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The time series data in many applications, for example, wind power and vehicle
trajectory, show significant uncertainty. Using a single prediction value of wind
power as feedback information for wind turbine control or unit commitment is
not enough since the uncertainty of the prediction is not described. This paper
addresses the uncertainty issue in time series data forecasting by proposing
the novel interval reservoir computing method. The proposed interval reservoir
computing can capture the underlying evolution of the stochastic dynamical
system for time series data using the recurrent neural network (RNN). On the
other hand, by formulating a chance-constrained optimization problem, interval
reservoir computing outputs a set of parameters in the RNN, which maps to
an interval of prediction values. The capacity of the interval is the smallest
one satisfying the condition that the probability of having a prediction inside
the interval is lower than the required level. The scenario approach solves
the formulated chance-constrained optimization problem. We implemented
an experimental data-based validation to evaluate the proposed method. The
validation results show that the proposed interval reservoir computing can give
a tight interval of time series data forecasting values for wind power and traffic
trajectory. In addition, the confidence probability over the feasibility goes to 1
very quickly as the sample number increases.

KEYWORDS

uncertain dynamical systems, probabilistic prediction, time series data, wind power
forecasting, vehicle trajectory

1 Introduction

Time series data prediction is vital in many applications for pursuing better control
or decision-making performance toward achieving a better society or quality of life. For
example, to accomplish the net-zero carbon goal, it is vital to establish a reliable power system
with renewable energy for energy supplement instead of high-carbon power generation
(Evans et al., 2021). Wind energy is one of the best choices among different kinds of
renewable energy resources. However, wind power has a stochastic nature, which makes
it challenging to realize the optimal wind power supplementation with high reliability
(Zhao et al., 2018; Ge et al., 2022). It is necessary to provide a reliable wind power prediction
for the security-constrained unit commitment (SCUC) problem to improve the optimality
and reliability of wind power supplementation (Hu and Wu, 2016). Instead of using one
single wind power prediction, the SCUC problem involved with wind power often considers
the uncertain nature of wind power. It is formulated as a stochastic program (Chen et al.,
2015). The random variables, such as wind power, are assumed to be within a bounded
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set in the formulated stochastic program (Hu et al., 2014; Dai et al.,
2016). Only with a reliable set for the random variable will the
solution of the stochastic program be faithful. Another critical
application scene is safety control in complex traffic environments.
It is crucial to give reliable sets for the trajectories of traffic
participants surrounding the self-vehicle (Liu et al, 2022; Shen and
Raksincharoensak, 2022). For example, Liu et al. (2022) proposed a
dynamic lane-changing trajectory generator based on the uncertain
evaluation of other vehicle trajectories. Yu et al. (2022) proposed a
robust and safe trajectory planning method, considering a bounded
uncertainty for the other vehicle trajectories. Lyu et al. (2022)
improved the vehicle trajectory prediction accuracy using the
information from the connected environment. Thus, a reliable set
for the random variable’s prediction is vital for robust control and
decision-making.

However, giving a reliable set for the random variable’s
prediction is challenging due to the computational complexity
issue. Conformal prediction is a method to provide scores on
confidence in the prediction value and then gives a confidence
interval (Wang et al., 2021). It can also be applied to deep
neural networks (Wen et al., 2021). However, it suffers from the
“curse of dimensionality.” The computational complexity becomes
impractical for applications as the dimension of parameters in the
model increases. The Bayesian neural network is an alternative way
to provide the confidence interval of the predictions (Neal, 2012;
Chen et al., 2021; Xue et al., 2022). The uncertainty is represented
by giving the weights on the parameters of the neural network.
However, the Bayesian neural network needs many assumptions for
practical implementation. A neural network that maps an input to
an interval of the predictions is called an interval neural network
(INN), first proposed in Ishibuki et al. (1993). Compared to the
Bayesian neural network, the INN requires fewer assumptions and
can provide probabilistic guarantees on the reliability of the obtained
neural network (Ak et al., 2015). Recently, a machine learning-
based method, called interval predictor models, was proposed
in Campi et al. (2009) and Garattia et al. (2019). The problem
of constructing an interval predictor model can be formulated
as a chance-constrained optimization problem (Shen et al., 2023).
The above methods do not consider the neural networks for
dynamic systems. In this paper, we extend the above method to
recurrent neural networks combining reservoir computing (Jaeger
and Haas, 2004) to address the uncertain quantification problem
for predictions in dynamic systems. We call the proposed method
“interval reservoir computing.” The proposed interval reservoir
computing can capture the underlying evolution of the stochastic
dynamical system for time series data using the recurrent neural
network (RNN). On the other hand, by formulating a chance-
constrained optimization problem, interval reservoir computing
outputs a set of parameters in the RNN, which maps to an interval
of wind power prediction values. The capacity of the interval is the
smallest one satisfying the condition that the probability of having
a prediction inside the interval is lower than the required level.
The scenario approach solves the formulated chance-constrained
optimization problem. We implemented experimental data-based
validation to evaluate the proposed method.

The rest of this paper is organized as follows: Section 2 gives
a general problem formulation of interval prediction in dynamical
systems; Section 3 presents the proposed interval reservoir after

briefly introducing reservoir computing and the scenario approach;
Section 4 gives the experimental data-based validation; Section 5
concludes the whole paper and discusses future work.

2 Problem formulation: prediction in
dynamical systems

In wind power or vehicle trajectory forecasting applications,
time series data are generated by an underlying stochastic dynamical
system. The stochastic dynamical system has system inputs, hidden
states which cannot be observed, and observations that sensors can
measure. A graphical model of the addressed stochastic dynamical
system is illustrated by Figure 1. Let t ∈ ℤ be the time index. The
hidden state is denoted by xt ∈ ℝk. The system input is represented
by ut ∈ ℝ

c. The observation is yt ∈ ℝ
d. Note that xt is not available,

and only the data on yt and ut can be obtained from the sensors.
The observation yt depends on ut and xt. However, for given
values of ut and xt, the observation yt is not deterministic but
with uncertainty. The observation yt is a random variable with a
conditional probability distribution pt(y|xt,ut). An alternative way
is to use a function involved with random variables. Let g:ℝk ×ℝc ×
ℝm→ℝd be the function that gives the observation from state and
input in the following way:

yt = g(xt,ut,wt) , (1)

where wt ∈ ℝm denotes the m-dimension observation noise
with the probability density function r(w). On the other
hand, the system transition is also involved with uncertainty.
Let f:ℝk ×ℝc ×ℝl→ℝk be the function that gives the state
of the next time index from the state and input in the
following way:

xt+1 = f (xt,ut,vt) , (2)

where vt ∈ ℝ
l is the l-dimension system noise with the probability

density function q(v). The initial state vector x0 is distributed
according to the probability density p0(x0).

The information on f(⋅), g(⋅), r(w), and q(v) is unavailable. In this
study, the available information is the dataset UT = {u0,u1,…,uT} of
system inputs and the dataset YT = {y0,y1,…,yT} of observations.
We want to learn models ̃f(⋅), ̃g(⋅), ̃r(w), and ̃q(v). The traditional
view is to learn ̃f(⋅), ̃g(⋅), ̃r(w), and ̃q(v) for the sake of
improving the performance of the root mean square (RMS)
of predictions or maximizing the likelihood of the dataset. In
this paper, we obtain a novel prediction model that gives a
predictive interval of the observation. We define an interval of yt
as follows.

Definition 1: Let FY be the Borel set of ℝd. An interval It ∈ FY is a
set of yt. For a given probability level α ∈ (0,1), if It ∈ FY satisfies

Prt {yt ∈ It ∈ FY} ≥ 1− α, (3)

where Prt{⋅} is the underlying probability measure defined on FY at
time index t, we call It as a α-reliable interval. The set of all α−
confidence intervals is defined as It,α. For a given probability level
α ∈ (0,1), an optimal interval I*t satisfies

ℂ(I*t) ≤ ℂ(It) , ∀It ∈ Iα, (4)
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FIGURE 1
Probabilistic graphical model for stochastic dynamical systems with hidden states xt, inputs ut, and observations yt.

where ℂ(⋅) denotes the capacity of a set.
The problem is formally summarized in Problem 1.

Problem 1: Given the system input set UT = {u0,u1,…,uT} and
observation set UT = {y0,y1,…,yT}, to obtain ̃f*(⋅), ̃g*(⋅), ̃r*(w), and
̃q*(v) by solving

min
̃f , ̃g, ̃r, ̃q
ℂ(It ( ̃f, ̃g, ̃r, ̃q))

Prt {yt ∈ It ( ̃f, ̃g, ̃r, ̃q) ∈ FY} ≥ 1− α, ∀t = 1,…,T. (5)

3 Proposed method

In this section, we briefly review the reservoir computing
and scenario approach. Then, we give the concept of interval
reservoir computing, combining reservoir computing and a
scenario approach. The probabilistic reliability of interval reservoir
computing to Problem 1 is also given.

3.1 Brief introduction to reservoir
computing

Reservoir computing is a novel algorithm to train a RNN. This
study uses the echo state network (ESN) method presented in Jaeger
and Haas (2004) to construct RNN. Let xact,t be the activation state
of RNN at time index t. The terminology “echo” implies that xact,t
is a function of all the input history ut−1,… related to the network.
The ESN consists ofmultiple sigmoidal units in discrete time, the so-
called reservoir or dynamic reservoir. A general ESN has a discrete-
time neural network with internal network units (for state xsta,t),
input units (for input ut), and output units (for observation yt). The
internal units are updated as follows.

xact,t+1 = fact (W
inut +Wxact,t +Wbackyt) , (6)

where fact is the vector function of the internal unit written as fact =
[ f1act,…, f

nact
act ]
⊤.

On the other hand, the output is computed as

yt =W
outxact,t, (7)

where Wout is the output weight. Reservoir computing is to train
Win, W, Wback, and Wout, and the algorithm is summarized as
follows:

• Design of a reservoir vector: a reservoir vector xact,t and the
internal unit, as shown in Eq. 6, are established.
• Randomly generating Win, W, and Wback, which comprise a

sparse random matrix with the maximal eigenvalue controlled.
• Determining the output layer by

min
Wout

T

∑
t=1
‖Woutxt − yt‖

2 + βTrace(WoutWout,⊤) . (8)

Figure 2 illustrates the reservoir computing concept.

3.2 Scenario approach

The scenario approach has been applied to obtain the
probabilistic boundary for a given nonlinear state space model
(Shen et al., 2020a). The theory of the scenario approach has
been presented in Calafiore and Campi (2005) for solving
robust optimization with the convex objective function and
constraint functions. The result has been extended to non-convex
cases in Campi et al. (2015). This paper reviews the method of
Campi et al. (2015).

The decision variable is θ ∈ Θ ⊆ ℝnθ . Let J:Θ→ℝ be the
objective function.The uncertain variable is denoted by δ ∈ Δ ⊆ ℝnδ .
For every instance δ ∈ Δ, a subset of Θ is defined by

Θδ = {θ ∈ Θ : h (θ,δ) ≤ 0} ,

where h: Θ×Δ→ℝm is a constraint function. Then, a robust
optimization problem can be written as

min
θ∈Θ

J (θ)

s.t. θ ∈ Θδ, ∀δ ∈ Δ.
(9)

Problem Eq. 9 is NP-hard and cannot be solved by any algorithms
for a general optimization problem. An approximate problem of
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FIGURE 2
Intuitive introduction for reservoir computing.

that in Eq. 9 is obtained by sampling a dataset δ(1),…,δ(N), which is
written by

min
θ∈Θ

J (θ)

s.t. θ ∈ Θδ(i) , ∀i = 1,…,N.
(10)

Let θ*
N be an optimal solution of the problem in Eq. 10 andAN be an

algorithm that is able to get θ*
N for a given dataset (δ(1),…,δ(N)) ∈ ΔN.

Then, we have

θ*
N =AN (δ(

1),…,δ(N)) . (11)

It is natural to doubt whether θ*
N is a feasible solution of the

problem in Eq. 9 since θ*
N does not consider constraints for all δ ∈ Δ.

Here, since the sampling process of the dataset (δ(1),…,δ(N)) ∈ ΔN is
random, we consider the feasibility of θ*

N in a probabilistic sense. We
define the violation probability herein.

Definition 2: The violation probability of any decision θ ∈ Θ is
written as

𝕍(θ) ≔ Prδ {δ ∈ Δ : θ ∉ Θδ} ,

where Prδ{⋅} defines the probability measure defined on the σ-algebra
of Δ.

For a given probability level ɛ ∈ (0,1) and a given confidence
bound 1− β ∈ (0,1), we want to get a bound of sample number
N̄(β,ε) such that

Prδ {𝕍(θ*
N) ≤ ε} ≥ 1− β, ∀N ≥ N̄ (β,ε) .

Theorem 1 of Campi et al. (2015) is stated as follows:

Lemma 1: Let ɛ : {0,…,N} → [0,1] be a function such that

ε (N) = 1 (12)

and
N−1

∑
i=0
(N
i
)(1− ε (i))N−i = β. (13)

It holds that

PrN {𝕍(θ*
N) > ε(m

*
N)} ≤ β, (14)

where m*
N is the number of irreducible subsamples of (δ(1),…,δ(N)).

3.3 Interval reservoir computing

In this study, compared to obtain Wout by solving Eq. 8, we
intend to find an interval of Wout for every given ut, xact,t that can
finally give an α-confident interval of yt, as defined in Definition 1.
In other words, the output will locate in an interval with a probability
larger than the given level α ∈ (0,1). In addition, the interval is
expected to be optimal with the smallest area. Here, a sub-optimal
interval is targeted as the approximation of I*t . For RNN, the interval
is written as

IRNN ≔ {y =WOutxact,t + e,Wout ∈W ⊆ ℝd×nact , |e| ≤ γ ∈ ℝ+} . (15)

Note that the set IRNN is obtained by varying the values ofWout, e in
W , andℝ+. A possible choice for the set Ω is a ball with center c and
radius r > 0:

Ω = Bc,r = {Wout ∈W : ‖ω− c‖2 ≤ r} . (16)

The interval output of the RNN obtained via Eq. 15 is explicitly
written as

IRNN,Bc,r
(xact,t,γ) = [cxact,t − (r‖xact,t‖+ γ) ,cact,t + (r‖xact,t‖+ γ)] .

(17)

Then, the problem of obtaining a spherical INN is written as

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

Pr{yt ∈ IRNN,Bc,r
(xact,t,γ) ,∀t} ≥ 1− α, (PB,α)

yt ∈ ℝ
d,

where η is a positive number. Let θB be the decision variable of
Problem PB,α including c, r, and γ. Let ΘB,α be the feasible region
of θB of Problem PB,α. Defining the optimal objective function of
Problem PB,α by

J*B,α ≔ min
θB∈ΘB,α

ηr+ γ. (18)
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FIGURE 3
Proposed framework of the interval reservoir computing method.

Defining the optimal solution set of Problem PB,α by

A*
B,α ≔ {θB ∈ ΘB,α : ηr+ γ = J*B,α.} . (19)

Suppose that the dataset DT = {u(t),y(t)}t=1,…,T is
available. Then, we can formulate the scenario program
of Problem PB,α as follows:

min
c,r,γ

ηr+ γ

s.t. r,γ > 0,

yt ∈ IRNN,Bc,r
(xact,t,γ) , ∀t = 1,…,T. (˜PT

B,α)

Let Θ̃T
B,α be the feasible region of θB of Problem P̃T

B,α. Defining
the optimal objective function of Problem P̃T

B,α by

̃JTB,α ≔ min
θB∈Θ̃

T
B,α

ηr+ γ. (20)

Defining the optimal solution set of Problem P̃T
B,α by

̃AT
B,α ≔ {θB ∈ Θ̃

T
B,α : ηr+ γ = ̃JTB,α.} . (21)

By adapting Lemma 1, we have the following theorem on the
probabilistic feasibility of ̃θTB,α ∈ ̃A

T
B,α.

Theorem 1: Let ̃θTB,α ∈ ̃A
T
B,α be the solution of P̃T

B,α. The interval
at t associated with ̃θTB,α is denoted by ̃IαRNN,Bc,r

(xact,t,γ). Then, the
following holds:

PrT {Pr{yt ∉ ̃I
α
RNN,Bc,r
(xact,t,γ)} > ε(m*

T)} ≤ β, ∀t, (22)

where m*
T is the number of irreducible subsamples of

((u1,y1),…,(uT,yT)) and ɛ satisfies

ε (T) = 1 (23)

and
T−1

∑
i=0
(T
i
)(1− ε (i))T−i = β. (24)

 Inputs: data set DT = {u(t),y(t)}t=1,…,T
  1: design of reservoir vector and function

according to Eqs 6, 7

  2: randomly generate Win, W, and Wback

  3: solve Problem ̃PT
B,α and obtain ̃θTB,α

 Output: ̃θTB,α

Algorithm 1. Algorithm for interval reservoir computing.

Proof. Since ̃θTB,α is a feasible solution of P̃T
B,α, by Lemma 1, we

have

PrT {𝕍( ̃θTB,α) > ε(m*
T)} ≤ β, (25)

where𝕍( ̃θTB,α) = Pr{yt ∉ ̃I
α
RNN,Bc,r
(xact,t,γ)}. Thus, Eq. 22 holds.

By Theorem 1, we know that it can adjust the sample number
T to regulate the violation probability. Using the scenario approach
directly, it cannot regulate the violation probability to the desired
one. We leave this issue for future work. Based on the theoretical
analysis, the algorithm for interval reservoir computing is designed,
and the pseudo-code is written in Algorithm 1.

Figure 3 illustrates the proposed framework for implementing
the interval reservoir computing method. It follows the general
frameworkwidely used to validate the time seriesmodel (Shen et al.,
2020b). The online obtained history data range from the blue
line (not the whole line). Then, the data are used to give the
future maximum likelihood prediction (the red dotted line) and
the confidence region (the red line) by the model trained by the
training dataset.

4 Validations

4.1 Wind power prediction

Let xs(t) be the wind speed at time index t and yp(t) be the wind
power at time index t. The mechanism behind the evolution of wind
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FIGURE 4
Experimental dataset in this study.

FIGURE 5
Results of a one-step-ahead prediction by the proposed interval reservoir computing (from t = 2560 to t = 2660): (A) N = 500, (B) N = 1000, (C)
N = 2000, and (D) N = 5000.

speed and wind power can be described by

xs (t+ 1) = fwind (xs (t) ,ws (t)) , (26)

yp (t) = gwind (xs (t) ,vs (t)) . (27)

Here, both fwind and gwind are unknown.
The experimental dataset shown in Figure 4 is used in this

validation. Figure 4A plots the time series data on wind speed, and
Figure 4B plots the time series data on the wind power at the same
time. There are a total of 13 groups of data. Eight groups are used as
training datasets; the other groups are used as test datasets.

In this validation, we set the threshold for violation
probability as α = 0.05. The number of samples, N, is from
{100,500,1000,2000,5000,10,000}. Figures 5, 6 show two examples
of the one-step-ahead prediction by the proposed interval reservoir
computing. The parts (a), (b), (c), and (d) of each figure provide
the results with N = 500, N = 1000, N = 2000, and N = 5000,
respectively. As the sample number N increases, the size of the
interval also increases, while the center of the interval does
not change significantly. In particular, as N surpluses 2,000, the
probability of having the data inside the interval is less than the
required value α = 0.05, implying that the proposed method gives a
more conservative interval than we expect.
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FIGURE 6
Results of a one-step-ahead prediction by the proposed interval reservoir computing (from t = 2560 to t = 2660): (A) N = 500, (B) N = 1000, (C)
N = 2000, and (D) N = 5000.

TABLE 1 Statistical performance of the proposedmethod with different sample numbers N. Mean values of 5,000Monte Carlo trials are presented.

Method/N 100 500 1,000 2,000 5,000 10,000

PrN{𝕍(θ*
N) > 0.05} 0.293 0.138 0.002 0.000 0.000 0.000

CPU time (s) 0.076 0.154 0.197 0.231 0.277 0.359

FIGURE 7
One example of a one-step-ahead prediction by the proposed interval reservoir computing for vehicle trajectory prediction: (A) N = 500 and (B)
N = 5000.

A statistical analysis has been conducted to check the
performance of the proposed interval reservoir computing. Monte
Carlo tests have been repeated 5,000 times for each choice of
sample numberN = 100,500,1000,2000,5000,10,000. We check the
violation probability and CPU time in this Monte Carlo simulation.

Themetric for checking the performance of the violation probability
is PrN{𝕍(θ*

N) > 0.05}, the chance that the violation probability is
larger than 0.05. AsN increases, PrN{𝕍(θ*

N) > 0.05} decreases to zero
quickly, as shown in Table 1. On the other hand, the computation
time increases as N increases while it is still at an acceptable level.

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1239973
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Gao et al. 10.3389/fenrg.2023.1239973

TABLE 2 Statistical performance of the proposedmethod with different sample numbers N. Mean values of 5,000Monte Carlo trials are presented.

Method/N 100 500 1,000 2,000 5,000 10,000

PrN{𝕍(θ*
N) > 0.05} 0.127 0.005 0.000 0.000 0.000 0.000

CPU time (s) 0.102 0.218 0.409 0.531 0.591 0.677

4.2 Vehicle trajectory prediction

In another example, we have applied the proposed interval
reservoir computing to vehicle trajectory prediction. The
experimental data are the public dataset “US Highway 101 Dataset.”
As in the example of wind power prediction, the number of samples
is chosen from {100,500,1000,2000,5000,10,000}, and the violation
probability threshold is α = 0.05. Figure 7 shows one example of a
one-step-ahead prediction for the vehicle trajectory prediction with
N = 500 and N = 5000 results.

Statistical analysis has also been conducted in this example of
vehicle trajectory prediction. The settings of Monte Carlo tests are
the same as the example of wind power prediction. As shown in
Table 2, the results are consistent with the results of wind power
prediction.

4.3 Discussion

In this validation, we mainly check the performance of the
proposed method with different sample numbers. Indeed, it is
necessary to compare the proposed method with other uncertainty
quantification methods, such as conformal prediction and Bayesian
neural networks. We will further research on this as future work.

One drawback of the proposed interval reservoir computing
is that it cannot give an exact interval for a given violation
probability α. This drawback comes from using a scenario
approach to solve the problem PB,α. The scenario approach ensures
the approximate solution’s feasibility while not considering the
convergence of the approximate solution’s optimality. Using sample
discarding presented in (Campi and Garatti, 2011) seems to be
an excellent choice to make a trade-off between optimality and
feasibility. However, sample discarding will dramatically increase
the computational complexity of solving PB,α. We leave the issue of
optimality for future work.

5 Conclusion and future work

This paper proposes an improved version of interval reservoir
computing for time series data forecasting, for example, wind power
forecasting and vehicle trajectory forecasting. More than giving a
maximum likelihood prediction value of wind power or vehicle
trajectory, interval reservoir computing provides an interval of
the prediction. The future data will be located inside the interval
with a probability larger than the required value. To obtain the
interval, a chance-constrained optimization has to be solved for
obtaining the interval of the parameters in an RNN. We apply
a scenario approach to solve the chance-constrained optimization
problem. Experimental data-based validations have been conducted

to evaluate the proposed interval reservoir computing. Although the
results show that the proposed interval reservoir computing can give
a tight interval for wind power forecasting and vehicle trajectory
forecasting, the following issues remain to be resolved in future
work.

• It is necessary to compare the proposed method with other
uncertainty quantification methods, such as the conformal
prediction and Bayesian neural networks.
• The scenario approach for solving chance-constrained

optimization cannot ensure the convergence of the optimality
of the approximate solution. Thus, it is necessary to develop a
method that ensures the convergence of the optimality to solve
the chance-constrained optimization.
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