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A game strategy for demand
response based on load
monitoring in smart grid

Feifei Cui, Dou An* and Gongyan Zhang

School of Automation Science and Engineering, Faculty of Electronics and Information Engineering,
Xi’an Jiaotong University, Xi’an, Shaanxi, China

Demand response technologies can achieve the objective of optimizing
resource allocation and ensuring efficient operation of the smart grid by
motivating the energy users to change their power usage behavior. However,
the increasing uncertainty of smart grid environment brings great challenges
to the development of demand response technique. In this study, we build a
long short-term memory (LSTM) network as a load forecasting model to predict
user load data in order to obtain accurate consumption behavior of energy
users. Then, we utilize a Stackelberg game model based on the load forecasting
model to dynamically optimize the electricity prices set by power suppliers at
different times, enhancing the efficiency of demand response between users and
suppliers. Extensive simulation experiments demonstrate that the LSTM-based
load forecasting model achieves an accuracy of up to 96.37% in predicting user
load demand. And the game model reduces the overall expenditure of users by
30% compared with the general pricing model.
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1 Introduction

The concept of the smart grid stems from the idea of Advanced Metering Infrastructure
(AMI). Its goal is to enhance demand-side management and energy efficiency and to
construct a self-healing, reliable grid protection system capable of withstanding severe
human-induced disruptions and potential natural disasters (Mahela et al., 2022). However,
the rapid advancement of information technology has led the power industry and research
institutions to reconsider and expand the initial vision of the smart grid, enabling the full
utilization of information technology within smart grids (Orlando et al., 2022). Recently, the
smart grid has evolved into a typical cyber-physical system (CPS), integrating electric power,
information transmission, network security communication, and intelligent computing. It
has established a clean, secure, efficient, and sustainable advanced energy delivery network
(Gao et al., 2023). For instance, to reduce peak demand and smooth load curves, power
suppliers can use the high-speed communication network of a smart grid to encourage
specific users to reduce their load during peak periods using real-time pricing signals. This
not only incentivizes users to participate in the grid regulation but also smooths the load
curve, thereby improving the overall energy utilization rate (Trujillo and García Torres,
2022).

The smart grid with distributed power supply model greatly enhances the reliability
and self-healing capabilities of power system, reducing the scope of power outages through
self-healing responses (Jasim et al., 2023). In terms of economic benefits, the cost-to-benefit
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ratio of a smart grid is approximately 4:1–5:1 (Gellings et al., 2004).
In addition to bringing substantial direct economic benefits to power
companies, this saves a significant amount of energy, contributing to
environmental protection and sustainable development in society.
To achieve the aforementioned benefits and generate greater
economic gains, it is necessary to invest more research effort in areas
such as demand response and load supervision (Khan et al., 2023).

Load monitoring (LM) technology allows power suppliers to
make predictions about user’s load usage and to learn about load
usage patterns, which can be divided into intrusive and non-
intrusive types based on the monitoring approach. Intrusive load
monitoring requires the installation of measuring devices on each
load, which leads to higher overall costs and lower usage frequency
(Wang et al., 2020). Non-intrusive load monitoring, on the other
hand, does not require installing measuring devices in each user’s
home. Instead, the devices are installed at the power entry points
of various centralized units to collect aggregated data. Subsequently,
the aggregated energy loads are decomposed into individual energy
loads, enabling a simple and effective way to forecast load operations
and energy consumption (Abubakar et al., 2017).

In order to effectively encourage the participation of users
in the electricity trading process, power suppliers often utilize
demand response techniques to motivate the power users changing
their inherent power consumption behavior by adopting certain
incentives. The research efforts of demand response techniques
can be divided into price-based and incentive-based. Price-
based demand response techniques help power suppliers to
learn autonomous pricing strategies to arrange loads of energy
users (Liu et al., 2017). Tang et al. (2019) and Cheng et al. (2022)
modelled the interaction strategies between power grid and energy
users as a Stackelberg game model, in which the grid optimizes
the price to maximize its net profit and reduce demand fluctuation,
and individual energy user optimizes the hourly power demand
to minimize electricity bill and effects of demand alternation
from the baseline. Sofana Reka and Ramesh (2016) utilized a
generalized tit for tat dominant game-based energy scheduler to
shift the peak average ratio of the smart grid. While, incentive-
based demand response techniques enable power suppliers to learn
an economic compensation mechanism to encourage energy users
reducing their peak-periods loads (Zheng et al., 2022). For instance,
Mansouri et al. (2023) proposes a three-layer risk-averse game
theoretic-based strategy to coordinate smart buildings and EV fleets
with microgrids scheduling. In the first layer of above strategy, a
demand response program is designed for smart buildings where
dynamic incentive tariffs are calculated based on the consumption
pattern of subscribers.

Although demand response techniques have been widely
deployed in addressing the resource allocation problem of smart
grid (Sivasankarareddy et al., 2021; Panda et al., 2022). However,
there remaining some obstacles that prevent above methods from
implementing in realistic scenarios. 1) The increasing uncertainty
of users loads brings great challenges to the establishment of
accurate optimization model, resulting in the inefficiency of
demand response strategies. 2) Existing game model-based demand
response strategies lack the theoretical analysis of Nash equilibrium.
Differently, this paper investigates a demand response model
integrates load monitoring technology. In this demand response
model, the interaction between power suppliers and users is

TABLE 1 Main notations.

Notation Explanation

N Number of energy users

K Number of power suppliers

lhi Load consumption of user i at time h

dn,k Amount of electricity purchased by user n from power supplier k

Un Utility of energy user n

γn, βn Constant coefficients

pk Unit power price provided by power supplier k

Bn Maximum electricity expenditure that user n can afford

Gk Maximum production capacity of power provider k

SK Strategy sets of power suppliers

SN Strategy sets of energy users

p⋆k Price signal of power supplier k at Nash equilibrium

modeled using game theory. Each power supplier dynamically
adjusts its price signal based on the user’s demand, while users
passively respond to the price signal by submitting their demand
signals, ultimately maximizing the utility of user and profit of power
supplier. The main contributions are as follows:

• This paper employs LSTM networks as the load forecasting
model to predict user load data based on the load forecasting
model and demand response theory. The LSTM network, with
itsmemory units, can effectively capture historical load data and
learn the periodic patterns in user load data.
• This paper designs a demand response model based on
Stackelberg game theory, utilizing the load prediction results
from the load forecasting model. This model accurately
represents the complex demand response interaction between
users and power suppliers in the smart grid. Mathematical
derivations demonstrate that the entire interaction process can
reach a Nash equilibrium, which can maximize the utility of
both parties.
• This paper presents extensive simulation experiments to
demonstrate the effectiveness of both the load forecasting
model and demand response model. Simulation results prove
that the LSTM-based load forecasting model can achieve up to
96.37% accuracy in load demand prediction for users. And the
proposed game model can significantly reduce users’ electricity
expenses.

The main notations utilized in this paper are summarized in
Table 1.

2 Related work

2.1 Research status of load monitoring
models in smart grids

Load supervision is a key technology that predicts future energy
demandbased onhistorical load data, temperature data, andweather

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1240542
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Cui et al. 10.3389/fenrg.2023.1240542

data. The prediction of future demand from load supervision is a
critical parameter for the operation and planning of a power system.
Errors between the predictive model and the actual parameters can
lead to increased operational costs and later increased costs for
power suppliers. Hence, many load supervision models have been
proposed to achieve more precise load demand prediction. Current
research on load supervision models by scholars worldwide can
be classified into two categories: models based on probability and
statistics and models based on artificial intelligence.

Regarding probabilistic-statistical models (Huang and Shih,
2003), presents a variety of statistical models. These include
the autoregressive model (AR), moving average model (MA),
autoregressive moving average model (ARMA), and autoregressive
integrated moving average model (ARIMA), with detailed
explanations of each model’s mathematical expression and
predictionmethods. Hermias et al. (2017) uses an ARIMAmodel to
predict future air-conditioning load based on seasonal component
compensation. Alhmoud and Nawafleh (2021) used ARMAmethod
and two neural network-based methods to predict the load data.
Through simulation, it was demonstrated that the neural network
approach could effectively improve the prediction accuracy. Among
artificial intelligence-based load supervision models, Walther et al.
(2019) proposed a very short-term load data predictor based
on machine learning. It simply used a single-step delay, taking
only the current value and time load data of the single-step
delay as input to predict future load data. Mocanu et al. (2016)
aimed to improve the design of power infrastructure and the
effective deployment of distributed and renewable energy sources
by predicting the electricity consumption patterns in power
systems through a deep learning network, thereby enhancing
the electricity efficiency of the entire power system. The authors
creatively proposed the conditional restricted Boltzmann machine
(CRBM) and factor conditional restricted Boltzmann machine
(FCRBM) models to predict data and validated their accuracy
through simulation experiments. Afrasiabi et al. (2020) mainly
proposed a hybrid predictive model based on convolution neural
networks to predict residential power load curves. By predicting
the loads of individual users, the power supply system can
better monitor electricity usage habits, thus achieving better load
scheduling.

2.2 Research status of demand response
technology in smart grids

Compared with traditional power grids, the advantage of
smart grids is that they can significantly improve the reliability
of the entire power system and the responsiveness of users
and can encourage users to participate more actively in energy
trading decisions. Therefore, all scheduling and incentives on the
demand side, including overall demand response management,
are integral parts of the smart grid. Current demand response
mechanisms can be divided into two categories: one is based on
user incentive mechanisms, and the other is based on power pricing
mechanisms.

Gyamfi et al. (2013) studied different demand response
mechanisms, such as time-of-use (TOU) pricing, peak pricing,
and real-time pricing, and applied them to users in different

countries and regions to measure their response rates to these
mechanisms. This laid a solid foundation for later research on
demand response theories. The results showed that a large portion
of households did not respond to price changes, possibly because
they did not understand the pricing system and therefore did not
react immediately to price changes. Zhang et al. (2023) proposed
a demand response algorithm based on bidding incentives. This
algorithm used Vickrey-Clarke-Groves mechanism to optimize the
choice of energy policies to find the strategy that maximizes the
total profit of the energy service provider while satisfying the user’s
minimum load power requirements. Trujillo and García Torres
(2022) proposed a multi-stage control system to manage the electric
vehicle users’ demand, automatically adjust the load, and optimize
the entire system using a stochastic optimization algorithm. This
study provided the best demand response solutions for users
by comparing various strategies based on pricing mechanism
and incentive mechanism. Bokkisam et al. (2022) proposed a
peer-to-peer demand transactive system. In this algorithm, the
smart grid was divided into three agents: users, auctioneer, and
utility. To consider the balance of user benefits, load demand,
and energy supply, the third-party agent demonstrated method
and blockchain-based method were tested. The optimal real-
time demand allocation results was obtained through simulation
experiments.

In summary, based on the current research status worldwide, the
problem of demand response models based on load supervision in
smart grids is a frontier issue that crosses multiple fields. Although
many theories and results have been obtained in various fields, better
integrating load supervisionmethodswith demand responsemodels
to ensure the stability of overall system operation while achieving
satisfactory returns between users and power suppliers is a subject
that urgently needs to be studied.

3 Preliminaries

3.1 System model

The model of the game demand response strategy based on
load demand forecasting studied in this paper includes two main
entities: the power supplier and the users. Within the energy
management unit, there are multiple power suppliers, each with
varying capacities due to their different scales. However, each
power supplier can independently supply electric power to users.
Compared to the centralized power supply of traditional grids, this
distributed power supply from multiple suppliers greatly enhances
the stability and robustness of the entire power system. Each
power supplier, constrained by its capacity and costs, sets real-
time prices at each moment, resulting in different prices among
suppliers. Users can choose to purchase electric power from the
supplier that maximizes their own utility based on their load usage
habits.

In the demand response strategy, the power suppliers first use
the trained load demand prediction model to forecast the future
load demand of each user. They then issue an initial electricity price
signal to the users based on the predicted load demand. During
this process, the prices set by each supplier differ based on the
users’ load demand and the suppliers’ capacities and costs. Upon
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receiving the price signal, users calculate the optimal energy demand
from different suppliers based on their maximum energy cost
expenditure and a utility optimization function. They then send the
demand signals to the respective suppliers. Each supplier receives
the energy demand purchased by users, and being rational and self-
interested, adjusts its electricity price information to maximize its
own revenue. This forms a non-cooperative game model among
the power suppliers.This entire demand response process continues
until the system reaches a Nash equilibrium. At equilibrium, no
power supplier can increase its revenue by unilaterally changing its
price information.

3.2 Game theory approach

Game theory is a formal analytical framework that studies
complex interactions among independent rational players using
specific mathematical representations and derives the optimal
strategies of the players based on individual rational behavior.
Over the decades, game theory has been widely applied in
various disciplines, ranging from economics and political science
to psychology, achieving significant progress across different fields.
In today’s large-scale smart grid systems and various cyber-physical
systems (CPSs), complex interactions often exist among multiple
intelligent nodes. To achieve better interactions between power
suppliers and users, the framework of game theory has become
an important theoretical analysis tool and has been widely applied
in practical optimization scenarios (Cheng and Yu, 2019). Game
models typically consist of three elements: players N , decision
sets (Ai)i∈N , and utility functions (Ui)i∈N . In the entire non-
cooperative static game process, each decisionmaker i aims to select
a decision process ai ∈Ai from their decision set Ai to maximize
their own utility function Ui(ai,a− i). However, the utility function
of a user depends not only on their own decision ai but also
on the decisions a−i of participants other than user i. As each
user seeks to maximize their own utility, a game model is formed
accordingly.

The aforementioned game model can be applied to demand
response management in smart grids. A smart grid system has N
users and multiple power suppliers. In a given period h, the total
load consumption of all users in the system can be represented as
Lh = ∑i∈Nl

h
i , where l

h
i represents the load consumption of user i at

time h. When users consume electricity, power suppliers bear costs
associated with electricity production and transmission.The overall
costs can be represented by a cost function Ch = ∑i∈NCh(Lh), where
the cost function is a strictly increasing convex function with the
user’s load consumption as the independent variable.When the load
consumption of users at a certain time is higher, the value of the
cost function also increases. Therefore, power suppliers determine
the electricity price at time h based on the magnitude of the cost
function. A larger cost function indicates higher costs, resulting
in a higher electricity price being set, and vice versa. The size of
the cost function mainly depends on the consumption Lh at that
time. When a user participating in scheduling changes their load
consumption, it affects the current consumption Lh, which in turn
influences the power supplier’s setting of the electricity price through
Ch. In other words, in each period, users can influence the electricity
price of the entire system by scheduling their own loads. The less

load consumption in the system, the lower the power supplier will
set the electricity price, and the more load consumption in the
system, the higher the power supplier will set the electricity price.
If each user wants a lower electricity price when using their load, a
game model arises. The participants are all the users N involved in
scheduling, the decision set is the load consumption lh of each user
at a certain time, and the utility function represents each user’s desire
to maximize their own utility through the scheduling of their load.
When the entire gamemodel reaches a Nash equilibrium, no user in
the system can improve their own utility simply by changing their
load consumption decision, resulting in an equilibrium state for the
entire system.

4 Load supervision method based on
an LSTM network

In recent years, the rapid development of information
technology has led to the widespread application of smart grids.
In a smart grid, the integration of various renewable energy supply
nodes, electric vehicle nodes, and user access nodes significantly
increases the complexity and instability of the entire system.
Undoubtedly, compared to the centralized energy supply in
traditional grids, the access of various distributed nodes in smart
grids poses unprecedented challenges to system stability. To address
this issue, load supervision technology has been widely applied
in practical projects. Through load supervision technology, it is
possible to assist in demand response and achieve the transfer
of peak demand, thereby improving the overall stability of the
system. In the field of load supervision, deep learning techniques
have begun to be widely used. Deep learning utilizes multilayer
neural connections to extract features from input data. Compared
to traditional machine learning algorithms, deep learning greatly
improves the accuracy of models and enhances prediction accuracy
through stacking layers and increasing the number of neurons.

4.1 LSTM network

Although classical feedforward fully connected neural networks
work well for traditional data classification and regression problems,
they face challenges when dealing with continuous sequential data
such as time series load data and speech data. This is because
sequential data have inherent order dependencies, and it is not
straightforward to split these time series data into independent
training samples to train a traditional feedforward neural network.
Therefore, to consider the sequential nature of the data during
training, adjustments need to be made to the structure of the
traditional feedforward neural network by introducing memory
units, giving rise to RNNs. Long short-term memory (LSTM)
networks are a type of neural network architecture proposed to
address the issue of vanishing gradients in RNNs (Cai et al., 2022).
Compared to traditional RNN architectures, LSTM incorporates
dedicatedmemorymodules to retain previous information. In terms
of the update mechanism, LSTM does not directly overwrite the
information in the memory unit with the sequence information
obtained at the previous time step. Instead, it accumulates
information over time, ensuring the retention of information from
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FIGURE 1
LSTM network unit structure.

much earlier sequences. Figure 1 represents a basic LSTM unit,
which includes three crucial gate structures: the input gate, the
output gate, and the forget gate. The input gate determines whether
the current information xt should be stored in memory cell st. The
output gate determines whether the current information inmemory
cell st should be output as the current output ht. The forget gate
controls how much information from the previous memory cell st−1
should be stored in the current memory cell st.

4.2 Construction of a load monitoring
model based on an LSTM network

4.2.1 Load data analysis
After obtaining the load consumption data, the first step is

to perform data cleaning, which includes handling outliers and
missing values in the data. Then, the correlation between different
features needs to be examined. Since the dataset in this study has
many features, using all of them as training data would result in an
excessively high dimensionality of the training dataset. Moreover,
for time series data, when constructing the supervised model data,
a certain time step delay is applied, which further increases the
number of features, leading to a significant computational burden
and prolonged training time. Therefore, to address this issue, it
is necessary to eliminate some highly correlated feature attributes
through correlation analysis, aiming to improve training speed
without compromising model accuracy.

Through correlation analysis, it is found that there is a strong
correlation between various features. In this study, temperature
and humidity are selected as the training data features (Chen et al.,
2021). Additionally, since user load consumption is often related to
user behavior patterns, with lower consumption during weekdays
and higher consumption during weekends, this study uses an
additional feature to represent whether the current date is a weekend
in training the model.

4.2.2 Load supervision model framework
The load supervision model is primarily built using LSTM

networks and trained with the historical load data obtained in the
previous section.

The construction steps of the entire model are as follows:
1) Encode the vector data W indicating whether it is a

working day, where 1 represents a working day and 0 represents a
weekend.

2) Normalize the load data L, temperature data T, and humidity
dataH, and then concatenate these vectors to form the input matrix
X = {T,H,W,L}.

3) Transform the preprocessed time series data X into data
suitable for supervised learning based on the designated time step
K. By using a sliding window approach, the input matrix X is shifted
with a step size.

4) Input thematrixX into the LSTMnetwork formodel training.
The framework of the entire model is shown in Figure 2.

5 Demand response methods based
on game theory

In traditional demand response models, due to the complex
interaction between users and the power supply side, the
optimization process often only considers one side of the demand
response. For instance, when considering the maximization of user
welfare, the maximization of the power supply side’s benefits is
not included. To model the complex interaction process between
multiple users andmultiple power suppliers in the demand response,
this section studies amodel based on a Stackelberg game as shown in
Figure 3. First, each power supplier predicts the future load demand
of users using the load demand prediction model proposed in the
previous section and determines the initial electricity price based
on the current load demand and its own power supply. Then, each
user compares the price signals provided by all power suppliers to
maximize their own benefits, purchases electricity from different
power suppliers according to their own electricity usage habits, and
synchronizes the demand information in real time to the designated
power supplier. Finally, the power supplier updates its price signal
based on the user’s purchased demand and the price signals of the
other power suppliers.

In the entire demand response model, N = {1,2,…,N}
represents the number of users, and K = {1,2,…,K} represents
the number of power suppliers. The entire system model is
shown in Figure 3. The power supply side of this model includes
the connection of various renewable and non-renewable energy
suppliers. Non-renewable energy includes various fossil fuels,
which produce relatively stable electricity and can continuously
output electricity. However, due to the pollution caused by the
combustion of such fuels and their non-renewable nature, an
increasing amount of renewable clean energy is connected to the
grid. On the user side, various types of users, such as residential
users, industrial users, and commercial users, are distinguished
by their set load demand limits. When modeling power suppliers
and users, users express the utility value obtained after consuming
electricity through a utility function, and power suppliers express the
profit obtained after selling electricity through a profit function.The
communication between the two parties is carried out through the
two-way communication network, where each power supplier sends
its price signal to the users in real time, and the users respond to the
demand signal of the power supplier considering the maximization
of their own utility after receiving different price signals.
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FIGURE 2
Load supervision model framework.

FIGURE 3
Demand response system model.

The entire interaction process of the demand response model
constitutes a Stackelberg game. In this game process, the power
supplier, as a leader, sends the real-time price signal to the followers
first, while the user, as a follower, optimizes their load demand
allocation according to the price signal issued by the leader.
Therefore, the entire gameprocess can be seen as a gameof electricity
prices among various power suppliers. The power suppliers set their
own electricity prices according to the amount of user loads and
the price levels of other power suppliers, while the users passively
respond, maximizing their own utility functions through the real-
time price signals issued by the power suppliers.

5.1 User-side mathematical model

The entire system architecture involves multiple users and
multiple power suppliers, where each user n ∈N selects the amount
of electricity purchased dn,k ≥ 0 according to the price signal released
by each power supplier k ∈K at each unit time.The unit time is set to
30 min, and the user’s energy demand purchase volume maximizes
the utility function under the premise of satisfying its own cost

budget. In this article, the utility functions of users at the unit time
can be represented as:

Un (dn) = γn ∑
k∈K

ln(βn + dn,k) (1)

where γn > 0 and βn ≥ 1 are both constant coefficients. These
coefficients ensure that when the user does not purchase electricity
from any power supplier, that is, when dn = 0, the value of the
formula ∑k∈K ln(dn,k) will not reach −∞. In Eq. 1, the user’s utility
is modeled through a logarithmic function (Wang et al., 2021).

The user’s goal is to maximize their utility function while first
satisfying their own budget by determining their electricity demand
purchases based on their own electricity consumption habits and the
prices of different power suppliers.The optimization function can be
expressed as:

maxdn Un (dn)

s.t.
{{
{{
{

∑
k∈K

pkdn,k ≤ Bn

dn,k ≥ 0, ∀k ∈K

(2)

where pk represents the real-time unit power price provided by
power supplier k and Bn represents the maximum electricity
expenditure that user n can afford. The optimization process on the
user side does not involve a game between users; they only passively
accept the price signals provided by the power supplier to maximize
their utility functions. Each user’s decision can be considered as
being made independently.

To understand the energy demand optimization process on the
user side more clearly, this article first assumes a general situation:
there are only N users and three power suppliers in the demand
response management system. After careful analysis of the general
situation, the conclusion is extended to K power suppliers. When
there are only three power suppliers in the system, the optimization
problem can be expressed as:

max
dn,1,dn,2,dn,3

γn
3

∑
k=1

ln(βn + dn,k)

s.t.
{
{
{

p1dn,1 + p2dn,2 + p3dn,3 ≤ Bn

dn,1,dn,2,dn,3 ≥ 0

(3)
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Introducing the Lagrange multipliers λn,1,λn,2,λn,3,λn,4, the
optimization problem with inequality constraints is represented by
a Lagrange function as follows:

Ln = γn
3

∑
k=1

ln(βn + dn,k) − λn,1(
3

∑
k=1

pkdn,k −Bn)

+ λn,2dn,1 + λn,3dn,2 + λn,4dn,3

(4)

The KKT conditions are:

λn,1(
3

∑
k=1

pkdn,k −Bn) = 0 (5)

λn,2dn,1 = 0 (6)

λn,3dn,2 = 0 (7)

λn,4dn,3 = 0 (8)

λn,1 > 0 (9)

λn,2,λn,3,λn,4 ≥ 0 (10)

xn,1,xn,2 ≥ 0 (11)

When the utility function is maximized, the first derivative of
Eq. 4 needs to be zero; that is, ∇Ln(d*n) = 0. The partial derivative of
Eq. 4 can be obtained as:

{{{{{{{{
{{{{{{{{
{

γn
βn + dn,1

− λn,1p1 + λn,2 = 0

γn
βn + dn,2

− λn,1p2 + λn,3 = 0

γn
βn + dn,3

− λn,1p3 + λn,4 = 0

(12)

To determine the optimal amount of energy for each user to
purchase from each power supplier at this time, the amount of
electrical energy purchased by users from each power supplier needs
to be considered in categories:

1) When dn,1 > 0,dn,2 > 0,dn,3 > 0:
Through Eqs 6–8, we can derive λn,2 = λn,3 = λn,4 = 0.

Substituting λn,2, λn,3, and λn,4 into Eq. 12, we obtain:

dn,k =
γn

λn,1pk
− βn ∀n ∈N , k = 1,2,3. (13)

Substituting Eq. 13 into Eq. 5, we can solve for:

λn,1 =
3γn

Bn +∑
3
k=1

pkβn
(14)

Finally, by substituting Eq. 14 into Eq. 13, we can solve for
the amount of electricity each user purchases from each power
supplier:

dn,k =
Bn +∑

3
k=1

pkβn
3 pk

− βn k = 1,2,3. (15)

2) When dn,1 > 0,dn,2 = 0,dn,3 = 0:

Through Eq. 6, we can obtain λn,2 = 0. Substituting λn,2 = 0 into
Eq. 12, we obtain:

dn,1 =
γn

λn,1p1
− βn (16)

Substituting Eq. 16 into Eq. 5, we can obtain:

λn,1(
γn
λn,1
− βnp1 −Bn) = 0 (17)

According to λn,1 > 0 in theKKT condition, (γn/λn,1) − βnp1 −Bn
= 0 can be obtained. Therefore, the solved λn,1 can be brought into
Eq. 16 to obtain:

dn,1 =
βnp1 +Bn

p1
− βn

=
Bn

p1
=
Bn + βn (p1 + p2 + p3)

3 p1
+
2Bn − βn (p1 + p2 + p3)

3 p1

(18)

From dn,2 = dn,3 = 0, we can obtain Bn = βn(2p3 − p1 − p2) = βn
(2p2 − p1 − p3). Substituting this into Eq. 18, we can finally obtain:

dn,1 =
Bn + βn (p1 + p2 + p3)

3 p1
+
2Bn − βn (p1 + p2 + p3)

3 p1

=
Bn + βn (p1 + p2 + p3)

3 p1
− βn

(19)

3) When dn,1 = 0,dn,2 > 0,dn,3 = 0:
Similarly, we can solve to obtain:

dn,2 =
Bn

p2
=
Bn + βn (p1 + p2 + p3)

3 p2
− βn (20)

4) When dn,1 = 0,dn,2 = 0,dn,3 > 0:
The solution for dn,3 is:

dn,3 =
Bn

p3
=
Bn + βn (p1 + p2 + p3)

3 p3
− βn (21)

5) When dn,1 = 0,dn,2 = 0,dn,3 = 0:
In this scenario, users donot purchase electricity fromanypower

provider. From Equation 5, we can deduce that Bn = 0, meaning that
the user’s electricity expenditure budget is 0. This situation is not
within the scope of this paper.

Therefore, using Eqs 15, 19–21, the user’s demand for each
power provider can be generalized to scenarios where there are K
power providers. The optimal demand for each power provider is:

d⋆n,k =
Bn +∑

K
k=1

pkβn
K pk

− βn k = 1,2,…,K. (22)

From Eq. 22, we can see that the amount of electricity dn,k that
user n purchases from a specific power provider k is to maximize
their own utility function depends on the real-time electricity price
pk currently offered by power provider k, as well as the electricity
prices offered by other power providers ∑Kk=1pk. Having obtained
the expression for the amount of electricity that each user purchases
from each power provider, we introduce Emin

n to represent the
amount of electricity each user needs tomeet their basic daily needs,
which needs to satisfy:

∑
k∈K

dn,k ≥ Emin
n (23)
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Substituting Eq. 22 into Eq. 23, we find that each user’s electricity
expenditure needs to satisfy:

Bn ≥ Emin
n K

K

∑
k=1

pk +Kpkβn − βn
K

∑
k=1

pk (24)

where Eq. 24 represents that the user’s electricity expenditure is
related to the price set by each power provider and the user’s
minimum energy demand. Above value can be used as a baseline to
test whether the user’s expenditure will decrease after the demand
response.

5.2 Power-supply-side mathematical
model

In the game-based model considered in this paper, the price
setting of a power provider is related not only to the electricity
expenditure set by each user but also to the prices set by other power
providers. The utility function of a power provider is expressed as:

Uk (pk,p−k) = pk ∑
n∈N

dn,k (25)

where p−k represents the electricity prices set by power providers
other than k.

The goal of each power provider is to maximize its profit
after selling electricity under the constraint of its own production
capacity. Therefore, the optimization function for each power
provider can be expressed as:

max
pk

Uk (pk,p−k)

s.t.
{{
{{
{

∑
n∈N

dn,k ≤ Gk

pk ≥ 0, ∀k ∈K

(26)

where Gk represents the maximum production capacity of each
power provider. The energy demand provided for all users cannot
exceed this value. In the process of selling electricity, the more
electricity the power provider sells, the more profit it will obtain.
Therefore, the constraint on energy sales can be converted to the
equation ∑n∈Ndn,k = Gk. At this time, the power provider’s profit is
maximized. We construct the Lagrange function as:

Lk = pk ∑
n∈N

dn,k − λk( ∑
n∈N

dn,k −Gk) (27)

When the power provider obtains the optimal price setting,
∂Lk/∂pk = 0. Since dn,k is a function containing the variable pk, after
substituting Eq. 22 into Eq. 27, the derivative can be obtained as:

(K− 1) ∑
n∈N

βnp
2
k − λk × ( ∑

n∈N
βn(pk − ∑

k∈K
pk)+ ∑

n∈N
Bn) = 0

(28)

(K− 1)Zp2k − λk[B+Z( ∑
u∈K,u≠k

pu)] = 0 (29)

where Eq. 29 is a simplified form of Eq. 28. Z = ∑n∈Nβn and B =
∑n∈NBn.

For each power provider, Eq. 29 provides a constraint equation.
Combined with ∑n∈Ndn,k = Gk, we can obtain:

pk =
B+Z(∑

u∈K,u≠kpu)

Z (K− 1) +KGk
(30)

From Eq. 30, we can deduce that the real-time price of each
power supplier depends both on its own capacity Gk and the
electricity prices set by other power suppliers. When there is only
one power supplier in the entire demand response system, i.e.,K = 1,
there is no game between power suppliers, and the optimal price
set by the power supplier is p1 = B/G1, which only depends on the
users’ electricity expenditure budget and the supplier’s own capacity.
Therefore, this article considers the case of K ≥ 2; that is, there is a
price game between each power supplier, and every user sets real-
time electricity prices to maximize their own profit. However, the
main problem in the process of solving Eq. 30 is that the solution
of pk is related to the prices of other power suppliers, and the
calculation of the prices of other power suppliers depends on pk.
The entire price calculation process falls into a vicious cycle. To solve
this problem, we can substitute the price of each power supplier into
Eq. 30, thus converting the calculation of the supplier’s price into a
function of the capacities of each power supplier:

pk =
B

Gk +Z
( 1
K−∑

k∈K
Z

Gk+Z

) (31)

In the previous subsection, the optimal demand quantity for
each user to purchase from each power supplier was obtained
from Eq. 22. To satisfy the requirement that the electricity purchase
quantity is dn,k ≥ 0 from any user n ∈N to any power supplier k ∈K
in the system, the following equation must be satisfied:

Bn + βn
K

∑
k=1

pk ≥ K pk βn (32)

When the demand for each power supplier from the user meets
dn,k ≥ 0, the price of the power supplier also needs to meet:

pk ≤
Bn + βn (∑u∈K,u≠kpu)

(K− 1)βn
(33)

Therefore, when the power supplier sets its own real-time
electricity price, to ensure that the demand of each user from
each power supplier meets dn,k ≥ 0, each power supplier must first
satisfy Eq. 33 when setting the real-time price.The solution obtained
through the Lagrange function in the previous section, Eq. 30, can
be proven to meet this condition.

The following will prove that each power supplier’s real-time
electricity price, obtained through Eq. 30, can maximize each
supplier’s utility function and is the best response to each user.

Proof: First, assume that pk is the power price set by supplier k
obtained through Eq. 30. Then, if supplier k increases or decreases
this price, it can obtain p′k = pk + ϵk, while the prices of the other
suppliers are not adjusted.

Then, the amount of electric energy each user buys from supplier
k becomes:

d′n,k =
Bn + βn (∑u∈K,u≠kpu + p

′
k)

K p′k
− βn (34)
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Compared with the case when the price of supplier k is not
adjusted, the difference in the amount of electricity each user buys
from supplier k is:

d′n,k − dn,k =
(pk − p

′
k)[Bn + βn (∑u∈K,u≠kpu)]

K pk p
′
k

(35)

According to Eq. 35, when the electricity price set by supplier k
rises, that is, pk − p

′
k < 0, we have d

′
n,k − dn,k < 0.This shows that when

the price rises, the user’s demand for electricity from the supplier
decreases.When the electricity price set by supplier k drops, we have
d′n,k − dn,k > 0, and the user’s demand for electricity from the supplier
increases.

After the supplier’s price adjustment, the difference in the utility
function compared to when it is not adjusted is:

U′k −Uk = p
′
k ∑
n∈N

d′n,k − pk ∑
n∈N

dn,k

= ϵk
Z−ZK

K

(36)

According to Eq. 36, when the supplier’s price rises, that is,
ϵk > 0, and Z−ZK < 0, we have U′k −Uk < 0. This shows that when
the supplier raises its price, the profit obtained will not increase but
will be less than the profit obtained at the previously set price.When
the supplier’s price drops, that is, ϵk < 0, although U

′
k −Uk > 0 at this

time, due to the limit of the supplier’s capacityGk, it is impossible for
the supplier to sell sufficient electricity tomake a profit after lowering
the price.

Therefore, it can ultimately be proven that the electricity price
p⋆k set by the supplier through Eq. 30 can not only maximize its own
profit function but is also the best response to user demand.

5.3 Power-supply-side game model

In the demand response model, the profits of each power
supplier mainly come from the electricity expenditures of all users.

The total budget for electricity consumption among all users is fixed;
i.e., ∑n∈NBn. The profit obtained by each power supplier k depends
on the volume of its electricity sales and the setting of the electricity
price. If the electricity price is set reasonably, the profit obtained will
account for a larger proportion of the total user expenditure, and
vice versa. Therefore, when power supplier k changes its electricity
price settings, itmay increase or decrease the proportion of total user
expenditures it has, thus initiating a non-cooperative game among
power suppliers regarding price settings.

For the Stackelberg game model, the overall process is shown
in Figure 4. First, the power suppliers compete to determine the
price signals most advantageous to themselves. They then distribute
these price signals to each user. The users, in turn, calculate their
optimal demands for each power supplier based on these price
signals and then publish these demand quantities to the designated
power suppliers. Finally, the users update the prices based on
these demand quantities until the price competition among power
suppliers reaches a Nash equilibrium.

Let SK and SN represent the strategy sets of power suppliers
and users, respectively. For power suppliers, their strategy setmainly
includes each power supplier’s price choice strategy, i.e., SK =
S1 ×S2 ×S3 ×⋯SK. The users, being followers, have a strategy set
that primarily passively responds to the price signals of power
suppliers, i.e., SN = S1 ×S2 ×S3 ×⋯SN. Therefore, when the price
competition among power suppliers reaches a Nash equilibrium,
each power supplier’s price signal p⋆k satisfies:

Uk (p⋆k ,p
⋆
−k,d (p

⋆)) ≥ Uk (pk,p−k,d (p)) (37)

where d(p⋆) represents the users’ best response to the power
suppliers’ prices. As users are only responding passively, there exists
a unique best response to the price signals of power suppliers; i.e.,
the users’ optimal response signals are calculated through Eq. 22.

Thus, it only needs to be proven that a unique equilibrium
point exists in the price competition among power suppliers. When

FIGURE 4
Game model.
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FIGURE 5
Load data for users: (A) user 1; (B) user 2.

power suppliers compete in price, they mainly consider their utility
function Uk(pk), which is a continuous concave function for any
power supplier. This utility function, within a specified range,
necessarily satisfies ∂2Uk/∂p

2
k < 0. When ∂Uk/∂pk = 0, the obtained

price signal can ensure that the power supplier’s utility function has
a unique maximum point within the specified range, and this signal
satisfies p⋆k ∈ SK = S1 ×S2 ×S3 ×⋯SK. Therefore, this proves the
uniqueness of the Nash equilibrium in the price competition among
power suppliers.

6 Simulations

6.1 Experiment of user load data prediction

6.1.1 Dataset
The data used for training the load supervision model come

from a publicly available load dataset provided by MIT.This dataset
captures the household load data of multiple users from 10 July
2014 to 31 December 2016. The data were collected through smart
meter devices, with samples taken every 15 min, and include twelve
features, such as temperature, humidity, pressure, wind speed, and
perceived temperature of the environment, as well as the current
load consumption data of multiple users. The load data of the users
are shown in Figure 5.

6.1.2 Simulation of load supervision model
parameters

In deep learning networks, it is challenging to determine the
number of hidden layers and the number of neurons in each
layer. There is no strict theoretical way of determining the optimal
numbers of hidden layers and neurons in a network structure. Before
determining the number of hidden layers, it should be understood
that the role of the hidden layers is mainly to increase the non-
linear fitting ability of the model. If the input data are linearly
separable, then hidden layers are not necessary. However, for more
complex sequential and speech data, itmay be necessary to addmore
hidden layers to improve the model’s learning capability. Once the

number of hidden layers has been determined, the most important
issue is how to determine the number of neurons in each layer.
If there are too few neurons in the hidden layer, it will cause
underfitting. If there are toomany neurons, itmay lead to overfitting.
Therefore, selecting an appropriate number of neurons is extremely
important.

This paper determines the relationship between the prediction
accuracy and training time of the model with different numbers of
layers and neurons through experiments, as shown in Figure 6.

Figure 6 show that when using a three-layer neural network, the
average prediction accuracy is the highest, and the average training
time of themodel is relatively low.When a four-layer neural network
is used, the model enters a state of overfitting, results in the low
overall prediction accuracy and the long training time. Besides, we
can also observe from Figure 6 that the best prediction accuracy can
be achieved when the numbers of neurons in each layer are (300,
150, 50).

6.1.3 Prediction results of user load
To speed up the model’s training time, the dataset is sampled

every 30 min, reducing the scale of the training data.The overall flow
of the training algorithm is to first divide the dataset that has not yet
been trained into training, validation, and testing sets. Then, we set
the number of layers and the number of neurons in each layer in the
LSTM network of the load supervision model based on the model
parameters from the previous subsection. Meanwhile, a dropout
layer is added between each pair of layers to prevent overfitting.
Finally, we specify the loss function for model training. Time series
data delay steps of 1, 3, 5, 7, 10, and 15 days were selected for the
load data prediction of user 1 and user 2.The delay step length refers
to how many days of data are used to predict future load data. The
longer the delay step length of the time series data, the more features
will be obtained in the training data, allowing the model to better
learn user behavior patterns.The results of user load data prediction
are shown in Table 2.

For user 1, the highest prediction accuracy was achieved with
a 10-day time series step delay, reaching 91.54%, higher than the
91.11% accuracy obtained with a 15-day time series step delay. The
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FIGURE 6
Impact of neuron quantity on prediction accuracy: (A) single-layer neural network; (B) two-layer neural network; (C) three-layer neural network; (D)
four-layer neural network.

TABLE 2 User forecast accuracy.

Model User Accuracy (%) MSE (%) Training time/s

LSTM/1 step 1 90.18 9.8 68

LSTM/3 steps 1 91.05 8.9 277

LSTM/5 steps 1 91.20 8.7 506

LSTM/7 steps 1 90.78 9.2 757

LSTM/10 steps 1 91.54 8.4 1,101

LSTM/15 steps 1 91.11 8.9 1,929

LSTM/1 step 2 92.75 7.2 67

LSTM/3 steps 2 94.15 5.8 276

LSTM/5 steps 2 95.24 4.8 500

LSTM/7 steps 2 94.56 5.4 727

LSTM/10 steps 2 95.74 4.3 1,122

LSTM/15 steps 2 96.37 3.6 1,834

analysis shows that when training the model with a 15-day time
series step delay, the number of features is significantly higher than
that with a 10-day time series step delay. The trained prediction
model should have a higher accuracy, but possibly because there are
too many features, overfitting occurs, thus reducing the prediction

accuracy on the test set. This can be prevented by setting the
coefficient of the dropout layer, thereby improving the prediction
accuracy of the model. For user 2, the highest prediction accuracy
was achieved with a 15-day time series step delay, reaching 96.37%,
and a lower prediction accuracy of 94.56%was achievedwith a 7-day
time series step delay. This indicates a significant difference in the
power usage habits of user 2 on weekdays and weekends, resulting
in a surge in load demand on the weekend and many jump points,
thereby reducing the overall prediction accuracy. Generally, the
LSTM-based load supervision model can achieve good prediction
accuracy for future load demand.

6.2 Simulation and analysis of the demand
response model

The optimization effect of the entire game model is
studied by changing the user’s own electricity budget. In the
experiment, the constant coefficients in the utility functions
of all users are initially set to γn = 5,βn = 5. Then, 10 users
and 4 suppliers are considered in the demand response
model, with the electricity budgets for the users are set as
B1 = 10, B2 = 15, B3 = 18, B4 = 20, B5 = 25, B6 = 28, B7 = 35, B8 = 40,
B9 = 45,B10 = 50. The capacities of the suppliers at each moment
are set as G1 = 10,G2 = 15,G3 = 20,G4 = 30. After predicting the
future load demand of each user based on the load supervision
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FIGURE 7
Optimization results of the game model: (A) power supplier price; (B) user demand; (C) power supplier revenue; (D) user utility.

FIGURE 8
Optimization results of the game model after adding power supplier 5: (A) power supplier price; (B) user utility.

model, the initial electricity prices of the suppliers are set as
p1 = 1.5,p2 = 2.2,p3 = 2.5,p4 = 2.0.

Figure 7A represents the optimal electricity prices set by each
power supplier after the game as user 1’s electricity budget continues
to increase. As the user’s budget increases, the electricity prices set

by each power supplier also increase. Because Power Supplier 1
has the least capacity, the real-time electricity price it sets is the
highest. Figure 7B represents the demand curves for electricity for
each user. As user 1’s electricity budget continues to increase, the
purchased electricity also increases. Since the production capacity
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FIGURE 9
Energy consumption curves.

FIGURE 10
Real-time electricity price curves.

FIGURE 11
User expenditure curves.

of all suppliers is fixed at any moment, this leads to a decrease in
the energy demand of other users, manifested as a declining trend
in their demand curves. Figure 7C shows the profit curve of each
power supplier. From this figure, it can be seen that the income of the
power suppliers does not show a positive correlation with the real-
time set electricity price. In the electricity price curve, the price set
by Power Supplier 1 is the highest, but its profit is the lowest among
all suppliers. In contrast, Power Supplier 4, which sets the lowest
price, obtains the highest profit due to its larger capacity. Figure 7D
represents the utility function curves of users. Since user 1 purchased
a large amount of electricity, their utility curve gradually increases,
causing the utility curves of other users to decrease, which conforms
to real-life scenarios.

To verify whether the introduction of a large-capacity power
supplier will affect the utility of users, Power Supplier 5 was added
to the original experiment, and its power supply capacity was set as
G5 = 100. Comparing Figure 8B and Figure 7D, it can be seen that
when Power Supplier 5 is added, the utility of the users increases,
indicating that the addition of Power Supplier 5 does not reduce the
utility of the users. As shown in Figure 8A, it is almost impossible
for a power supplier in the proposed game model to control prices
by significantly increasing capacity; this will only lead to an overall
excess capacity in the system, causing a decrease in the prices set
by all power suppliers. Therefore, in the entire system model, the
more capacity a power supplier has, the more the users’ utility will
increase.

Finally, to further verify the application of the model in actual
production, an analysis of user load data revealed that the load
demand curves of all users exhibit a distinct regularity, reaching a
peak at noon, followed by reduced consumption and an increase
again in the evening. Therefore, we extracted a day’s energy
consumption data and real-time electricity price information from
the U.S. National Energy website. The dataset includes 2,000 users
and 5 power suppliers. The energy consumption data of these users
are used to verify whether the model can improve the utility of
users. Figure 9 represents the energy consumption data of users
at different times of the day. Figure 10 represents the prices set
by the power suppliers after the game and the normal electricity
prices set daily. Figure 11 shows that after adopting the real-time
electricity prices calculated based on the game model, the overall
expenditure of users decreases by 30{%} compared with traditional
pricing model, indicating that when all power suppliers adopt
real-time electricity prices calculated based on the game model,
every user in the demand response model will gain substantial
benefits.

7 Conclusion

In this paper, we employ a long short-term memory (LSTM)
network as a load forecasting model to predict user load data in
a smart grid and utilize a Stackelberg game model based on the
load forecasting model to reduce the overall expenditure of energy
users. The main contribution of this paper can be summarized as
follows:

1) This paper employs an LSTM network as a load supervision
model to forecast users’ load data. The LSTM network integrates
gate structures andmemory units internally, enabling it tomemorize

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1240542
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Cui et al. 10.3389/fenrg.2023.1240542

historical data effectively and predict users’ cyclical demand
behaviors.

2) Based on the load supervision model, this paper built a
Stackelberg game model to optimize the optimal power prices
set by the power supplier in real time at each moment, making
the demand response between users and the power supplier more
efficient. Specifically, the power supplier first sets the initial power
prices according to the forecasted user demand and then adjusts its
power prices in real time in response to user reactions and price
competition with other power suppliers, achieving its maximum
profit.

3) This paper compares the prediction accuracy of forecasting
models with different layers and numbers of neurons through
simulation experiments and obtains optimal model parameters.
Results of comparing actual user data and the prediction output
demonstrate that LSTM-based load forecasting model achieves an
accuracy of up to 96.37%. Additionally, the game model reduces
the overall expenditure of users by 30% compared with the general
pricing model.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/SupplementaryMaterial, further inquiries can be directed
to the corresponding author.

Author contributions

FC contributed to the conception, performed the experiment
and wrote the manuscript. DA contributed to the manuscript
correction and foundation support. GZ helped perform the analysis

with constructive discussions. All authors contributed to the article
and approved the submitted version.

Funding

This work was supported in part by the National Natural
Science Foundation ofChina underGrantNos. 62173268, 61803295,
61973247, and 61673315; in part by the Major Research Plan of
the National Natural Science Foundation of China under Grant
61833015; in part by the National Postdoctoral Innovative Talents
Support Program of China under Grant BX20200272; in part the
National Key Research and Development Program of China under
Grant 2019YFB1704103; and in part by the China Postdoctoral
Science Foundation under Grant 2018M643659.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Abubakar, I., Khalid, S., Mustafa, M., Shareef, H., and Mustapha, M. (2017).
Application of load monitoring in appliances’ energy management–a review. Renew.
Sustain. Energy Rev. 67, 235–245. doi:10.1016/j.rser.2016.09.064

Afrasiabi, M., Mohammadi, M., Rastegar, M., Stankovic, L., Afrasiabi, S., and
Khazaei, M. (2020). Deep-based conditional probability density function forecasting of
residential loads. IEEE Trans. Smart Grid 11, 3646–3657. doi:10.1109/tsg.2020.2972513

Alhmoud, L., and Nawafleh, Q. (2021). Short-term load forecasting for Jordan power
system based on narx-elman neural network and arma model. IEEE Can. J. Electr.
Comput. Eng. 44, 356–363. doi:10.1109/icjece.2021.3076124

Bokkisam, H. R., Singh, S., Acharya, R. M., and Selvan, M. P. (2022).
Blockchain-based peer-to-peer transactive energy system for community microgrid
with demand response management. CSEE J. Power Energy Syst. 8, 198–211.
doi:10.17775/CSEEJPES.2020.06660

Cai, T.,Wu, C., andZhang, J. (2022). “A bagging long short-termmemory network for
financial transmission rights forecasting,” in 2022 7th IEEE workshop on the electronic
grid (eGRID) (IEEE), 1–5.

Chen, C., Lu, N., Jiang, B., Xing, Y., and Zhu, Z. H. (2021). Prediction interval
estimation of aeroengine remaining useful life based on bidirectional long short-term
memory network. IEEE Trans. Instrum. Meas. 70, 1–13. doi:10.1109/tim.2021.3126006

Cheng, L., Chen, Y., and Liu, G. (2022). 2pns-eg: a general two-population n-strategy
evolutionary game for strategic long-term bidding in a deregulated market under
different market clearing mechanisms. Int. J. Electr. Power Energy Syst. 142, 108182.
doi:10.1016/j.ijepes.2022.108182

Cheng, L., and Yu, T. (2019). Game-theoretic approaches applied to transactions in
the open and ever-growing electricity markets from the perspective of power demand
response: an overview. IEEE Access 7, 25727–25762. doi:10.1109/access.2019.2900356

Gao, Y., Ma, J., Wang, J., and Wu, Y. (2023). Event-triggered adaptive fixed-time
secure control for nonlinear cyber-physical system with false data-injection attacks.
IEEE Trans. Circuits Syst. II Express Briefs 70, 316–320. doi:10.1109/tcsii.2022.3217823

Gellings, C. W., Samotyj, M., and Howe, B. (2004). The future’s smart
delivery system [electric power supply]. IEEE Power Energy Mag. 2, 40–48.
doi:10.1109/mpae.2004.1338121

Gyamfi, S., Krumdieck, S., andUrmee, T. (2013). Residential peak electricity demand
response—Highlights of some behavioural issues. Renew. Sustain. Energy Rev. 25,
71–77. doi:10.1016/j.rser.2013.04.006

Hermias, J. P., Teknomo, K., and Monje, J. C. N. (2017). “Short-term stochastic load
forecasting using autoregressive integrated moving average models and hidden markov
model,” in 2017 international conference on information and communication technologies
(ICICT) (IEEE), 131–137.)

Huang, S.-J., and Shih, K.-R. (2003). Short-term load forecasting via arma model
identification including non-Gaussian process considerations. IEEE Trans. power Syst.
18, 673–679. doi:10.1109/tpwrs.2003.811010

Jasim, A. M., Jasim, B. H., Flah, A., Bolshev, V., and Mihet-Popa, L. (2023).
A new optimized demand management system for smart grid-based residential
buildings adopting renewable and storage energies. Energy Rep. 9, 4018–4035.
doi:10.1016/j.egyr.2023.03.038

Khan,M. A., Saleh, A.M.,Waseem,M., and Sajjad, I. A. (2023). Artificial intelligence
enabled demand response: prospects and challenges in smart grid environment. IEEE
Access 11, 1477–1505. doi:10.1109/access.2022.3231444

Liu, N., Yu, X., Wang, C., Li, C., Ma, L., and Lei, J. (2017). Energy-sharingmodel with
price-based demand response for microgrids of peer-to-peer prosumers. IEEE Trans.
Power Syst. 32, 3569–3583. doi:10.1109/tpwrs.2017.2649558

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1240542
https://doi.org/10.1016/j.rser.2016.09.064
https://doi.org/10.1109/tsg.2020.2972513
https://doi.org/10.1109/icjece.2021.3076124
https://doi.org/10.17775/CSEEJPES.2020.06660
https://doi.org/10.1109/tim.2021.3126006
https://doi.org/10.1016/j.ijepes.2022.108182
https://doi.org/10.1109/access.2019.2900356
https://doi.org/10.1109/tcsii.2022.3217823
https://doi.org/10.1109/mpae.2004.1338121
https://doi.org/10.1016/j.rser.2013.04.006
https://doi.org/10.1109/tpwrs.2003.811010
https://doi.org/10.1016/j.egyr.2023.03.038
https://doi.org/10.1109/access.2022.3231444
https://doi.org/10.1109/tpwrs.2017.2649558
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Cui et al. 10.3389/fenrg.2023.1240542

Mahela, O. P., Khosravy, M., Gupta, N., Khan, B., Alhelou, H. H., Mahla, R., et al.
(2022). Comprehensive overview of multi-agent systems for controlling smart grids.
CSEE J. Power Energy Syst. 8, 115–131. doi:10.17775/CSEEJPES.2020.03390

Mansouri, S. A., Paredes, Ángel, González, J. M., and Aguado, J. A. (2023).
A three-layer game theoretic-based strategy for optimal scheduling of microgrids
by leveraging a dynamic demand response program designer to unlock the
potential of smart buildings and electric vehicle fleets. Appl. Energy 347, 121440.
doi:10.1016/j.apenergy.2023.121440

Mocanu, E., Nguyen, P. H., Gibescu, M., and Kling, W. L. (2016). Deep learning
for estimating building energy consumption. Sustain. Energy, Grids Netw. 6, 91–99.
doi:10.1016/j.segan.2016.02.005

Orlando, M., Estebsari, A., Pons, E., Pau, M., Quer, S., Poncino, M., et al. (2022).
A smart meter infrastructure for smart grid iot applications. IEEE Internet Things J. 9,
12529–12541. doi:10.1109/jiot.2021.3137596

Panda, S.,Mohanty, S., Rout, P. K., Sahu, B. K., Parida, S.M., Kotb,H., et al. (2022). An
insight into the integration of distributed energy resources and energy storage systems
with smart distribution networks using demand-side management. Appl. Sci. 12, 8914.
doi:10.3390/app12178914

Sivasankarareddy, V., Sundari, G., Rami Reddy, C., Aymen, F., and Bortoni, E. C.
(2021). Grid-based routing model for energy efficient and secure data transmission in
wsn for smart building applications. Appl. Sci. 11, 10517. doi:10.3390/app112210517

Sofana Reka, S., and Ramesh, V. (2016). A demand response modeling for residential
consumers in smart grid environment using game theory based energy scheduling
algorithm. Ain Shams Eng. J. 7, 835–845. doi:10.1016/j.asej.2015.12.004

Tang, R., Wang, S., and Li, H. (2019). Game theory based interactive demand
side management responding to dynamic pricing in price-based demand
response of smart grids. Appl. Energy 250, 118–130. doi:10.1016/j.apenergy.2019.
04.177

Trujillo, D., andGarcía Torres, E.M. (2022). Demand response due to the penetration
of electric vehicles in amicrogrid through stochastic optimization. IEEE Lat. Am. Trans.
20, 651–658. doi:10.1109/tla.2022.9675471

Walther, J., Spanier, D., Panten, N., and Abele, E. (2019). Very short-term load
forecasting on factory level–a machine learning approach. Procedia CIRP 80, 705–710.
doi:10.1016/j.procir.2019.01.060

Wang, L., Hou, C., Ye, B., Wang, X., Yin, C., and Cong, H. (2021). Optimal
operation analysis of integrated community energy system considering the uncertainty
of demand response. IEEE Trans. Power Syst. 36, 3681–3691. doi:10.1109/tpwrs.2021.
3051720

Wang, L., Jones, D., Chapman, G. J., Siddle, H. J., Russell, D. A., Alazmani, A.,
et al. (2020). A review of wearable sensor systems to monitor plantar loading in
the assessment of diabetic foot ulcers. IEEE Trans. Biomed. Eng. 67, 1989–2004.
doi:10.1109/tbme.2019.2953630

Zhang, Z., Huang, Y., Chen, Z., and Lee,W.-J. (2023). Integrated demand response for
microgrids with incentive compatible bidding mechanism. IEEE Trans. Industry Appl.
59, 118–127. doi:10.1109/tia.2022.3204626

Zheng, S., Sun, Y., Qi, B., and Li, B. (2022). Incentive-based integrated demand
response considering S&C effect in demand side with incomplete information. IEEE
Trans. Smart Grid 13, 4465–4482. doi:10.1109/tsg.2022.3149959

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1240542
https://doi.org/10.17775/CSEEJPES.2020.03390
https://doi.org/10.1016/j.apenergy.2023.121440
https://doi.org/10.1016/j.segan.2016.02.005
https://doi.org/10.1109/jiot.2021.3137596
https://doi.org/10.3390/app12178914
https://doi.org/10.3390/app112210517
https://doi.org/10.1016/j.asej.2015.12.004
https://doi.org/10.1016/j.apenergy.2019.04.177
https://doi.org/10.1016/j.apenergy.2019.04.177
https://doi.org/10.1109/tla.2022.9675471
https://doi.org/10.1016/j.procir.2019.01.060
https://doi.org/10.1109/tpwrs.2021.3051720
https://doi.org/10.1109/tpwrs.2021.3051720
https://doi.org/10.1109/tbme.2019.2953630
https://doi.org/10.1109/tia.2022.3204626
https://doi.org/10.1109/tsg.2022.3149959
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

	1 Introduction
	2 Related work
	2.1 Research status of load monitoring models in smart grids
	2.2 Research status of demand response technology in smart grids

	3 Preliminaries
	3.1 System model
	3.2 Game theory approach

	4 Load supervision method based on an LSTM network
	4.1 LSTM network
	4.2 Construction of a load monitoring model based on an LSTM network
	4.2.1 Load data analysis
	4.2.2 Load supervision model framework


	5 Demand response methods based on game theory
	5.1 User-side mathematical model
	5.2 Power-supply-side mathematical model
	5.3 Power-supply-side game model

	6 Simulations
	6.1 Experiment of user load data prediction
	6.1.1 Dataset
	6.1.2 Simulation of load supervision model parameters
	6.1.3 Prediction results of user load

	6.2 Simulation and analysis of the demand response model

	7 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

