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To address the challenge of predicting distributed photovoltaic (PV) power output
for improved system integration and stability, this study proposes a novel method.
Given the expanding scale of distributed PV systems and their economic
constraints, accurate power output prediction becomes pivotal. Conventional
prediction methods are hindered by the lack of meteorological stations at most
distributed PV stations. In response, we present a dynamic convolutional
generative adversarial network (DC-GAN) approach coupled with satellite
cloud map video frames. By extracting shading features from satellite cloud
images and utilizing DC-GAN, our method forecasts short-term cloud shading
effects on future radiation. We further integrate radiation data from centralized PV
stations, spatial correlations of distributed PV stations, and cloud shading
characteristics. This information is used to construct a predictive model
combining Convolutional Neural Networks (CNN) and Long short-term
memory (LSTM), enhancing prediction accuracy. Comparative experiments
confirm the superiority of our proposed method over traditional approaches,
substantiating its effectiveness and practicality. Our method achieves notable
accuracy improvements, establishing its value in predicting distributed PV power
output. This research’s findings offer a valuable contribution to the field of
renewable energy integration. In numerical assessments, our method
demonstrates a significant increase in prediction accuracy, outperforming
conventional techniques by 3.3%. This underscores the practical relevance and
efficiency of our proposed approach in enhancing distributed PV power output
prediction.
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1 Introduction

Amidst the backdrop of “Peak Carbon Emissions, Carbon Neutrality,” China is actively
revamping its energy structure, with a focus on bolstering the installed capacity of distributed
photovoltaics. This surge is fueled by supportive policies (ZHANG et al., 2019; Tian et al.,
2022). However, when juxtaposed with centralized photovoltaics, distributed photovoltaic
stations are dispersed across various locations, presenting a formidable hurdle in establishing
an efficient meteorological monitoring system. Consequently, regulating their power output
becomes a complex endeavor, casting a shadow over the seamless operation of the emerging
power infrastructure. Elevating the precision of distributed photovoltaic power prediction
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holds paramount importance in driving up its integration rate
within the novel power grid (Jiang et al., 2018).

With the continuous advancement of artificial intelligence
technology, prediction methods for photovoltaic power output,
rooted in deep learning and machine learning, have garnered
widespread utilization. Within these methodologies, historical
photovoltaic output data, Numerical Weather Prediction (NWP),
and meteorological data serve as inputs for prediction models,
enabling the execution of short-term photovoltaic power output
forecasts (Hou et al., 2018). Notably, among these variables, solar
irradiance emerges as the most pivotal factor influencing
photovoltaic power output prediction (Botong et al., 2022). In
centralized photovoltaic power output prediction, meteorological
monitoring systems are integrated within photovoltaic power
stations, allowing for direct acquisition of solar irradiance data.
Conversely, in distributed photovoltaic systems, logistical and
economic considerations render the installation of meteorological
monitoring systems at each photovoltaic power station impractical
(BIAN and SUN, 2021). Typically, meteorological data sourced from
centralized photovoltaic sites in proximity to distributed
photovoltaic stations are employed for prediction. However, this
approach overlooks the dynamic shading effects of clouds on
irradiance over time. Consequently, forecast errors tend to be
substantial, rendering the fulfillment of load control requirements
for the emerging power system a challenging feat (ZHU et al., 2020).
Against this backdrop, this research delves into the prediction of
power output from distributed photovoltaic stations, employing
deep learning algorithms. This investigation takes into account
the spatial correlation between distributed and centralized
photovoltaics, as well as the time-evolving shading characteristics
induced by clouds.

With the advancement of artificial intelligence technology,
methods for predicting photovoltaic power output using deep
learning and machine learning have gained widespread traction.
In these approaches, historical photovoltaic output data, Numerical
Weather Prediction (NWP), and meteorological information are
harnessed as inputs for the prediction model, facilitating short-term
forecasting of photovoltaic power output (Hou et al., 2018). Among
these inputs, solar irradiance emerges as a paramount factor
significantly influencing photovoltaic power output prediction
(Botong et al., 2022). In centralized photovoltaic power output
prediction, meteorological monitoring systems are seamlessly
integrated within photovoltaic power stations, enabling direct
acquisition of solar irradiance data. However, the scenario differs
for distributed photovoltaic systems due to their dispersed
installation sites and economic constraints, rendering the
deployment of meteorological monitoring systems at each
photovoltaic power station infeasible (BIAN and SUN, 2021).
Commonly, meteorological data sourced from centralized
photovoltaic installations in proximity to the distributed
photovoltaic station are employed for prediction. Yet, this
practice disregards the dynamic shading effects of clouds on
irradiance over time. As a result, prediction discrepancies tend to
be substantial, impeding the fulfillment of load control requirements
within the emerging power system (ZHU et al., 2020). Taking these
factors into consideration, this study delves into power output
prediction for distributed photovoltaic stations utilizing deep
learning algorithms. The investigation takes into account both

the spatial correlation between distributed and centralized
photovoltaics and the time-varying cloud shading characteristics.

Due to limitations in hardware infrastructure, the prevailing
approach for predicting distributed photovoltaic output combines
data augmentation techniques with deep learning algorithms. In
reference (Peng et al., 2020), an ultra-short-term method for
forecasting distributed photovoltaic power is introduced,
employing satellite remote sensing. Initially, the Res-UNet model
is employed for temporal and spatial prediction of short-term
irradiation grids. Subsequently, spatial interpolation is applied to
the predicted SWR (shortwave radiation) grid to ascertain future
irradiance at ground-based distributed stations. Lastly, a long-short-
term memory model based on an encoder-decoder architecture is
utilized for photovoltaic output prediction.

In a similar vein, reference (QIAO et al., 2021) presents a short-
term power prediction method for grid-distributed power stations,
focusing on areas with limited territory coverage. This method
partitions a larger region into smaller grids and selects
comparable days for the entire region based on curve feature
distances to mitigate distortion in individual grid data.
Ultimately, a three-dimensional convolutional neural network is
employed to establish a mapping relationship between grid
irradiation prediction and grid photovoltaic power output.
Incorporating temporal adjustments to meteorological data,
reference (Chen et al., 2022) proposes a hybrid prediction
method. This approach utilizes an optimized time shift to rectify
meteorological data in the prediction model. On a different note,
reference (Si et al., 2021) introduces a novel satellite image-based
strategy for photovoltaic power forecasting. Addressing the
limitations of infrequent satellite image updates and significant
changes in cloud coverage, a non-linear cloud motion prediction
model is devised for hourly imagery changes. In reference (Yu et al.,
2020), a photovoltaic power generation forecasting model is put
forth, incorporating a cloud cover prediction network trained using
satellite imagery. Additionally, the proposed model integrates
convolutional self-attention to effectively capture historical
features, thereby extracting valuable insights from weather
forecasts. Meanwhile, in reference (Son et al., 2022), an artificial
neural network (ANN) model is employed for data performance
evaluation, predicting cloud cover, visible light images, infrared
images, and combinations thereof, using consistent
hyperparameters or settings. Lastly, reference (Cheng et al., 2021)
introduces an ultra-short-term photovoltaic power prediction
approach grounded in satellite image data. This method
amalgamates spatio-temporal correlations between multiple
power plants with power and cloud data. Initially, relevant
adjacent power stations are selected via spatio-temporal cross-
correlation analysis. Subsequently, global cloud distribution
information is extracted from satellite imagery and incorporated
as an additional input, along with general meteorological and
electrical data, for training the forecasting model.

Although the aforementioned methods have yielded
commendable predictive outcomes, they all derive predictions
indirectly based on meteorological data near the distributed
photovoltaic power station (Yu et al., 2020; Si et al., 2021), or
directly from predicted satellite cloud images. The prevalent
irradiance prediction techniques centered on satellite cloud
images often encounter the following challenges. Primarily, direct
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prediction of satellite cloud images involves a graphical variable. The
resultant data volume post-conversion is relatively substantial,
demanding significant computational resources for processing.
Secondly, the utilization of spatial correlations among
photovoltaic power plants across different regions for prediction
is a common practice. While these predominant techniques may
yield certain predictive capabilities, they disregard the time-varying
dynamics between centralized and distributed photovoltaic power
plants situated in akin locations. Consequently, the predictive
efficacy remains insufficient to fulfill the requisite accuracy
standards for load control within the emergent power system
(Son et al., 2022). Among these considerations, the shading
effects of clouds on irradiance emerge as the pivotal determinant
influencing the time-varying output of distributed photovoltaic
power plants. Distinct cloud layers’ shading effects
predominantly manifest through varying thicknesses and types.
Consequently, for an accurate depiction of cloud shading effects,
precise prediction of cloud layer thickness and type attributes
becomes indispensable.

Hence, this paper introduces a novel approach for forecasting
distributed photovoltaic power plant outputs, leveraging DC-GAN
and satellite cloud image video frames. The methodology
encompasses several key steps. Firstly, historical satellite cloud
image data related to distributed photovoltaic power plants in a
designated locale is procured from publicly accessible
meteorological data repositories. Subsequently, the cloud images’
shading characteristics at different time intervals are extracted to
derive irradiance implications. Employing the DC-GAN network,
the forthcoming short-term cloud shading effects are predicted,
utilizing the shading characteristics of cloud images at different
temporal snapshots as model input. Ultimately, by integrating
centralized photovoltaic power plant irradiance data, the spatial
relationship between centralized and distributed photovoltaic power
plants, and the anticipated short-term cloud shading traits, a
predictive model for distributed photovoltaic power output is
constructed, employing a CNN-LSTM architecture as its
structural framework. The efficacy of the proposed methodology
is corroborated through its application to photovoltaic power plant
data obtained from a specific region in Yongzhou City, Hunan
Province, China. Experimental results underscore the capacity of
this approach to not only optimize computational resources but also
capitalize on the spatial interconnections among photovoltaic power
plants, thereby enhancing the prediction accuracy of distributed
photovoltaic power outputs. In summary, the key contributions of
this study can be succinctly outlined as follows.

(1) The method proposed in this research effectively enhances the
accuracy of output prediction for distributed photovoltaic
power plants.

(2) A novel approach for predicting satellite cloud images is
introduced, leveraging the DC-GAN neural network.

(3) The method delineated in this study offers comparatively
precise irradiance data for distributed photovoltaic power
plants.

The subsequent sections of this research are structured as
follows: In Section 2, we expound on the method of irradiance
shading feature extraction predicated on satellite cloud images for

the location of the distributed photovoltaic power station. Section 3
outlines the approach to predicting irradiance shading features
utilizing the DC-GAN model. Section 4 elucidates the technique
for irradiance and output prediction of distributed photovoltaic
power plants employing neural networks. Furthermore, in Section 5,
the effectiveness of the proposed method is validated through an
analysis of real-world cases.

In the study of the shading effect of clouds on irradiance, it has
been found that the shading effect of clouds on irradiance mainly
depends on two feature dimensions: cloud thickness and cloud type.
Therefore, in order to obtain relatively accurate values of irradiance
at the location of distributed photovoltaics, it is necessary to
accurately predict the thickness and type of clouds at that location.

1.1 Preprocessing of cloud data

Given that satellite cloud images are captured from elevated
angles by satellites, they inherently encompass information beyond
cloud formations, including ground features. To obtain relatively
unadulterated cloud-related information, a background removal
procedure becomes imperative for the original satellite cloud images.

Prior to commencing the background removal procedure,
standardization of the cloud images is necessary. Satellite cloud
images consist of matrices with varying pixel intensities, where each
pixel’s value is intricately linked to the elevation and angle of
incident sunlight. The computation for determining the intensity
of each pixel within the matrix can be formulated as follows:

pi,j � Kρ sin α( )A (1)

In the formula, K represents the solar constant, ρ represents the
reflectivity, α represents the solar altitude angle, and pi,j represents
the pixel intensity at coordinate (i, j) in the cloud image (Cheng
et al., 2021). After standardization, the formula to calculate the
intensity of each pixel at each coordinate is:

�pi,j �
pi,j −min pi,j( )

max pi,j( ) −min pi,j( ) (2)

In the formula, min(pi,j) and max(pi,j) represent the minimum
and maximum values of pixel intensities in the cloud image,
respectively. After standardizing each pixel value in the satellite
cloud image, the original image is transformed into a grayscale
image with pixel intensities ranging from 0 to 255.

Considering that the proximity between sunlight and cloud
positions is considerably shorter compared to the distance
between sunlight and the ground, pixel values within the cloud
image tend to be higher at cloud locations than at non-cloud areas.
Essentially, the minimum pixel value within the image signifies the
ground. In order to eliminate comprehensive ground information
from the cloud image, it is imperative to acquire satellite cloud
images captured at various time intervals within the identical
latitude and longitude range.

First, the satellite cloud images taken at different times within
the same latitude and longitude range are obtained from the
database of the “Fengyun-4” satellite data platform, and the
cloud images at different times are numbered. In this study, we
extracted a set of satellite cloud images taken at different times
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during the day from 8 a.m. to 8 p.m. as the research object. The
expression of the pixel matrix of the standardized original cloud
image is:

~P
v,w � ~pv,w

i,j( )
n×n

�
~pv,w
1,1

~pv,w
1,2 / ~pv,w

1,n
~pv,w
2,1

~pv,w
2,2 / ~pv,w

2,n

..

. ..
. ..

.

~pv,w
n,1

~pv,w
n,2 / ~pv,w

n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

In the expression, n represents the current number of the cloud
image, v represents the total number of cloud images in the cloud
image set, and w represents the dimensions of the cloud image pixel
matrix.

The expression for the ground pixel matrix is obtained by cross-
calculating the pixel values of the satellite cloud images taken at
different times:

~P
v,ground � ~pv,gound

i,j( )
n×n

�
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w

~pv,w
1,1 min

w
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1,2 / min
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w
~pv,w
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w
~pv,w
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. ..

.

min
w

~pv,w
n,1 min

w
~pv,w
n,2 / min

w
~pv,w
n,n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

Therefore, after standardizing and removing the ground
information, the pixel expression of the satellite cloud image is:

~P
v,w,final � ~P

v,w − ~P
v,ground

(5)

Here, ~P
v,w,final

represents the final pixel matrix obtained after
processing the w times satellite cloud image.

The results of the processing procedure are shown in Figure 1.

1.2 Cloud type feature extraction

Following the preprocessing steps, we attain satellite cloud
images from which distributed photovoltaic locations and
ground-related data have been extracted. To extract shading
characteristics across distinct positions within the cloud image,
additional processing steps are requisite.

The thickness and classification of the cloud layer constitute
critical parameters for deducing shading attributes. Given that
satellites are positioned above cloud formations, thicker clouds
tend to reflect a greater amount of sunlight, thereby resulting in
higher brightness levels within the cloud image. As pixel values in
the cloud image are directly correlated with brightness, the thickness
of the cloud layer can be inferred from the pixel values.

To determine the cloud thickness at the site of the distributed
photovoltaic power station, the initial step involves conducting
grayscale manipulation on the original satellite cloud image. In
this study, the average method for grayscale computation is
employed. The formula for this calculation is as follows:

Gray i,j( ) � Rij + Gij + Bij( )/3 (6)

Among them, represent the Gray(i,j) value of point (i, j),
Rij, Gij, Bij represent the R value, G value and B value of the
point respectively.

Moreover, the acquisition of cloud layer type information is
imperative. In the satellite datasets originating from China’s FY-4
meteorological satellite platform, cloud type data from historical
meteorological cloud images can be directly retrieved. These cloud
types encompass categories such as “warm water clouds,”
“supercooled water clouds,” “mixed clouds,” “thick ice clouds,”
“cirrus clouds,” and “multilayered clouds.” Distinct cloud types
impart varying shading effects on sunlight. Within this data
platform, diverse cloud types are distinguished by distinct colors
within the cloud image. Once the cloud type image data from
different historical moments is obtained, subsequent processing
steps are required to extract the pertinent cloud type data.

An alternative image representation, known as HSV (Hue,
Saturation, and Value), adeptly captures the inherent cloud type
attributes within the image. Consequently, prior to computing the
cloud layer thickness, the original satellite cloud image must be
transformed into the HSV format through the applicable conversion
formula:

H �

0 max � min( )
60 ×

G − B

max −min
max � R, G≥B( )

60 ×
G − B

max −min
+ 360 max � R, G<B( )

60 ×
B − R

max −min
+ 120 max � G( )

60 ×
R − G

max −min
+ 240 max � B( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(7)

FIGURE 1
Satellite cloud image preprocessing process.
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S � max −min( )/max (8)
V � max R, G, B( ) (9)

Here, max = max (R, G, B), min = min (R, G, B). H represents
the hue of the image, S represents the saturation, and V
represents the brightness (Zheng et al., 2018). The V
component presents the original brightness level at each
position, in other words, the color brightness level feature,
which corresponds to the interval [0,1]. If the color contains
light source color information, the brightness value is related to
the luminance of the light source.

The threshold segmentation model is used to divide the
“ground-removed” cloud image into different thickness regions.
According to the clear-sky theory, the transmittance coefficient at
positions not covered by cloud clusters is set to 1, and the projection
coefficient is inversely proportional to the thickness of the cloud
cluster. The transmittance matrix Tn of the same size as the cloud
pixel matrix is obtained, denoted as n × n.

Therefore, the formula for calculating the shading feature of the
cloud layer based on the color feature of the cloud layer type in this
public data platform can be expressed as follows:

ζ � Tr VTT[ ]∑a
i�1
∑b
j�1
vij

× δ (10)

Here, vij represents the V value of the pixel at coordinate (i, j)in
the cloud image, and δn represents the clear-sky correction
coefficient (Gu et al., 2021). Then at the current moment, the
shading characteristics at the location of the distributed
photovoltaic can be expressed as:

Iij � Grayij, ζ ij( ) (11)

As time progresses, clouds at distinct locations will manifest
specific dynamic traits, illustrating a process of change depicted in
Figure 2.

In the illustration, red designates the Sun’s position, yellow
squares denote photovoltaic power plants situated at varying
locations, and the white portion represents the cloud layer.
Figure 2A–C illustrate the cloud cover effects at different
positions during time instances t0, t1, and t2, correspondingly.
The overarching changes throughout the process are depicted in
Figure 2D. The varying masking attributes at distinct positions and
times can be articulated using Formula (12). Each time point t’s
masking attributes are delineated by Formula (11), encompassing
both gray and the aforementioned attributes. In the ensuing section,
these masking characteristics at divergent times and positions serve
as time series inputs within the forecasting model, facilitating the
computation of masking features for forthcoming time instances.

2 Prediction of shading characteristics
based on satellite cloud images

2.1 Shading feature prediction model

The thickness and shape of the cloud layer are the main factors
affecting the shading effect of the cloud layer on solar irradiance, and
the thickness and shape characteristics of the cloud layer change
over time. In order to obtain accurate predictions of distributed
photovoltaic output, it is necessary to effectively predict the cloud
layer over a short period of time.

FIGURE 2
Schematic diagram of extracting cloud image masking features. (A) t0, (B) t1, (C) t2 and (D) t3.
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Given the dynamic alterations inherent in satellite cloud images,
it becomes possible to amalgamate thickness attributes with cloud
types, thereby constructing a three-dimensional matrix
encapsulating shading features. The three-dimensional matrices
established across distinct historical moments can then serve as
historical shading sequences, enabling the prediction of forthcoming
shading characteristics at future instances.

The three-dimensional shading characteristics can be
represented as:

I � x, y, g, h, t( ) (12)
Here, x and y respectively indicate the latitude and longitude of

the distributed photovoltaic installation location, g represents the
pixel value of the cloud layer at that moment and location, h
represents the type of cloud layer generated at that moment and
location, and t represents the time.

Owing to its varying dynamics across different time points, the
dataset can be conceptualized as an aggregation of satellite cloud
image video frames exhibiting distinct temporal attributes. Within
the domain of video frame prediction models, Graph Convolutional
Networks (GCN) have demonstrated effective predictive
capabilities. Given the three-dimensional nature of the data
across disparate moments, to ensure a dependable three-
dimensional graphical prediction outcome, enhancements are
necessary for the existing GCN network. Building upon this
premise, the current research introduces a DC-GAN prediction
model.

The proposed model amalgamates the functional attributes of
Conv-LSTM, GAN network, and Convolutional Dynamic Neural
Advection (CDNA) modules (de Freitas Viscondi and Alves-Souza,
2019). This fusion not only refines the three-dimensional structural
characteristics within video frames but also enhances the temporal
precision across these frames. The schematic representation of the
prediction model is illustrated in Figure 3.

The model architecture encompasses three primary
components: an encoding network, a generating network, and a
generative adversarial network (GAN). The encoding network is
primarily tasked with feature extraction from the sample sequence.

These extracted features are then utilized as inputs to the generating
network, which aims to rectify the real-time sequence attributes of
the video. The generating module, highlighted within the blue region
in Figure 1, is primarily constituted by multiple layers of
convolutional LSTM and CDNA.

Given that video frame prediction fundamentally entails
sequence prediction, LSTM exhibits commendable predictive
prowess within time series forecasting models. Consequently,
multiple layers of convolutional LSTM are employed for video
frame prediction. However, in practical scenarios employing the
original LSTMmodel for video frame prediction, the preservation of
object structure information across numerous frames and the
accuracy of cloud layer position prediction after multiple frames
prove challenging. To surmount these limitations, CDNA is
introduced to enhance the original convolutional LSTM model.
The abovementioned architecture strives to address these
limitations and achieve improved video frame prediction results.

In the generating network of the model, the computation
function of the GAN (Gu et al., 2021) is:

max
D

V D,G( ) � Ex~pdata? x( ) log D x( )( )[ ]
+ Ez~pz z( ) log 1 −D G z( )( )( )[ ] (13)

Here, x represents the real cloud image, z is the latent space
variable, G is the generating network, and D is the adversarial
network.

TheCDNAmodule is added to the generating network optimization
module. A set of convolutional kernels predicted by CDNA module is
applied to the previous frame image to obtain multiple intermediate
images with the same resolution, and their formula is:

Ĵt x, y( ) � ∑
k∈ −k,k( )ll −k,k( )

∑
m

k, l( )Ît−1 x − k, y − l( ) (14)

Here, (−k, k) represents the range of pixel displacement, x and y
represent the pixel coordinates, and k respectively represent the
displacement distance of the pixel coordinates.

After the optimization with CDNA, the generating network can
effectively improve the difference between the cloud masking

FIGURE 3
Video frame prediction model of network satellite cloud image based on DC-GAN.
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features generated at future time steps and the real masking features,
thereby improving the prediction accuracy of the model.

2.2 Evaluation indicators for prediction
results

To validate the effectiveness of the proposed model for video
frame prediction, the Structural Similarity Index (SSIM) is used as
the evaluation metric.

SSIM has a value range of 0–1, with a larger value indicating a
higher similarity between the predicted and real frames, which
indicates better prediction performance of the model (Zhang
et al., 2020). The SSIM formula is based on three comparison
measures between samples X and Y, namely, luminance, contrast,
and structure. The calculation formulas are represented as follows:

l x, y( ) � 2μxμy + c1

μ2x + μ2y + c1

c x, y( ) � 2σxσy + c2
σ2x + σ2y + c2

s x, y( ) � σxy + c3
σxσy + c3

c3 � c2/2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(15)

In the formula, μx represents the mean of x, μy represents the
mean of y, σ2x represents the variance of x, σ

2
y represents the variance

of y. σxy represents the covariance between x and y. c1 � (k1L)2 and
c2 � (k2L)2 are constants, where L is the pixel value range, k1 � 0.01
and k2 � 0.03 are default values. Based on this, the calculation
formula for the structural similarity between video frame X and
predicted frame Y is:

SSIM x, y( ) � l x, y( )α · c x, y( )β · s x, y( )γ[ ] (16)

If α, β, γ is set to 1, then the SSIM calculation formula becomes:

SSIM x, y( ) � 2μxμy + c1( ) 2σxy + c2( )
μ2x + μ2y + c1( ) σ2x + σ2y + c2( ) (17)

3 Distributed photovoltaic irradiance
and power output prediction

Building upon the outlined steps, the shading characteristics
pertinent to the distributed photovoltaic system can be derived. To
progress beyond and acquire irradiance and output data for the
distributed photovoltaic system, the establishment of a robust
prediction model becomes imperative.

In forecasting the irradiance of the distributed photovoltaic
system, owing to the temporal correlation inherent in the cloud
shading attributes at its location and the spatial correlation with
irradiance data from neighboring centralized photovoltaic systems, a
prediction model can be formulated grounded in the temporal traits
of adjacent centralized photovoltaic system irradiance data and
cloud shading characteristics. As for projecting the output of the
distributed photovoltaic system, given its time-series nature tightly

linked with variables such as irradiance, temperature, photovoltaic
capacity, and others, a prediction model akin to the irradiance
prediction model can be employed.

In the domain of time-series prediction, Long Short-Term
Memory (LSTM) networks possess exceptional prowess in
generating sequential outputs and predictions, and they have
garnered widespread application in recent years. For the
prediction model’s data preprocessing, the irradiance data derived
from cloud maps requires transformation into time-series data.
Moreover, variables like temperature, humidity, wind speed,
precipitation, and barometric pressure, which influence
photovoltaic output, necessitate consideration. Convolutional
Neural Networks (CNNs) are adept at extracting features and
can be employed to extract cloud map-based irradiance data and
process other relevant variables impacting photovoltaic output. In
the central component of the output prediction model, a multilayer
LSTM network is deployed to fulfill the output prediction task. The
architectural representation of the distributed photovoltaic system’s
irradiance and output prediction models is delineated in Figure 4.

4 Case study

4.1 The simulation data of experiment

To validate the effectiveness of the proposed method, the
experimental section selects photovoltaic data from Jianghua Yao
Autonomous County, Yongzhou City, Hunan Province as the
research object. The basic information of the photovoltaic power
plants in the region is shown in Table 1. Among them, the Zhugu Ba
Photovoltaic Power Station (No. 4) is considered as a nearby
centralized photovoltaic power station, and the rest are
considered as distributed photovoltaic power stations.

Due to the sampling frequency of the power output data in the
photovoltaic power station being 15 min per data point, while the
irradiance data being 5 min per data point, downsampling of the
irradiance data is required to maintain consistency between the two
frequencies. After downsampling, the sampling frequency of both
the photovoltaic output data and irradiance data is 15 min per data
point.

The prediction part of the experiment is divided into two parts:
irradiance prediction and photovoltaic output prediction for
distributed photovoltaic power stations. The prediction results
are evaluated using Mean Absolute Error (MAE), Root Mean
Square Error (RMSE) Mean Absolute Percentage Error (MAPE)
and R2 ( Coefficient of Determination, R2) as evaluation metrics
(Kong et al., 2019). The calculation formulas for these metrics are as
follows:

eMAE � 1
N

∑T+N
t�T+1

αst − α̂st
∣∣∣∣ ∣∣∣∣ (18)

eRMSE �

��������������
1
N

∑T+N
t�T+1

αst − α̂st( )2√√
(19)

eMAPE � 1
n
∑N
t�1

ast − âst
ast

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (20)
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eR2 � 1 −
∑N
t�1

ast − âst( )2
∑N
t�1

ast − �ast)2( (21)

In irradiance prediction, ast � zst represents the actual value of
irradiance, and a

�s
t � z

�s
t represents the predicted value of irradiance.

In photovoltaic output prediction, ast � ps
t represents the actual

output value, and a
�s
t � p

�s

t represents the predicted output value.

4.2 Simulation environment and important
parameters setting

The software in the experimental platform of this research is
built based on TensorFlow and PyTorch in the python language, and
the hardware platform is built with Intel Core i5-10210 (CPU) and
NVIDIA GeForce GTX 1660 Ti (GPU).

In the prediction of cloud cover characteristics, a graph-based
prediction model is used, and the graph is converted into
corresponding matrix parameters after data preprocessing. The
size of the input frame of the transformed data is a matrix of
64 × 64. The network is composed of 3 convolutional layers, the
convolution stride is 2, and the last convolutional layer is an average
pooling layer, which is standardized using Instance Normalization
(IN), using Leaky ReLU as the activation function, and the output is
a set of matrix 8 × 8. The first half of the generation network uses
1 ordinary convolutional layer combined with 4 ConvLSTM layers
to form a 5-layer downsampling module, in which the convolution
stride of the first, second, and fourth layers is 2, and the stride of the

remaining 2 layers is 1. The activation function of the first 4 layers is
ReLU, the activation function of the last layer is Sigmoid, and the
convolution kernel size of each layer is 5 × 5. The CDNA module
consists of a three-layer fully connected network, which inputs a
feature map of 3 × 8 × 8 pixels, outputs 10 one-dimensional vectors
with a length of 25, and shapes them into a 5 × 5 convolution kernel.
The important hyperparameters of the model can be found in
Table 2.

In the photovoltaic output forecast, the input variables include
satellite cloud image shading features (2-dimensional), historical
output, temperature, moderate, wind speed, precipitation, air
pressure, which are 8-dimensional time series. Therefore, the
input of the model is a vector of 8 × 64, the input parameter of
the input layer is 8 × 64, the size of the convolution sum in the
convolution layer is set to 3 × 3, the number of convolution sums is
5, the sliding step is 2, and the edge filling adopts 0 value. LSTM
adopts a unidirectional 3-layer structure.

4.3 Evaluation indicators for prediction
results

To verify the effectiveness of the proposed irradiance prediction
method based on DC-GAN using satellite cloud map video frames,

FIGURE 4
Distributed photovoltaic output forecast flow chart.

TABLE 1 Basic information of photovoltaic power station.

Number Power
station

Longitude and latitude Capacity

1 Yanghuatian (111.593,682, 25.212,556) 9.58

2 Xiajiang (111.501,536, 25.284,239) 6.37

3 Hongtang (111.529,212, 25.247,724) 4.96

4 Zhegu Dam (111.637,023,25.127,522) 4.11

TABLE 2 Masking feature prediction model related parameters.

Structure Power station Stride Activation function

Conv Layer Conv 1 2 ReLU

Conv 2 2 ReLU

Conv 3 2 ReLU

Average pooling layer

Generate network Conv 1 1 ReLU

ConvLSTM 1 2 ReLU

. . .. . . 2 ReLU

ConvLSTM 4 2 Sigmoid

CDNA Fully connected layer
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real irradiance data was used as the benchmark to compare with
NWP irradiance data and the irradiance data calculated in this
research. Additionally, the accuracy of irradiance prediction under
different weather conditions was also taken into consideration. To
accomplish this, historical irradiance data under sunny, light rain,
overcast, and cloudy conditions were extracted for the region during
2021. The irradiance data during the sunny period was from
13 February 2021 7:00 to 15 February 2021 19:00. The data
during the change from light rain to overcast to cloudy weather
conditions was from 10 February 2021 7:00 to 12 February
2021 19:00.

Before evaluating the accuracy of irradiance prediction, an
evaluation of the prediction results based on satellite cloud map
video frames was necessary. Asmentioned in the research, Structural
Similarity Index (SSIM) was used as the evaluation metric for the
prediction results of video frames. Because the SSIM of the
prediction results for different video frames at different times is

not the same, the average prediction error of the video frames within
a 4-h period under different weather conditions was used as the
evaluation metric. The average SSIM of cloud map video frame
predictions during different time periods are shown in Table 3.

From Table 2, it can be seen that the average SSIM of video
frame predictions based on satellite cloud map shading features is
above 0.86, which achieves the ideal prediction result.

After completing the prediction of video frames based on the
shading features, future satellite cloud maps were obtained. The
proposed method in this research was then applied to calculate the
future irradiance based on the cloud maps. To avoid unreliable
calculation results caused by large errors in the irradiance data of
individual photovoltaic power stations, the average irradiance data
of the three power stations mentioned above were used as the
evaluation metric. The irradiance prediction curves under
different weather conditions are shown in Figure 5.

From Figure 5A, it can be seen that under sunny conditions, the
irradiance prediction results based on DC-GAN and satellite cloud
map and NWP are both close to the real irradiance curve. Table 4
details the MAE and RMSE values of the irradiance results obtained
from different methods.

From Figure 5B, it can be seen that under continuously changing
weather conditions, the method proposed in this research is closer to
the real irradiance curve compared to NWP. Table 5 records the
average irradiance error results for different power stations under
sunny conditions.

From the table, it can be seen that under light rain and overcast
conditions, the method proposed in this research and the NWP-
based irradiance values have relatively small errors. However, under
cloudy weather conditions, although both the method proposed in
this research and the NWP-based irradiance calculation results have
large errors, the method proposed in this research is closer to the real
irradiance data compared to NWP.

4.4 Evaluation indicators for prediction
results

Based on the irradiance calculation results mentioned above, the
method proposed in Section 3 is used to predict the power output of
distributed photovoltaic systems. The main purpose of the power
prediction part is to verify the effectiveness of the proposed
irradiance calculation method based on satellite cloud maps.
Therefore, this experiment only compares the real load data with
the prediction method proposed in this research.

In the realm of photovoltaic power prediction research,
prevailing methodologies often revolve around weather-power
time series features. Among the array of deep learning
techniques, the LSTM neural network has demonstrated superior
predictive capabilities within the context of time series forecasting.
In recent times, the LSTM-based Bi-LSTM neural network and
CNN-LSTM neural network models have emerged as benchmark
frameworks, employed to gauge and compare prediction
effectiveness across various models. Therefore, this study employs
the Bi-LSTM and CNN-LSTM neural network models as
benchmark references for performance evaluation and
comparison purposes.

TABLE 3 Prediction error results of irradiance under different meteorological
conditions.

Meteorological conditions 4-h average SSIM

Sunny 0.88

Light Rain 0.86

Clear day 0.86

Cloudy 0.92

FIGURE 5
Comparison of irradiance prediction results.
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In this prediction model, 80% of the dataset is used as the
training set and 20% is used as the test set. The time period of the
dataset is from 29 January 2021, to 15 February 2021.

Since the main influencing factor of photovoltaic output is the
irradiance data, the output data of a photovoltaic power station can
be used for verification. In this research, the output data of
Huayangtian distributed power station, which has the largest
capacity, is used for calculation under sunny weather conditions,
and the results of the distributed photovoltaic output are shown in
Figure 6.

From the figure, it can be seen that under sunny weather
conditions, the distributed photovoltaic output prediction results
proposed in this research are close to the real photovoltaic output
results, with an MAE value of 0.25WM and an RMSE value of
0.43WM. Figure 7 shows the predicted and real power output curves

of Huayangtian meteorological station under cloudy weather
conditions.

In the figure, it can be seen that under cloudy weather
conditions, the photovoltaic output fluctuates significantly,
with larger MAE and RMSE values than under sunny weather
conditions. However, the trend of the proposed prediction results
is basically consistent with the trend of the real photovoltaic
output. Under extreme weather conditions, the method proposed
in this research can provide reliable photovoltaic output
prediction data.

To facilitate a comprehensive assessment of the efficacy of the
proposed approach, an extensive analysis has been conducted. In
addition to the accuracy of photovoltaic power prediction, the study
also delves into the comparative evaluation of method robustness
and computational efficiency.

TABLE 4 Irradiance error results of different power stations.

Power plant Model MAE RMSE MAPE (%) R2

Yanghuatian NWP 87.41 90.53 7.2 0.74

DC-GAN + Cloud Image 70.6 85.6 5.3 0.80

Xiajiang NWP 85.8 92.3 6.8 0.70

DC-GAN + Cloud Image 68.9 87.9 5.5 0.79

Hongtang NWP 88.6 96.3 7.1 0.73

DC-GAN + Cloud Image 71.5 89.2 5.5 0.79

TABLE 5 Prediction error results of irradiance under different meteorological conditions.

Meteorological condition Model MAE RMSE MAPE (%) R2

Light rain NWP 102.3 130.6 7.8 0.76

DC-GAN + Cloud Image 89.6 100.2 5.1 0.82

Clear day NWP 106.2 140.65 7.1 0.73

DC-GAN + Cloud Image 86.62 100.36 5.1 0.83

Cloudy NWP 120.36 150.48 7.5 0.74

DC-GAN + Cloud Image 112.8 120.56 5.4 0.81

FIGURE 6
Output forecast results under sunny weather conditions.

FIGURE 7
Output forecast results under cloudy weather conditions.
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The analysis of method stability encompasses the utilization of
two key metrics: cross-validation and outlier detection. By
employing these indicators, the stability of the model can be
accurately gauged. In terms of computational efficiency, the
comparison is based on uniform datasets and identical network
layer configurations. To ensure consistency, the same software and
hardware computing platforms are employed to measure the
computational time required for diverse iterations.

In the context of the stability comparative analysis, this study
employs the 5-fold cross-validation methodology for verification
and examination. In this technique, the dataset is partitioned into
five distinct subsets. During each round of validation, one of the five
subsets is designated as the validation set, while the remaining four
subsets form the training set. Subsequently, the model is trained
using the training set and evaluated using the validation set. The
performance evaluation is carried out using metrics such as mean
squared error (MSE) and accuracy, with these evaluations conducted
after each validation round. As a result, five sets of performance
evaluation results are generated, facilitating the analysis of the
stability and generalization capabilities of diverse prediction models.

Table 6 provides an overview of the MSE and accuracy scores
derived from the prediction outcomes during various verification
rounds in the context of five-fold cross-validation for different
prediction models.

Furthermore, the computational resources demanded by a
model constitute a pivotal criterion for assessing its performance.
To comprehensively evaluate the computational efficiency of the
model presented in this study, a simulation analysis experiment was
conducted on a consistent simulation platform. In this experiment,
the computation times of various methods were juxtaposed and
examined. The outcomes are elucidated in Table 7 below.

The results reveal that among the various models, LSTM exhibits
the shortest computation time, followed by DC-GAN, and then Bi-
LSTM and CNN-LSTM. This disparity can be attributed to the
distinctive nature of the LSTM network structure, which entails

fewer layers and thereby contributes to the shortest calculation time.
In contrast, Bi-LSTM incurs nearly twice the calculation time as
compared to LSTM, primarily due to the incorporation of an
additional orientation layer within the Bi-LSTM network.

When compared to Bi-LSTM, the calculation time for the CNN-
LSTM model is prolonged. This elongation is a consequence of the
more intricate network structure inherent in the CNN-LSTMmodel,
encompassing both generation and adversarial networks within the
DC-GAN architecture. Notwithstanding the complexity, DC-GAN’s
calculation time is comparatively shorter than that of Bi-LSTM and
CNN-LSTM networks. This highlights an enhancement in
calculation efficiency achieved by the proposed DC-GAN
approach as opposed to the other benchmarked models.

5 Conclusion

In order to address the issue that distributed photovoltaic power
stations do not have reliable meteorological information for accurate
output prediction, this research proposes a distributed photovoltaic
output predictionmethod based on satellite cloudmap video frames.

In the irradiance prediction stage of distributed photovoltaic
power stations, video frames are established based on the shading
characteristics of cloud maps at different time periods. Then, a
prediction model DC-GAN is established to predict the shading
effect of future short-term cloud map shading characteristics, using
the dynamic changes of satellite cloud map shading characteristics at
past time periods as the input to the model to obtain the shading
effect of the distributed photovoltaic power station at its location in

TABLE 6 MSE value and accuracy of different prediction models in cross-validation.

Fold Index LSTM Bi-LSTM CNN-LSTM DC-GAN

1

MSE

0.128 0.0285 0.0236 0.0135

2 0.146 0.0357 0.0277 0.0145

3 0.167 0.0255 0.0215 0.0112

4 0.175 0.0415 0.0271 0.0139

5 0.195 0.0255 0.0224 0.0128

Avg 0.1622 0.03134 0.02446 0.01318

1

Accuracy

0.798 0.927 0.935 0.987

2 0.766 0.903 0.928 0.935

3 0.811 0.918 0.928 0.977

4 0.808 0.911 0.915 0.929

5 0.783 0.917 0.929 0.946

Avg 0.7932 0.9152 0.927 0.9548

Evidently, across all rounds of verification, the photovoltaic power prediction technique DC-GAN, introduced in this study consistently demonstrates exceptional performance. Consequently, it

is reasonable to assert that when juxtaposed against alternative prediction models, the methodology outlined in this research exhibits remarkable stability and robustness.

TABLE 7 The time required for different model simulations.

Model LSTM Bi-LSTM CNN-LSTM DC-GAN

Calculation time(s) 165 313 270 247
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the near future. Then, the CNN-LSTM prediction model is used in
combination with the spatial correlation of centralized photovoltaic
power stations to obtain irradiance data for the distributed
photovoltaic power station at its location in the near future.

In the distributed photovoltaic output prediction stage, the CNN
network is first used to extract irradiance features from future short-
term satellite cloud maps, and then a multi-layer photovoltaic
output prediction model based on LSTM is established. The
irradiance information from different locations, as well as
temperature, humidity, wind speed, precipitation, and other
information, are used as input sequences of the prediction model
to obtain output prediction data for the distributed photovoltaic
power station in the near future.

In the experiment section, the calculated irradiance data are
compared with the irradiance data based on NWP information and
real irradiance data to verify the accuracy and reliability of the
proposed method for distributed photovoltaic irradiance
calculation. A CNN-LSTM neural network-based distributed
photovoltaic output prediction model is proposed based on the
characteristics of the distributed photovoltaic irradiance calculation
results. The results show that the model can provide effective
distributed photovoltaic output prediction values and provide
data support for the operation and management of distributed
photovoltaic power stations.

The change of cloud cover in cloudy or rainy weather conditions
is more varied and rapid than in clear sky conditions. In addition,
when there is rainfall, the changes of temperature and humidity are
relatively obvious, and the time resolution of temperature and
humidity data in NWP data is relatively low, so there will be
relatively large errors in prediction. In the comparative analysis
of other methods, there are also cases of cloudy or rainy days with
large errors. The advantage of the method proposed in this paper is
that compared with other models, its calculation accuracy is
relatively high, and the utilization of computing resources and
computing efficiency have been improved to a certain extent
compared with other algorithms. In the follow-up research, we
can try to increase the sampling density of satellite cloud images,
and use the interpolation method to increase the data sampling rate
while maximizing the density of public data platforms, so as to
capture the changes of cloud images more accurately.
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