by Liu et al. (2022) are compared with the
G1 algorithm based on the SRC used in this work. Various types of
resource indicators calculated by the two models are shown in Table 8.

The potential scores of each resource are obtained by calculating
the indicators as shown in Figure 6.

Figure 7 shows the resource potential scores obtained by the AHP
that have been described by Settou et al. (2021) and the entropy weight
method described by Liu et al. (2022) that are different from the scores
obtained in this work. The AHP yields the highest valley filling score for
distributed PVs to become PV 3. The user with the highest peak shaving
and valley filling score is user 5, while energy storage 1 has the highest
score for energy storage. On the other hand, the entropy weight method
determines whether PV 3 achieves the highest score for valley filling.
User 4 has the highest scores for both valley filling and peak shaving.
Energy storage 1 obtains the highest score for valley filling, while energy
storage station 2 has the highest score for peak shaving.

To aggregate the selected resources in the descending order
according to the AHP and entropy weight methods for participation
in DR, the NSGA-III optimization algorithm is used to calculate the
results of DR. The effectiveness of the three methods is analyzed
based on the results of DR.

4.2 Analysis results

A comparison of the fluctuations of the load curves after the
participation of DR for schedulable potential resources selected by
the three methods is shown in Figure 7.

The results are shown in Table 9.
As shown in Table 9, all these three methods have a great effect

on cutting the peak-to-valley difference, but the method proposed in
this work has the smallest value and best performance for the peak-
to-valley difference. Regarding the power supply cost, the results for
these three methods are very close to each other, and the proposed
method also has the minimum value.

Clearly, the method used in this work can effectively smooth the
load fluctuation and reduce power supply costs. Therefore, the
schedulable potential assessment model used in this work can
more effectively explore the user-side resources that can
participate in DR and improve the ability of power supply
companies to dispatch regional resources to participate in DR.

5 Conclusion

This study evaluates the potential of user-side resources by
establishing a potential evaluation index system and a
comprehensive evaluation method. The improved G1 method
using SRC retains the subjectivity of the importance ranking of
G1 method weights, while increasing the objectivity of
calculating weights through SRC. When compared with other
methods, the evaluation results of this method are more
accurate and effective in regulating user-side resources in the
power grid.

The established schedulable potential assessment model reflects
the capability of individual resources to participate in DR from the
perspective of their characteristics. Its utilization can explore and
aggregate the user-side resources. It is beneficial for peak shaving
and valley filling and greatly improves the utilization efficiency of
user-side resources.

Data availability statement

The data analyzed in this study are subject to the following
licenses/restrictions: The data used to support the findings of this
study were supplied by the Science and Technology Project of State
Grid Hunan Electric Power Co., Ltd. Requests to access these data
sets should be directed to RW, wurong@hnu.edu.cn.

Author contributions

HW and MY proposed the concepts and ideas. XC and JX
analyzed the results. RW and QF wrote and revised the contents of

TABLE 9 Comparison of three methods.

Indicator weighting calculation method PVD Power supply cost User revenue expectation

Methods proposed in this work 626.77 97,160.02 30.72

Entropy weight method 640.30 102,337.39 30.73

AHP 694.53 107,869.91 30.91

Unpowered load interaction 737.97 108,943.68 0

Frontiers in Energy Research frontiersin.org09

Wu et al. 10.3389/fenrg.2023.1248322

mailto:wurong@hnu.edu.cn
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1248322


the manuscript. All authors contributed to the article and approved
the submitted version.

Funding

This work is financially supported by the Science and
Technology Project of State Grid Hunan Electric Power Co., Ltd.
No. 5216AG21N00Z.

Acknowledgments

The authors of this work acknowledge the contributions of the
State Grid Hunan Electric Power Company Limited and Hunan
Province Key Laboratory of Intelligent Electrical.

Conflict of interest

Authors HW, MY, XC, and JX were employed by the State Grid
Hunan Electric Power Company Limited.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, editors, and reviewers. Any product that may be
evaluated in this article, or claim that may be made by its manufacturer,
is not guaranteed or endorsed by the publisher.

References

Cao, Y., Zhou, B., Chung, C. Y., Shuai, Z., Hua, Z., and Sun, Y. (2022). Dynamic
modelling and mutual coordination of electricity and watershed networks for spatio-
temporal operational flexibility enhancement under rainy climates. IEEE Trans. smart
grid 14, 3450–3464. doi:10.1109/tsg.2022.3223877

Chen, H. W., Lin, S. H., and Zhu, J. Q. (2023). Double-layer optimization of
economic dispatch in microgrid considering demand-side response. Electr.
Autom., 79–81+84.

Dong, J., Xue, G., and Li, R. (2016). Demand response in China: regulations, pilot
projects and recommendations – a review. Renew. Sustain. Energy Rev. 59, 13–27.
doi:10.1016/j.rser.2015.12.130

Dos Santos, P. H., Neves, S. M., Sant’Anna, D. O., de Oliveira, C. H., and Carvalho, H.
D. (2019). The analytic hierarchy process supporting decision making for sustainable
development: an overview of applications. J. Clean. Prod. 212, 119–138. doi:10.1016/j.
jclepro.2018.11.270

Eyer, J., and Corey, G. (2010a). Energy storage for the electricity grid: benefits and
market potential assessment guide. Sandia Natl. Lab. 20 (10), 5. doi:10.2172/1031895

Eyer, J. M., and Corey, G. P. (2010b). Energy storage for the electricity grid: benefits and
market potential assessment guide: a study for the DOE Energy Storage Systems Program
(No. SAND2010-0815). Albuquerque, NM, and Livermore, CA (United States): Sandia
National Laboratories SNL.

Huang, W., Zhang, N., Kang, C., Li, M., and Huo, M. (2019). From demand response
to integrated demand response: review and prospect of research and application. Prot.
Control Mod. Power Syst. 4, 12–13. doi:10.1186/s41601-019-0126-4

Ibrahim, C., Mougharbel, I., Kanaan, H. Y., Abou Daher, N., Georges, S., and Saad, M.
(2022). A review on the deployment of demand response programs with multiple
aspects coexistence over smart grid platform. Renew. Sustain. Energy Rev. 162, 112446.
doi:10.1016/j.rser.2022.112446

Lin, J., Ma, J., Zhu, J., and Cui, Y. (2022). Short-term load forecasting based on LSTM
networks considering attention mechanism. Int. J. Electr. Power & Energy Syst. 137,
107818. doi:10.1016/j.ijepes.2021.107818

Liu, J., Li, Y., Lu, Y., Fu, X., and Yan, S. (2020). Research on the influence factors of
ubiquitous power Internet of things for promoting consumption of wind power based
on fuzzy G1-ISM in China. Int. J. Electr. Power & Energy Syst. 121, 106124. doi:10.1016/
j.ijepes.2020.106124

Liu, Z., Xie, Q., Dai, L., Wang, H., Deng, L., Wang, C., et al. (2022). Research on
comprehensive evaluation method of distribution network based on AHP-entropy
weighting method. Front. Energy Res. 10, 975462. doi:10.3389/fenrg.2022.975462

Manowska, A. (2020). Using the LSTM network to forecast the demand for electricity
in Poland. Appl. Sci. 10 (23), 8455. doi:10.3390/app10238455

Mansouri, S. A., Nematbakhsh, E., Ahmarinejad, A., Jordehi, A. R., Javadi, M. S.,
and Matin, S. A. A. (2022). A Multi-objective dynamic framework for design of
energy hub by considering energy storage system, power-to-gas technology and

integrated demand response program. J. Energy Storage 50, 104206. doi:10.1016/j.
est.2022.104206

Mohseni, S., Brent, A. C., Kelly, S., and Browne, W. N. (2022). Demand response-
integrated investment and operational planning of renewable and sustainable energy
systems considering forecast uncertainties: a systematic review. Renew. Sustain. Energy
Rev. 158, 112095. doi:10.1016/j.rser.2022.112095

Niu, T., Hu, B., Xie, K., Pan, C., Jin, H., and Li, C. (2021). Spacial coordination between data
centers and power system considering uncertainties of both source and load sides. Int. J. Electr.
Power & Energy Syst. 124, 106358. doi:10.1016/j.ijepes.2020.106358

Nojavan, S., Majidi, M., Najafi-Ghalelou, A., Ghahramani, M., and Zare, K. (2017). A
cost-emission model for fuel cell/PV/battery hybrid energy system in the presence of
demand response program: ε-constraint method and fuzzy satisfying approach. Energy
Convers. Manag. 138, 383–392. doi:10.1016/j.enconman.2017.02.003

Pan, C., Fan, G. B., Bao, Y. T., Li, R. Y., Yu, F. J., and Bao, F. (2023). Collaborative
control of demand-side resources participating in distributed generation integration.
Acta Energiae Solaris Sin., 306–315. doi:10.19912/j.0254-0096.tynxb.2021-0170

Raghav, L. P., Kumar, R. S., Raju, D. K., and Singh, A. R. (2022). Analytic hierarchy process
(AHP)-swarm intelligence based flexible demand response management of grid-connected
microgrid. Appl. Energy 306, 118058. doi:10.1016/j.apenergy.2021.118058

Settou, B., Settou, N., Gouareh, A., Negrou, B., Mokhtara, C., and Messaoudi, D.
(2021). A high-resolution geographic information system-analytical hierarchy process-
based method for solar PV power plant site selection: a case study Algeria. Clean
Technol. Environ. Policy 23, 219–234. doi:10.1007/s10098-020-01971-3

Stephanou, M., and Varughese, M. (2021). Sequential estimation of Spearman rank
correlation using Hermite series estimators. J. Multivar. Analysis 186, 104783. doi:10.
1016/j.jmva.2021.104783

Vahedipour-Dahraie, M., Rashidizadeh-Kermani, H., Shafie-Khah, M., and Catalão,
J. P. (2020). Risk-averse optimal energy and reserve scheduling for virtual power plants
incorporating demand response programs. IEEE Trans. Smart Grid 12 (2), 1405–1415.
doi:10.1109/tsg.2020.3026971

Wang, J., Cary, N. B., Hu, Z., and Tan, Z. (2009). Demand response in China. Energy (4).
doi:10.1016/j.energy.2009.06.020

Ye, F., Sun, J., Wang, Y., Nedjah, N., and Bu, W. (2023). A novel method for the
performance evaluation of institutionalized collaborative innovation using an improved
G1-CRITIC comprehensive evaluation model. J. Innovation Knowl. 8 (1), 100289.
doi:10.1016/j.jik.2022.100289

Zhang, H. L. (2022). Research on the adjustment capacity characterization and
response strategy of flexible load group for power regulation. Jilin City, China:
Northeast Electric Power University. Doctoral dissertation. doi:10.27008/d.cnki.
gdbdc.2022.000002

Zhang, T. F., Jiang, X. Y., and Zhang, H. F. (2022). Optimization scheduling of load
aggregator with fine-grained potential evaluation. Power Demand Side Manag., 15–21.

Frontiers in Energy Research frontiersin.org10

Wu et al. 10.3389/fenrg.2023.1248322

https://doi.org/10.1109/tsg.2022.3223877
https://doi.org/10.1016/j.rser.2015.12.130
https://doi.org/10.1016/j.jclepro.2018.11.270
https://doi.org/10.1016/j.jclepro.2018.11.270
https://doi.org/10.2172/1031895
https://doi.org/10.1186/s41601-019-0126-4
https://doi.org/10.1016/j.rser.2022.112446
https://doi.org/10.1016/j.ijepes.2021.107818
https://doi.org/10.1016/j.ijepes.2020.106124
https://doi.org/10.1016/j.ijepes.2020.106124
https://doi.org/10.3389/fenrg.2022.975462
https://doi.org/10.3390/app10238455
https://doi.org/10.1016/j.est.2022.104206
https://doi.org/10.1016/j.est.2022.104206
https://doi.org/10.1016/j.rser.2022.112095
https://doi.org/10.1016/j.ijepes.2020.106358
https://doi.org/10.1016/j.enconman.2017.02.003
https://doi.org/10.19912/j.0254-0096.tynxb.2021-0170
https://doi.org/10.1016/j.apenergy.2021.118058
https://doi.org/10.1007/s10098-020-01971-3
https://doi.org/10.1016/j.jmva.2021.104783
https://doi.org/10.1016/j.jmva.2021.104783
https://doi.org/10.1109/tsg.2020.3026971
https://doi.org/10.1016/j.energy.2009.06.020
https://doi.org/10.1016/j.jik.2022.100289
https://doi.org/10.27008/d.cnki.gdbdc.2022.000002
https://doi.org/10.27008/d.cnki.gdbdc.2022.000002
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1248322

	Assessment of schedulable potential for user-side resources participating in demand response based on improved G1 method us ...
	1 Introduction
	2 Schedulable potential assessment model
	2.1 Flowchart of assessment model
	2.2 Schedulable potential assessment indicators
	2.2.1.1 DR costs
	2.2.1.3 Schedulable capacity
	2.2.2 Users
	2.2.2.1 DR costs
	2.2.2.2 DR duration
	2.2.2.3 Schedulable capacity
	2.2.2.4 Peak-to-valley difference
	2.2.3 Energy storage
	2.2.3.1 DR costs
	2.2.3.2 Rechargeable capacity

	2.3 Integrated evaluation methodology
	2.4 Calculation of schedulable potential capacity

	3 Case study
	3.1 Evaluation indicator
	3.1.1 Distributed PV
	3.1.2 User load
	3.1.3 Energy storage

	3.2 Resource score
	3.3 Schedulable capacity calculation

	4 Comparative analysis
	4.1 Schedulable potential score
	4.2 Analysis results

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


