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The daily output of wind power is inversely proportional to the load demand in most
situations, which will lead to an increase in peak-to-valley difference and fluctuation.
To solve this problem, this study proposes a long short-term memory
prediction–correction-based multi-timescale optimal control strategy for energy
storage. First, the proposed strategy performs a long short-term memory (LSTM)
prediction on the power of wind power and load. Then, it establishes a predictive
planning model to improve the effect of peak shaving and the operating income of
energy storage. Finally, it uses themethod of online correction of power lines for peak
shaving to further optimize the energy storage power according to the error between
the residual energy of energy storage and the planned residual energy in the actual
peak shaving process. By comparing with traditional strategies, the proposed strategy
is found to be significantly better than the constant power strategy and the power
difference strategy in the peak shaving effect and operating income.
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1 Introduction

In light of China’s ongoing modernization process, energy has been a major concern. In
the current scenario, new energy sources have experienced substantial growth, characterized
by their unpredictable and volatile output patterns. As the penetration rate of new energy
increases, the influence of wind power further exacerbates the difference between peak and
off-peak periods in the system net load. Consequently, numerous scholars have conducted
research on the accurate prediction of renewable energy output characteristics and
implementing effective peak-cutting and valley-filling strategies.

1.1 Related works

The use of energy storage for peak shaving is one of the current research hotspots at
home and abroad. Li et al. (2022) proposed a distributed battery energy storage station
optimal scheduling model that considers the movement of peak loads, which can enhance
the voltage distribution of the distribution network. Wei et al. (2022) proposed an economic
optimization method for depth peak regulation and the depth of the emergency of the energy
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storage (ES) accident on the demand side. Engels et al. (2020)
proposed a peak shaving strategy for coordinated control of
multiple batteries with the goal of net profit. Shiwei et al. (2020)
established a flexible resource optimization allocation model aiming
at economic optimization. This model combines the transformation
of thermal power units, energy storage, and the characteristics of the
load-side demand response. Guo et al. (2021) proposed a
comprehensive collaborative optimization framework to schedule
distributed power sources and batteries for peak shaving with the
goal of minimizing operating costs. Energy storage plays a vital role
in enhancing grid flexibility and maintaining a balance between the
supply and demand. The ability to anticipate and fulfill peaks and
troughs in demand by adjusting generation levels in a timely manner
is crucial. With the growing utilization of intermittent wind and
solar electricity, higher capacities of energy storage are necessary to
ensure grid flexibility, grid stability, and effective management of the
intermittent nature of these energy sources (Górski, 2022; Menniti
et al., 2022).

On the other hand, relevant researchers have proposed using
dynamic programming or optimization algorithms to find the
optimal solution for the energy storage output (Ahmed et al.,
2022; Zhang et al., 2020; Dayarathna et al., 2022; Colonetti et al.,
2023), relying on the predicted net load to formulate the output plan
of the energy storage for the next day (Riffonneau et al., 2011; Rowe
et al., 2014; Jing et al., 2015; Kodaira et al., 2020). Hwang et al. (2020)
carried out load prediction based on deep learning and formulated
an optimal control strategy for peak shaving based on cost
minimization. Zheng et al. (2018) proposed a two-layer
scheduling strategy based on prediction and correction, aiming at
improving profits to peak shaving. Bennett et al. (2015) proposed an
online control algorithm based on load prediction to reduce the
impact of prediction error.

1.2 Contribution

The majority of existing literature predominantly emphasizes
only one of the impact of prediction error, the effect of peak shaving
or the economic benefits. In this paper, we aim to fill this gap by
considering multiple factors to provide a more comprehensive
analysis. Thus, it effectively enhances the efficacy of peak shaving
and increases the operating income of lithium batteries.

According to the aforementioned discussions, the main
contributions of this study can be summarized as follows:

• By employing LSTM forecast planning and an online correction
optimization control strategy, we forecast wind power and load
data, ultimately obtaining the predicted net load data.

• Proposal of the predictive planning model, which considers
the peak shaving effect and energy storage operation income
as a goal.

• Proposal of the strategy for online correction of the peak
shaving power line, according to the error between the residual
energy of energy storage and the planned residual energy in
the actual peak shaving process.

• The proposed strategy significantly enhances the effect of peak
cutting and increases the operating earnings of the lithium
battery.

2 LSTM prediction

2.1 The structure of LSTM

The long short-term memory (LSTM) network is a special kind
of recurrent neural network (RNN). Compared with RNNs with
long-term dependence problems, LSTM shows a structure of the cell
state, and this cell state can be modified by the input gate, the output
gate, and the forgetting gate to realize the long-term storage of state
information. LSTM is suitable for dealing with highly time series-
related problems, such as wind power prediction (Wang et al., 2019).
Supplementary Figure S1 shows its basic structure.

Forgetting gate nk can read the entered information of mk-1 and
xk and then selectively retain or delete some information of ck-1 using
the sigmoid function; their functional relationship is shown in
formula (1). The candidate value of cell state ~ck and input gate ek
can update the last cell state, for which the formulas are shown in (2).
The output mk of the current LSTM can be calculated by the output
gate ok, for which the formulas are shown in (3):

nk � σ an · mk−1, xk[ ] + dn( ), (1)
ek � σ ae · mk−1, xk[ ] + de( )
~ck � tanm ac · mk−1, xk[ ] + dc( ),
ck � nk ⊙ ck−1 + ek ⊙ ~ck

⎧⎪⎨⎪⎩ (2)

ok � σ ao · mk−1, xk[ ] + do( )
mk � ok ⊙ tanm ck( ){ , (3)

where an, ae, ac, and ao denote the weight values; dn, de, dc, and do
denote the bias values; and ⊙ denotes the Hadamard product.

2.2 Predictive evaluation index

Thefollowingtwoindicatorsareusedtomeasurethepredictioneffect
of LSTM prediction, the formulas of which are shown in (4) and (5):

MAPE � 1
M

∑M
i�1

Preal,t − Ppre,t

Preal,t

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ × 100%, (4)

RMSE �

																	
1
M
∑M
i�1

Preal,t − Ppre,t( )2√√
, (5)

whereM denotes the sample quantity of the prediction dataset; Preal,t
and Ppre,t represent the real value and the predicted value at time t,
respectively;MAPE denotes the main absolute percentage error; and
RMSE denotes the root mean square error.

3 Multi-timescale optimal control
strategy

3.1 Net load prediction

We calculate the predicted net load using Eq. 6:

Pnl,pre,t � Pl,pre,t − Pw,pre,t, (6)
where Pw,pre,t and Pl,pre,t denote the predicted wind power and the
predicted load, respectively, at time t. Pnl,pre,t denotes the predicted
net load.
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3.2 Predictive planning model

We take the sum of the minimum value of the predicted net
load (Pnl,pre,min) and the rated power of energy storage (Pb) as a
valley-filling power line to calculate the planned charging
quantity (Ec,plan) of the energy storage and take the
difference of the maximum value of the predicted net load
(Pnl,pre,max) and the rated power of the lithium battery as the
peak shaving power line to calculate the planned discharging
quantity of the energy storage Ed,plan. The formulas are given as
follows:

Ec,plan � ∫t2

t1

ηc Pnl,pre,min + Pb − Pnl,pre,t( )dt, (7)

Ed,plan � ∫t4

t3

Pnl,pre,t − Pnl,pre,max + Pb[ ]/ηddt, (8)

where t1 and t2 denote the charging periods corresponding
to the intersection of the valley-filling power line and the
predicted net load, respectively; t3 and t4 denote the charging
periods corresponding to the intersection of the peak shaving
power line and the predicted net load, respectively; and ηc
and ηd denote the charging and discharging efficiency,
respectively.

If the planned charging quantity cannot meet the capacity
constraint relationship shown in formula (9), we move the
valley-filling power line downward in steps of ΔP, until the
constraints are met. If the planned discharging quantity cannot
meet the capacity constraint relationship shown in formula (10), we
move the valley-filling power line upward in steps of ΔP, until the
constraints are met.

0< SOC max − SOC min − Ec,plan/Eb < ε0, (9)

0< SOC max − SOC min − Ed,plan/Eb < ε0, (10)
where SOCmax and SOCmin denote the upper and lower limits of
SOC, respectively. Eb denotes the rated capacity; ε0 denotes the
positive number close to 0. The value of ΔP should be set according
to the specific situation.

According to formulas (7) and (8), the basic charging and
discharging time of energy storage can be planned, respectively.
To meet the balance of the charging quantity and the discharging
quantity within the operating day (T), the power of the energy
storage in the remaining inoperative period Ts is planned with the
objective of reducing the fluctuation of the predicted net load and
improving the operation income.

If Ec,plan is greater than Ed,plan, we take the discharging income
(Id) and the maximum of the standard deviation improvement of the
predicted net load (Sd) as the objective function F1. Formula (11) was
used for normalization, and formulas (12) show the results after
normalization:

x*
i �

xi − x min

x max − x min
, (11)

where xi denotes the initial value of the feature sequence; xi* denotes
the normalized feature sequence value; xmin denotes the minimum
value in the feature sequence. xmax denotes the maximum value in
the feature sequence.

Ec,plan − Ed,plan � ∫n

1
ηcPd,tdt, t ∈ Ts

Id* � ∫n

1
Pd,tptdt/∫n

1
Pd,tp maxdt, t ∈ Ts

Sd* � 1 − 1
Snl,pre

																															∑n
t�1,t ∈ Ts

Pnl,pre,t − ηdPd,t − Pnl,pre,av( )2⎡⎢⎣ ⎤⎥⎦/n√√
maxF1

* � Id* + Sd*

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (12)

where pt denotes the electricity price at time t and pmin denotes the
minimum electricity price.

If Ec,plan is less than Ed,plan, we take the charging cost (Ic) and the
minimum of the standard deviation of the predicted net load Sc as
the objective function F2. The following formulas are the results after
normalization:

Ed,plan − Ec,plan � ∫n

1
Pd,t/ηddt, t ∈ Ts

Ic* � ∫n

1
Pc,t · p mindt/∫n

1
Pc,t · ptdt, t ∈ Ts

Sc* � 1
Snl,pre

																														∑n
t�1,t ∈ Ts

Pnl,pre,t + Pc,t − Pnl,pre,av( )2⎡⎢⎣ ⎤⎥⎦/n√√
maxF2

* � Ic* + Sc*

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (13)

where pmax denotes the maximum electricity price; n denotes the
number of time periods in Ts; Snl,pre and Pnl,pre,av denote the power
standard deviation and the average value of the predicted net load,
respectively; Pc,t and Pd,t denote the charging power and the
discharging power to be planned in Ts, respectively.

Because the dimensions of the energy storage operation income
and the load standard deviation are different, it is necessary to
normalize them and then use particle swarm optimization to find the
optimal solution. * represents normalized processing. Particle
swarm optimization is already well-known, and due to reasons of
space, this study will not repeat it.

3.3 Error correction

The prediction error easily leads to the early or delayed action of
energy storage, which affects the output of energy storage. Therefore,
in this study, the peak shaving line is corrected online by comparing
the planned residual energy Eres,pre with the actual residual energy
Eres, real.

Eres,pre � ∫t

0
ηcPc,pre − Pd,pre

ηd
( )dt, (14)

Eres,real � ∫t

0
ηcPc,real − Pd,real

ηd
( )dt, (15)

where Pc,pre and Pd,pre, respectively, denote the planned charging
power and the planned discharge power of energy storage at time t.
Pc,real and Pd,real denote the actual charging power and the actual
discharge power of the energy storage at time t, respectively. The
actual charging and discharging power of the energy storage can be
calculated according to the difference between the planned peaking
power line and the actual net load.
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We calculate the difference of planned residual energy and
actual residual energy, named Es:

Es � Eres,pre − Eres,real. (16)

When Es >ε and if Pb,pre ≤0, the value of the valley-filling power
line increases 5% Pb; otherwise, the value of the peak shaving power
line decreases 5% Pb.

When Es <-ε and if Pb,pre ≤0, the value of the valley-filling power
line decreases 5% Pb; otherwise, the value of the peak shaving power
line increases 5% Pb.

When |Es| ≤ε, it does not change, where ε denotes the
allowable error range of the electric quantity, and the value is
5% of the rated capacity, and Pb,pre denotes the planned power of
energy storage.

3.4 Strategy process

The block diagram of the multi-timescale energy storage
optimization control strategy based on LSTM prediction and
correction is shown in Supplementary Figure S2.

3.5 Constraint conditions

The system power balance constraint is given as follows:

Pg � Pload − Pwind + Pbat, (17)
where Pg denotes the tie-line power, Pwind denotes the grid-
connected power of wind power, Pload denotes the load power,
and Pbat denotes the power of the lithium battery.

The power constraints of energy storage are shown in formula
(18), and the SOC constraints of energy storage are shown in
formula (19):

0≤Pc ≤Pb

0≤Pd ≤Pb
{ , (18)

where Pc and Pd denote the charge and discharge power of energy
storage days, respectively.

SOCt � SOCt−1 + ∫t

t−1 ηcPc,t − Pd,t

ηd
( )dt/Eb

SOC min ≤ SOCt ≤ SOC max

⎧⎪⎪⎨⎪⎪⎩ , (19)

where SOCt denotes the SOC of t time energy storage.

3.6 Evaluation index

The formulas for calculating the peak–valley difference α and the
peak–valley difference rate β are as follows:

α � Pload,max − Pload,min

β � α/Pload,max( ) × 100%
{ , (20)

where Pload,max and Pload,min denote the maximum and minimum
values of the load, respectively.

We calculate the standard deviation S using Eq. 21:

S �

																
1
M
∑M
i�1

Pload,i − Pav( )2,√√
(21)

where Pload,i denotes the load power of the ith sampling point and
Pav denotes the average value of the load curve.

We calculate the operation income I by using Eq. 22:

I � ∑T
t�1

ηd · Pd,t · pt − Pc,t · pt( ). (22)

4 Testing results and discussions

This study verifies the proposed strategy in MATLAB according
to the actual data in a certain place in China and compares it with the
other two strategies. The relevant wind power and load data are
shown in Supplementary Figure S3. The sampling period is Δt =
15 min, and the total daily sampling points are n = 96; Table 1 shows
the relevant parameters of the lithium battery.

4.1 Prediction results of the wind power and
load

The predicted curves and index are shown in Supplementary
Figure S3 and Table 2, respectively. The predicted net load is shown
in Supplementary Figure S4.

Supplementary Figure S3 illustrates that there exists one valley
and two peaks in the typical daily actual load in this area, but the
wind power value is larger in the valley and smaller in the peak.
Therefore, the peak–valley difference of the actual load will increase.
Table 2 indicates that the MAPE of the wind power and load are
3.7% and 0.53%, respectively, and their NRSE values are 0.029 and
0.17 MW, respectively. According to Wang et al. (2019), the
prediction error is within a reasonable range, so the predictive

TABLE 1 Parameters of the lithium battery energy storage.

Parameter Value Parameter Value

Rated power/MW 2 Discharge efficiency/% 0.95

Rated capacity/MW h 10 Max SOC 0.9

Charge efficiency/% 0.95 Min SOC 0.1

TABLE 2 Evaluation index of prediction.

Category MAPE/% RMSE/MW

Wind power 3.7 0.029

Load 0.53 0.17
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planning model based on the predicted net load curve has a certain
rationality.

4.2 The effect of correction

Supplementary Figure S4 shows a comparison of the effect
before and after the correction of the actual peak shaving.
Supplementary Figure S5 shows the changes in the SOC and
power before and after correction during the actual operation of
energy storage.

Supplementary Figures S5A, B indicate that the SOC of the
lithium battery before correction will exceed its maximum value
of 0.9 at 8 o’clock and is finally maintained at 0.21; the charge
quantity within the day is significantly greater than the discharge
quantity. It can be seen that if the actual charge and discharge of
the lithium battery are controlled only according to the predictive
planning strategy, it is easy to cause overcharge of energy storage.
After the correction, the maximum value of the energy storage
SOC will not exceed 0.9 and the minimum value will remain as
approximately 0.1. This phenomenon just proves that the action
of the lithium battery meets the requirement of power balance
during peak shaving.

4.3 Comparison of the three strategies

Supplementary Figure S6 illustrates that the effect of peak
shaving for the multi-timescale optimal control strategy proposed
in this study is notably superior to that for the other two strategies.
Table 3 illustrates the evaluation index results of the three strategies.

From the peak shaving effect perspective, the peak–valley
difference rate of the real net load is 34.12%, and that of the
strategy proposed in this study is 26.01%, reduced by 8.11%,
which is the largest reduction among the three strategies, while
those of the constant power and power difference strategies are
28.69% and 26.64%, respectively, reduced by 5.43% and 7.48%, and
the reduction effect is only 66.9% and 92.2% of the multi-timescale
optimal control strategy, respectively. Furthermore, the standard
difference of the proposed strategy is 2.23, reduced by 0.52, while the
other two strategies only reduce by 0.21 and 0.38. It shows that this
strategy can also effectively reduce the volatility of the load.

From an economic perspective, the energy storage operating
income of the proposed strategy is 9658.1 yuan, while those of the
constant power strategy and the power difference strategy are
9289.8 yuan and 7678.3 yuan, respectively. The operating incomes
are 103.9% and 125.8%, respectively, for the other two strategies.

Through the comparison of the charging and discharging power
of lithium batteries under the three strategies and combined with the
theory of the control strategy, it becomes evident that the power
difference strategy primarily focuses on achieving the
charge–discharge balance without considering the available
capacity of the lithium batteries. The charging capacity and
discharge capacity may be close to or consistent in the early
stage of energy migration, resulting in the failure to maximize
the charge and discharge role of lithium batteries and improve
the peak-filling effect. The constant power strategy, from the point of
view of the charge and discharge time, makes the lithium battery
always run at a high power, the charge and discharge time becomes
short, and the operation income of energy storage becomes high;
however, the effect of peak cutting and valley filling is poor.

In summary, while the power difference strategy outperforms
the constant power strategy in peak clipping and valley filling, it lags
slightly behind in terms of economic benefits. The results obtained
from the strategy proposed in this paper surpass those of the
traditional constant power strategy and the power. With the
increasing penetration rate of new energy and the increasing
responsibility weight of renewable energy in each region, the
reasonable peak cutting and valley filling strategy is an important
measure to effectively adjust the load.

5 Conclusion

This study proposed a multi-timescale optimal control
strategy for lithium batteries based on LSTM
prediction–correction. Compared with the other two strategies,
the proposed strategy can cut back the peak-to-valley difference
to 6.25 MW, reduce the peak-to-valley difference rate to 26.01%,
and increase the income by 9658.1 yuan. Combined with the
relevant theory of the power difference strategy, it is found that
this strategy mainly aims at the balance of the charge and
discharge and cannot fully utilize the energy storage capacity
for peak regulation. In addition, this strategy can make full use of
its own capacity and power, takes the maximum valley value
increase and peak value reduction as the goal, and considers the
operating benefits, increases the charging capacity during valley
hours, and then improves the power supply capacity of lithium
batteries during peak hours, thus leading to an improved peak
shaving efficacy and economic gains.

In future research, it is advisable to utilize a more effective
prediction method for implementing the strategy. Moreover,
since the current approach relies on the traditional PSO
algorithm for its solution, exploring alternative methods to

TABLE 3 Evaluation index results of the three strategies.

Evaluation index Real net load Constant power strategy Power difference strategy Proposed strategy

Peak-to-valley difference/MW 8.71 7.25 6.63 6.25

Peak–valley ratio/% 34.12 28.69 26.64 26.01

Standard difference 2.75 2.54 2.37 2.23

Operating income/yuan — 9289.8 7678.3 9658.1
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replace it should be considered to enhance the overall efficiency
of the strategy.
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