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The existing voltage sag source localization only utilizes one simulation type or
measurement data based on sampled waveform data. Moreover, it requires more
storage space and transmission channels and cannot combine the advantages of
simulated and measurement data, resulting in poor applicability of the model.
Hence, this paper proposes a voltage sag source locating method based on
transfer learning from the sag information in the sag event list combined with
the grid structure data. Firstly, the location features of the sag source are extracted
from the degree of sag impact, network structure, and sag-type information based
on the characteristics of simulated and measurement data that characterize the
position of the sag source, and they are collectively used as inputs to the model.
Then, the simulated data is used to build a multi-classificationmodel based on the
multi-layer perceptron with the line number as the classification number, and the
measurement data is employed to fine-tune the model parameters to achieve
transfer learning. Finally, voltage sag source localization is achieved based on the
trainedmulti-classificationmodel. The correctness of the proposedmethod in this
paper is verified through simulation and actual measurement in a specific area of
East China.
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1 Introduction

Voltage sag, being a critical power quality concern in the power system, has attracted the
attention of both power supply and consumption parties (Hamdan, et al., 2020; Liu et al.,
2020; Zhang et al., 2021; Jia et al., 2023). To understand the situation of power grid faults,
quickly identify the sources of voltage sags, and provide targeted operation and maintenance
to reduce the impact of voltage sags, it is necessary to conduct research on the localization of
voltage sag sources (Meng et al., 2022). In addition to fault location, sag source localization
uses the feature quantities measurement by monitoring devices to determine the
approximate location of the sag source. Subsequently, it associates the grid side faults
through the fault recording system to understand the affected range of users without
monitoring devices and refine the affected area of users. Furthermore, it plays an important
supporting role in enhancing inspection efficiency, helping users develop temporary power
supply plans and defining the responsibility-sharing relationship between power supply
companies and users during voltage sag events (Chen et al., 2019; Lv et al., 2021).

Since short-circuit faults are the most likely to occur and have the most extensive impact
range, the voltage sag caused by short-circuit faults is also the most severe harm (Si et al.,
2017). Therefore, the sag source location is generally studied for grid-side faults. Recently, a
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large amount of research has been conducted on identifying the sag
source location both domestically and internationally. Traditional
sag source localization methods mainly rely on physical feature
quantities to determine whether the voltage sag source is located
upstream or downstream of the monitoring point. According to the
different selected feature quantities, traditional methods are mainly
divided into two categories: disturbance power and energy methods
(Parsons et al., 2000) and parameter transformation methods
(Mohammadi et al., 2017; Tang et al., 2017). The former defines
the relative position of the voltage sag in themonitoring device based
on the energy flow direction. The latter determines whether the
voltage sag source is located upstream or downstream of the
monitoring device based on the changes in system parameters
before and after the fault. Thus, Lv et al. (2019) regarded
upstream and downstream locations as a binary classification
problem and combined multiple localization features to improve
the upstream and downstream localization accuracy. It should be
noted that the mentioned approaches can only define the
responsibility-sharing relationship between users and grid
companies, while they are not able to refine the impact of
different line faults on users and cannot provide temporary
power supply plans and decision-making support for users. To
narrow the search range for sag sources, Hu et al. (2021)
proposed a voltage sag source localization method in distribution
networks based on wavelet energy entropy, relying on the sensitivity
of wavelet energy entropy to sudden changes in signals. While this
method reduced the location results to the nearest node to the sag
source, certain limitations arose when dealing with nodes that have
many branches. With the deepening of research, locating the specific
location of the sag source has become a hot research topic. This type
of research is mainly based on two types of methods: signal
processing and deep neural networks. Regarding signal
processing, Yang et al. (2022) processed voltage and current
signals during faults, employed neural networks to determine
candidate regions for voltage sag, and achieved precise
localization of sag sources through moths to the fire optimization
algorithm. Lu et al. (2020) utilized the voltage and current
information recorded by Supervisory Control and Data
Acquisition (SCADA) for fault line selection. They also employed
the simplified R-L model’s dual terminal positioning method to
achieve the precise location of the sag source. However, this type of
method did not consider the varying degrees of changes in actual
power grid parameters with environmental conditions, load
conditions, and other conditions, resulting in inaccurate sag
localization results. In terms of deep neural networks, Deng et al.
(2021) took the measurement voltage waveform at monitoring
points as input and used an independent recurrent neural
network of attention to achieve voltage sag source localization.
Nevertheless, this method relied on a large amount of high-
quality measurement data. However, the data and quality of
actual monitoring data were difficult to ensure training
requirements, which made this method have certain limitations.

Based on the above analysis, it can be inferred that the existing
methods for locating voltage sag sources are all based on sampled
value data of voltage and current waveforms, which requires more
storage space and transmission channels. Moreover, the data is
prone to loss during transmission and conversion processes. On the
other hand, the above methods are based on simulation analysis or

driven by measurement data, both of which have certain limitations.
The simulation-based analysis method is only an approximation of
real power grid faults due to the inability to restore the fault
mechanism accurately and actual influencing factors, making it
difficult to guarantee that it is also applicable to measurement
data. The method driven by measurement data faces limitations
in terms of the number of monitoring points, resulting in a small
number of measurement samples, uneven distribution of data, and
difficulty in ensuring the quality of measurement data (Huang et al.,
2022). These factors result in insufficient model training and affect
positioning accuracy.

Currently, no literature research exists on combining simulated
and measurement data for realizing the sag source location.
Therefore, this paper proposes a voltage sag source localization
method based on transfer learning from sag information in the sag
event list, relying on simulation and measurement data
characteristics. The main contributions of this paper are
presented as follows.

1) This proposed method has a low configuration for monitoring
terminals, and the data can be obtained from the list of sag
events, which is convenient and simple to obtain. In the future, it
can be integrated as a functional module into relevant systems,
such as voltage sag monitoring systems, to achieve real-time
positioning, and has high engineering practical value.

2) This paper incorporates the common attributes of simulated and
measurement data, uses simulation data for pre-training, and
freezes some parameters. Then, it employs measurement data for
correction, realizing the complementarity of two data types
under the transfer learning mechanism and making up for the
lack of small sample data and uneven distribution.

3) The proposed method is validated using actual monitoring and
simulation data from the East China region. The best-frozen
layer is obtained by freezing the parameters of different layers of
the multi-layer perceptron. In addition, this article also compares
the proposed method with other pre-training methods.

The remaining sections of this paper are organized as follows:
Section 2 elaborates on the basic knowledge of voltage sag source
localization. In Section 3, the acquisition methods and data
characteristics of simulated and measurement data are presented.
Thus, voltage sag source location features are introduced from the
multi-dimensional perspectives of sag impact degree, network
structure, and fault type information. Section 4 introduces the
multi-layer perceptron and transfer learning mechanism and
describes the process of the proposed voltage sag source
localization method. In Section 5, the applicability of the multi-
layer perceptron in this paper is first verified. Subsequently, the
feasibility of the proposed method is validated using the simulation
and measurement data of a region in East China. Finally,
conclusions are drawn in Section 6.

2 Preliminaries on voltage sag source
location

The increase in system current is the reason for the voltage sag
caused by a short circuit fault, which leads to a reduction in the
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voltage of nearby nodes. Equivalent model of voltage sag caused by
short circuits established in literature (Hu et al., 2021) is shown in
Figure 1, and the voltage amplitude calculation at the common
connection point is summarized in Eqs. 1–3.

In Figure 1, E represents the grid voltage, ZL denotes the line
impedance between the fault point and node B, ZS indicates the line
impedance between transmission line AB, F shows the fault location,
Rf defines the transition impedance. Moreover, If is the fault current,
which can be calculated by the following equation.

If � E
ZS + ZL+Rf

(1)

The voltage amplitude Vsag of node B is:

Vsag � ZS+Rf( )pE
ZS + ZL+Rf

(2)

Assuming the grid voltage E = 1, the line satisfies a uniform
distribution, in which the impedance per unit length of the line is z,
and the total line length is l. Therefore, Eq. 2 can be re-written as
follows:

Vsag � zpl+Rf

ZS + ZL+Rf
(3)

The above equation shows that the amplitude of node voltage
is related to the fault location, transition resistance, and fault
type. Specifically, the amplitude of node voltage exhibits a
gradual increase with distance from the fault point, indicating
that the impact diminishes as one moves farther away from the
fault point. Moreover, the amplitude of node voltage gradually
rises with the increase of transition resistance. Furthermore, the
amplitude of node voltage is also affected by the type of fault, and
different types of faults result in different ranges of voltage sags,
with three-phase faults having the most extensive influence. In
addition, changes in the power grid structure can lead to varying
degrees of electrical distance between faulty nodes and each node,
thereby affecting the voltage amplitude at those nodes. Therefore,
voltage sag can be seen as the result of the joint action of faults
and the power grid structure. Suppose the power grid structure
remains unchanged when the same fault type occurs on the same
line. In that case, the affected nodes are roughly the same, and the
voltage sag amplitude changes of each affected node have a
certain degree of similarity. The voltage amplitude and fault

type of the affected nodes can also describe and determine the
impact range of a voltage sag event under the power grid
structure. However, it is difficult to obtain the voltage
amplitude information of each node in the entire network in
practice. Moreover, monitoring node recording of sag
information can also reflect the sag situation of the entire
network to a certain extent. In conclusion, the location
information of sag sources can be mined by examining the
voltage amplitude, fault type, and power grid structure of the
disturbed monitoring points.

3 Data source and feature selection

This section is mainly divided into two parts: the first part
introduces the characteristics and acquisition methods of simulation
and measurement data; The second part selects voltage sag source
localization features from different perspectives to characterize the
position of the sag source and provides corresponding calculation
formulas.

3.1 Data source

This paper considers simulated and measurement data
characteristics and uses them as data support for locating voltage
sag sources. It compensates for the shortage of small samples in
measurement data and considers factors such as actual load
conditions and changes in grid structure at the simulation level.
Therefore, data acquisition can mainly be divided into two aspects,
including simulated and measurement data.

3.1.1 Simulated data
The voltage sag simulation data is derived from the Engineering

Production Management System (PMS2.0), which obtains the
parameters of power grid equipment system components,
including line and transformer parameters for power grid
modeling and simulates and calculates different lines and fault
scenarios within the entire network. The voltage amplitude data
of each node is obtained, and the simulation results, such as voltage
amplitude, fault type, and power grid operation mode of each node,
are used as the source of simulation data.

This paper selects Bonneville Power Administration (BPA) as a
simulation calculation tool, mainly by constructing data cards, such
as B card, L card, and T card, for power components to achieve large-
scale simulation calculation of power systems. This approach has the
advantages of simple operation and accurate calculation results
(Wang et al., 2021). The simulation process entails selecting
random variables, namely, fault lines, fault distances, fault types,
fault phases, and fault duration, in BPA to simulate the randomness
of grid side faults.

Since fault simulation calculations are based on physical models
and fault differential equations, this data type includes the
mechanism of the transient simulation model, reflecting the
voltage sag situation under different fault scenarios and operating
modes. However, it is important to note that the impact of factors,
such as load conditions, in the actual environment on the transient
level.

FIGURE 1
Equivalent model of voltage sag caused by short circuit.
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3.1.2 Measurement data
The measurement data sources of existing sag locating methods

rely on all waveform data of voltage or current sampling values
recorded by fault recording systems, which require more storage
space and transmission channels. Moreover, transmission and
conversion processes may result in the loss of sampling values,
thereby affecting positioning accuracy. In contrast, the list of sag
events includes information, such as monitoring point sag
amplitude, fault type, sag occurrence time, and duration, which
has the advantages of easy access and high real-time performance
(Huang et al., 2022). Therefore, this study selects the list of sag events
as data support. However, it is important to note that the triggering
time and duration of a single voltage sag event are random, and their
numerical values are influenced by external environmental factors,
such as protection action time, which cannot reflect the location
information of the sag source. To address this limitation, the
monitoring point sag amplitude, sag type, and power grid
structure data in the dispatching system included in the list of
sag events are collectively used as the source of the measurement
data. This type of data compensates for the shortcomings of
simulation data from a practical perspective. However, the
availability of monitoring devices for power grid sag is currently
limited, resulting in a small sample size and uneven distribution of
various sag events.

3.2 Feature selection

To achieve sag location of small sample measurement data, this
paper combines the advantages of large simulation data volume and
complete measurement data information. Then, based on the
simulation and measurement data sources in Section 3.1, voltage
sag source location features are selected from different perspectives
to characterize the position of sag sources, as listed in Table 1.
Through the introduction of transfer learning, pre-training is carried
out with the help of simulation data. Then, the measurement data is
used to fine-tune the model parameters to achieve sag positioning.

1) Information of The Degree of Impact of Voltage Sag

The impact degree of voltage sag can characterize the physical
properties of the power grid to some extent, specifically
highlighting how the transmission of voltage sag is affected by
distance and exhibits attenuation characteristics. The impact
range and severity of a single voltage sag event are described
using the information on sag impact degree. To provide a clear
definition, the node where the monitoring point records the
amplitude of the sag is used as the disturbed node in actual
systems. Conversely, a sag amplitude below 0.9 in the simulation
model is considered a disturbed node.

The calculation formula for the sag amplitude in disturbed
voltage at the monitoring point is as follows:

X � U°D (4)
where ° represents the multiplication of the corresponding
elements of matrix U and D, U indicates the voltage sag
amplitude of each monitoring node during a certain sag event,
and D denotes the disturbance status of each monitoring node,
with disturbance being 1 and undisturbed being 0. The values of
sag amplitude in the simulation and actual measurement systems
are as follows: In the actual system: if the monitoring point
records this voltage sag event, the monitoring point is affected by
this voltage sag event, and the sag value is the recorded value. On
the contrary, if the monitoring point is unaffected, the sag
amplitude is 1. In the simulation system: the voltage
amplitude is the simulation calculation result.

Since the list of sag events only contains information about the
disturbed monitoring nodes, and the simulation results encompass
information about each node within the entire network, the benefit
of the simulation calculation results, including all node information,
is described using the number of disturbed monitoring nodes N
(NM: measurement system, NS: simulation system) and the average
voltage sag amplitude E of the disturbed nodes. The calculation
formula is shown in Eqs. 5–7:

NM � ∑
i∈M

num bi( ) (5)

NS � ∑
j∈B

num bj( ) (6)

TABLE 1 Locating features of voltage sag source.

Measure data Simulated data

Information on The Degree of Impact
of Voltage Sag

Voltage sag amplitude of disturbed at
monitoring points

Voltage sag amplitude of disturbed at monitoring points corresponding to the
measurement monitoring points in the simulation model

Number of disturbed nodes in monitoring
points

Number of disturbed nodes in the simulation model

The average voltage amplitude of disturbed
monitoring points

The average voltage amplitude of the disturbed nodes in the simulation model

Information on Grid Structure The scale of monitoring points The scale of the nodes corresponding to the measurement monitoring points in the
simulation model

Tightness of monitoring points The tightness of the nodes corresponding to the measurement monitoring points in
the simulation model

Distance degree of monitoring points The distance between the nodes corresponding to the measurement monitoring points
in the simulation model

Information of Fault Cause Fault Type Fault Type
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where M represents the set of monitoring points, B indicates the set
of all nodes in the simulation system, b denotes the disturbed node,
and num (·) is the calculated quantity.

The calculation formula for the average voltage drop amplitude
E is as follows:

E � sum X( )
N

(7)

where sum (·) represents the sum of matrix elements.

2) Information of Grid Structure

The information pertaining to the impact degree of voltage sags
only characterizes the degree of impact based on the physical
properties of the power grid, thereby lacking the ability to
characterize the level of impact from the perspective of
topological properties (the power grid structure). Conversely, the
actual power grid undergoes changes in operating conditions and
line maintenance, causing changes in the interconnection between
nodes and altering the propagation path of voltage sags. Therefore,
this study takes the simulation model of the power grid structure as
the benchmark to depict the changes in the actual power grid
structure. Moreover, it introduces the scale degree Fi, tightness
degree Ci, and distance degree Li of monitoring points to
describe the information of power grid structure based on Hu
et al. (2020). The calculation formula is as shown in Eqs. 8–10.

The node susceptibility to voltage sags directly increases when
the node is connected to more lines, reflecting the node’s direct
impact ability. Conversely, when fewer lines are connected to a node,
more lines are connected to adjacent nodes. Thus, the node is still
susceptible to voltage sags, demonstrating the node’s indirect impact
ability. Therefore, considering the interconnection between nodes
and adjacent nodes, the scale of monitoring points is defined as Fi,
describing the difficulty degree of monitoring points affected by
voltage sags. The calculation formula for Fi is as follows:

Fi � f i +∑
j∈G

f j (8)

where fi represents the number of adjacent nodes at monitoring
point i, and G indicates the set of adjacent nodes at monitoring
point i.

Since the scale of monitoring points, Fi, only defines the scale of
nodes and adjacent nodes, the impact of voltage sag transmission
paths is not considered. Therefore, the monitoring node tightness Ci

describes the degree of impact of voltage sag on monitoring points
through various paths. The calculation formula is as follows:

Ci � 2ci
ni ni − 1( ) (9)

where ci represents the monitoring point i and the number of
adjacent node lines, and ni denotes the number of adjacent nodes
of monitoring point i. In theory, as ni adjacent nodes can generate
(ni −1)ni/2 lines, Ci can represent the tightness of node i.

Owing to changes in operating conditions and line maintenance
in the actual power grid, the connection mode between nodes
undergo alterations, further influencing the severity of voltage sag
events at monitoring points. Hence, this paper defines the degree of
distance Li to describe the impact of changing branches on

monitoring points. Assuming the endpoints of the changing
branch are j and k, the calculation formula is as follows:

Li � min lij, lik{ } (10)
where lij represents the shortest electrical distance between the
monitoring point i and the endpoint j of the branch where the
distance changes, and lik symbolizes the shortest electrical distance
between the monitoring point i and the endpoint k of the change
branch.

3) Information of Fault Type

As the information on the degree of impact of voltage sags and
the power grid structure only characterize the external
characteristics of voltage sags, the influence of internal
characteristic factors is ignored. Since the impact range of voltage
sags caused by different fault types is different, the voltage sags
caused by three-phase faults have the most severe impact. Therefore,
fault type T is selected in this paper to represent the fault cause
information.

To facilitate the input of subsequent models, different fault types
are represented by numerical values of T = 1, 2, 3, and 4,
corresponding to single-phase grounding, interphase short circuit,
two-phase grounding, and three-phase short circuit, respectively.

4 Method for identifying the location
voltage sag sources

This section introduces the principle and structure of multi-
layer perceptron (MLP). Then, it introduces the transfer learning
mechanism and finally introduces the process of voltage sag source
location based on transfer learning.

4.1 Multilayer perceptrons

Regarding the results of sag source location, there are two
aspects to consider. Firstly, upstream and downstream locations
can only divide the responsibility sharing relationship between users
and the power grid company. Although identifying a specific
location can address the location needs, it has certain
shortcomings, such as large computational complexity resulting
from multivariate optimization solutions. Secondly, the power
grid company aims to associate grid-side faults through fault
recording systems and understand the situation of line faults to
improve targeted operation and maintenance efficiency. It is worth
noting that enterprise users pay more attention to the relative
location of the sag source to provide a basis for subsequent
economic disputes. They also focus on the impact area of line
faults to assist in formulating resumption of work and
production plans rather than focusing on the specific location of
the sag source. Therefore, the sag source location needs of the power
grid layer and the user layer are taken into account, and the result of
the sag location is determined as the line where the sag source is
situated. Under the assumption of an unchanged power grid
operation mode, when the same type of fault occurs on the same
line, and the selected features in Section 3.2 exhibit a certain degree
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of similarity, voltage sag source location can be defined as a multi-
classification problem. Moreover, the classification number can be
determined based on the number of lines as the classification result.
Therefore, there is a need for an effective algorithm to solve multi-
classification problems.

MLP is a feedforward neural network composed of input, hidden
layer, and output layers in which a full connection mode is adopted
between layers (Zhang et al., 2022). As the single-layer perceptron
cannot be separated from nonlinear data, MLP introduces a hidden
layer to overcome this defect because the multi-layer perceptron can
better solve the multi-classification problem (Zhang et al., 2022).
Hence, MLP is selected as the multi-classification algorithm for
identifying voltage sag source location. The structural schematic
diagram is shown in Figure 2. The whole implementation process of
MLP is summarized in Eqs. (11)–(13) (Zhang et al., 2022).

Assuming the input as X � [x1, x2,/, xn], the number of
neurons in the hidden layer is m, and the mapping relationship
from the input layer to the hidden layer can be determined as
follows:

H � f W1pX + B1( ) (11)
where f () represents the activation function of the hidden layer,
W1 indicates the n*m dimensional matrix, and B1 denotes the
m*1 dimensional matrix.

The mapping relationship from the hidden layer to the output
layer is as follows:

H � g W2pH + B2( ) (12)
where g() represents the activation function of the hidden layer,W2

demonstrates the m*1 dimensional matrix, and B1 denotes the
m*1 dimensional matrix.

The final classification result is affected by the mentioned
number of hidden layer neurons. If the number of hidden layer
neurons is too small, it will be challenging to accurately fulfill the
learning and classification requirements. In contrast, when the
number of neurons in the hidden layer is too large, it is easy to
create overfitting, thereby resulting in poor generalization ability of
the network. The number of hidden layer neurons can be
determined using Eq. 13.

d � ⌈
�����
p + q

√ + a⌉ (13)

where �� represents rounding up, p indicates the dimension of the
input layer parameter matrix, and q denotes the number of multiple
classifications. Moreover, a indicates the adjustable constant of
[1,10] to ensure the model’s adaptability, and d symbolizes the
number of neurons in the hidden layer.

4.2 Transfer learning

The small amount of measurement data may lead to insufficient
model training, which may affect the accuracy of the sag source
location. Thus, this paper introduces the transfer learning
mechanism to train the measurement data, considering the
advantages of easy access to simulation data and large amounts
of data.

Transfer learning is a machine learning idea suitable for new
tasks or functions by fine-tuning existing models (Hopson et al.,
2023). In transfer learning, the learning domain containing many
label data is called the source domain, and the learning domain with
fewer label data is called the target domain. The model is pre-trained
using the data from the source domain and then fine-tuned through
the target domain data to make full use of the source domain data to
improve the model’s accuracy in the target domain. The calculation
formula of transfer learning is summarized in Eqs. 14–17 (Hopson
et al., 2023).

PS � f S XS, θS( ) (14)
PM � f M XM , θM( ) (15)

where θS and θM indicate parameters in the source domain and
target domain, respectively. In addition, XS and XM represent
datasets in the source and target domains, respectively.
Furthermore, fS and fM are respectively the mapping
relationship between the source domain and the target domain,
and PS and PM denote the predicted values of the source and target
domains, respectively. To minimize the error between the predicted
value and the actual value labels, the objective function is set as
follows:

θS* � argmin
θS

1
NS

∑
NS

i�1
L ysi,PSi( ) (16)

θM* � argmin
θM

1
NM

∑
NM

i�1
L yMi,PMi( ) (17)

where yS and yM are the true labels of the source and target domains,
respectively. Moreover, NS and NM represent the number of training
samples in the source domain and target domains, respectively, and
L() denotes the loss function.

Since the simulation data in this paper is calculated based on
physical models and fault differential equations and is influenced by
objective factors in the real environment, i.e., weather and load
conditions, it is difficult to ensure that the simulation and
measurement data meet the same distribution. Considering the
similarity between simulation and measurement data, the
advantage of simulation data will be utilized to locate the voltage
sag source of small sample data. The migration process follows the
subsequent steps: Firstly, a multi-classification model is pre-trained

FIGURE 2
Schematic diagram of multi-layer perceptron structure.
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using simulation data. Then, the parts of the multi-classification
model requiring retaining are determined. Given the higher number
of layers in the neural network, the more obvious the extracted
features are, which means that the information in the previous layers
is more general (Yang et al., 2022). Therefore, this paper aims to fix
the parameters of the hidden layer only for fine-tuning, while
retaining the output layer parameters. Finally, a multi-
classification model that can accurately locate small sample data
from actual measurements is obtained. Figure 3 illustrates the
model.

4.3 Positioning process

Figure 4 depicts the flow chart of the proposed voltage sag source
localization method based on transfer learning. The specific process
is outlined as follows: Firstly, using the information provided in
Section 3.1, the simulation dataset (MS) and the measurement
dataset (MM) are obtained. The calculation formulas presented
in Section 3.2 for determining the degree of sag impact, grid
structure, and sag type information are then employed to
construct a feature matrix for both obtained simulation and
measurement datasets. Secondly, a multi-classification model
based on a multi-layer perceptron is constructed, with the fault
line number serving as the classification number. The model is pre-
trained using the feature matrix derived from the simulation dataset.
Next, some model parameters are frozen, and the model is trained
using the characteristic matrix formed by the measurement dataset
to achieve transfer learning. Finally, test set samples are input into

the final multi-classification model to achieve voltage sag source
location.

5 Example analysis

To verify the applicability of the proposed method in practice, a
selection of sag information from a certain region of East China,
recorded in the list of sag events between January 2019 to May 2021,
is utilized. This area contains 25 lines, with voltage levels including
220, 110, and 10 kV. The actual network includes four transformers,
consisting of 1 Ynyn and 3 Ynd11. Additionally, 6 power quality
monitoring terminals are installed. The structural diagram is shown
in Figure 5. During this period, a total of 62 sag events have been
recorded in the list of events. In this study, the amplitude and fault
type of the sag events are chosen, and the network structure
information is retrieved from the scheduling system as the
measurement data source, forming 54 sets of data.

The dataset consisting of 54 sets of data is divided into training
and testing sets for further analysis. The process involves randomly
selecting 36 pieces of data as the testing set, while the remaining
18 pieces of data are designated as the training set. Table 2 provides
the frequency distribution of training and testing sets under different
fault types.

Using the Engineering Production Management System
(PMS2.0), component parameter data for the power grid
equipment system (including line, transformer parameters, etc.)

FIGURE 3
Schematic diagram of Transfer learning structure.

FIGURE 4
Flow of voltage sag source location based on multi-layer
perceptron and Transfer learning.
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is obtained. Based on this data, a BPA simulation model is built for a
specific area in East China, as shown in Figure 5. To accurately
simulate the randomness of voltage sag, fault lines, fault distance,
transition resistance, fault type, and duration are selected as random
variables, and 1,200 sets of data are obtained through model
simulation. Table 3 presents the distribution of simulation times
under different fault types.

MLP parameters are set as follows: weight optimization method
solver = ’adam’ (lr = 0.001, betaz_1 = 0.9, betaz_2 = 0.98, epsilon =
1e-8); activation = “relu”; loss = [“categorical_crossentropy,”
“mae”]; Alpha = 1e-5; epochs = 1,000; hidden layers are set to 4,

and the number of neurons per layer is set to m = 35; the number of
neurons in the output layer is set to 25. Moreover, accuracy is chosen
as a comparative indicator. The calculation formula for accuracy is
as follows:

Accuracy � CN

TN
× 100% (18)

where TN represents the total number of samples, and CN denotes
the number of correctly classified samples.

The proposed method involves pre-training MLP using
simulation data. Following this, different hidden layer parameters

FIGURE 5
Actual line structure of a certain area in East China.

TABLE 2 Actual data training set and test set data.

Fault type Training set Test set

Single-phase ground 12 6

Two-phase grounding 1 1

Phase to phase short circuit 4 2

Three phase short circuit 20 11

TABLE 3 Various fault settings in the simulation model.

Fault type Number of simulations

Single-phase ground 412

Two-phase grounding 341

Phase to phase short circuit 321

Three phase short circuit 126

FIGURE 6
Accuracy of freezing different layers.
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are frozen, and then the model is trained again using measurement
data. When retraining, parameters are set to: solver = “adam” (lr =
0.005, betaz_1 = 0.9, betaz_2 = 0.98, epsilon = 1e-7); loss =
[“categorical_crossentropy,” “mse”; Alpha = 1e-5; epochs = 1,000.
Hidden layers are set to 4, and the number of neurons per layer is set
to m = 35; the number of neurons in the output layer is set to 25. The
classification accuracy of different fault types is calculated using Eq.
18, as shown in Figure 6.

As can be seen in Figure 6, the model is retrained using
measurement data after pre-training the multi-classification
model with simulation data, as the number of frozen layers is 0.
Due to the lack of frozen hidden layer parameters, it is equivalent to
only using measurement data to train the model. However, when the
number of measurement samples is relatively small and the
distribution of different types of transient events is uneven, the
accuracy of the actual test set is not very high. On the other hand,
when only the first layer parameters are frozen, and the model is
retrained using measurement data, the model’s adaptability is
affected to a certain extent. This impact is due to the addition of
parameters obtained from simulation data training, which decreases
the accuracy of the measurement test set samples. As the number of
hidden layers increases, the model’s ability to extract features will be
strengthened. Therefore, more frozen layers enhance the model’s
ability to extract common features from simulated and
measurement data. However, certain differences exist between
simulation and measurement data when the number of frozen
layers reaches a certain level because the obtained parameters
from the simulation training model are greater than those
obtained from the measurement training model, leading to a
gradual decrease in the accuracy of the measurement test
samples. Therefore, when the entire model is frozen, the accuracy
is the lowest due to relying only on the parameters obtained from
simulation training. Thus, it can be observed from the figure that the
optimal number of frozen layers is 3. Accordingly, after training the
model using simulation data, the hidden layer parameters are frozen
and used as universal parameters. Subsequently, the model is
retrained using measurement data, and the parameters of the
other layers are adjusted.

In this section, To verify the effectiveness of the proposed
algorithm in this section, a comparative analysis is conducted

with the other two types of training methods. Method 2 only
uses measured data for model training, while Method 3 utilizes a
combination of simulation andmeasured data. The loss curves of the
three types of training methods are shown in Figure 7, and the
accuracy rates under different training methods are calculated using
Eq. 18, as shown in Table 4.

As seen in Figure 7, since there is a certain degree of similarity
between the simulation and the measured data, this paper first uses
the simulation data for pre-training, which speeds up the
convergence rate of the measured data re-training. Furthermore,
it overcomes the overfitting problem caused by the small sample of
the measured data. The specific performance is as follows: The loss
curve declines sharply at first due to the training method adopted in
this paper. After 130 iterations of training, the Loss function value
tends to be stable. When the training is completed, the Loss function
value reaches 0.0836. These training results indicate that the
network converges, and the fitting effect are acceptable.

Conversely, the model cannot well fit the real distribution of data
for the training method adopted in Method 2 due to the small
amount of measured data, resulting in the poor generalization ability
of the model. In addition, despite 130 training iterations, the Loss
function curve tends to be stable but at a high level (loss value
exceeding 0.2), indicating the inability to reach a lower loss. For
Method 3, since the training samples contain both simulation and
measured data, the distribution of the two data types is very
different, leading the model to switch back and forth between the
two types of data and oscillation of the Loss function curve.
Consequently, after 1,000 iterations, the loss function value fails
to exhibit a stable trend. In addition, the model will be easier to learn
the simulation data because the two data types have a large
difference in the characteristic distribution. However, the learning
speed of the measured data is slow, resulting in the slowest
convergence rate of the model.

In addition Table 4 shows that the proposed method in this
section has the best effect compared to other training methods. This
superiority can be attributed to certain similarities in characteristics
between the simulation and the measurement data. The simulation
data is used to pre-train, freeze some parameters of the model, and
use the measurement data to re-train and fine-tune some parameters
through transfer learning. Thus, the final model parameters reflect

FIGURE 7
Loss curves of different training methods.
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the common information of the simulation and measurement
samples. As a result, the sample space of the limited
measurement data is expanded, leading to improved positioning
accuracy. Both Method 2 and Method 3 exhibit lower positioning
accuracy to varying degrees when compared to the proposedmethod
in this section. Specifically, Method 2 demonstrates a decrease in
accuracy of 15% compared to the proposed method, while Method
3 experiences a more significant reduction of 55%. Method 2 faces
challenges due to the uneven distribution of different types of sag
events recorded in the Sequence of Events (SOE) event list and the
lack of measurement samples. This disparity in sample distribution
in the training set may cause the model to fall into overfitting,
thereby adversely affecting the positioning accuracy. On the other
hand, Method 3 suffers from imbalanced data due to the larger size
of the simulation data sample compared to the actual measurement
data sample. As a result, the data only reflects the characteristics of
the simulation data sample, resulting in low positioning accuracy for
the actual measurement data. Therefore, the proposed method can
accurately locate the voltage sag source in various situations, proving
the feasibility and effectiveness of this method.

In order to better demonstrate the algorithm’s adaptability
under different fault types, the positioning accuracy is calculated
using Eq. 18. The resulting accuracy rates under different fault types
are presented in Table 5.

From Table 5, it can be seen that the method proposed in this
paper can accurately locate single-phase to ground, two-phase to
ground, and three-phase short circuits at 100% accuracy. This is
because at the simulation level, the probability of different faults
occurring is considered, and the data for different faults is expanded.
By freezing some layer parameters of the hidden layer (including
weights, biases, and regularization coefficients), the migrated
classification model includes both the characteristics of
simulation samples and the laws of measured samples, To some
extent, it compensates for the shortage of small samples in measured
data and improves the accuracy of localization. For phase to phase
short circuits, there are few measured samples and it is not possible
to fully learn the sample patterns, resulting in a data localization

error. Positioning to the adjacent line 19 can also reduce the
inspection range to a certain extent.

Most existing studies use waveform data of voltage and current
sampling values, which is difficult to obtain in practical engineering.
Therefore, this article selects literature (Feng et al., 2023) that also
uses sag amplitude data for comparative analysis of methods.
However, literature (Feng et al., 2023) requires voltage sag values
from all nodes to determine the location of sag sources through RBF
neural networks. However, in practice, only a few nodes are installed
with monitoring terminals due to the cost factor of monitoring
terminals, resulting in the inability to obtain all node sag value data
in actual examples. Therefore, this article selects the simulation data
from Table 3 of the original text (including all node amplitudes) for
comparative verification. The data distribution for the training and
testing sets is shown in Table 6, and the results of temporary source
localization are shown in Table 7.

As listed in Table 7, the accuracy of the proposed method is
similar to the accuracy of the literature (Feng et al., 2023). However,
the literature (Feng et al., 2023) requires the sag amplitude data of all
nodes. Considering the actual data, the method in this paper only
needs the sag amplitude data at the nodes with monitoring
terminals, which greatly reduces the dependence on logarithmic
data and the difficulty of engineering implementation.

Meanwhile, since voltage sag occurrences result from the joint
action of faults and power grid structure, this method also takes into
account fault type information and power grid structure situation,

TABLE 4 Comparison of accuracy results of different training methods.

Methods Number of samples Correct identification quantity Accuracy (%)

The method proposed in this article 20 19 95

Method 2 20 16 80

Method 3 20 8 40

TABLE 5 Accuracy under different fault types.

Fault type Training set Test set Correct identification quantity Accuracy (%)

Single-phase ground 15 6 6 100

Two-phase grounding 3 1 1 100

Phase to phase short circuit 4 2 1 50

Three phase short circuit 20 11 11 100

TABLE 6 Partition of simulation data training and testing sets.

Fault type Training set Test set

Single-phase ground 392 20

Two-phase grounding 331 10

Phase to phase short circuit 311 10

Three phase short circuit 116 10
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making the proposed algorithm more reasonable regarding data
source acquisition and data selection. In addition, the methods
presented in this paper also consider that the simulation data
have the characteristics of large quantity and easy access, and
also have a certain similarity with the measurement data. In
contrast, the measurement data is small, and the data
distribution is uneven. The simulation data is employed for pre-
training, while the measurement data is modified to achieve transfer
learning. Thus, the final model reflects both the characteristics of the
simulation samples and the laws of the measurement samples, which
makes up for the lack of small samples of the measurement data to
some extent, thereby improving the accuracy of locating the
temporary source section.

6 Conclusion

In this paper, based on the amplitude data of the sag event list of
the monitoring system, combined with the advantages of easy access
to simulation data and a large amount of data, a voltage sag source
localization method is proposed, relying on multi-layer perceptron
and Transfer learning. The efficacy of the proposedmethod has been
verified by data from a certain region in East China, and the
following conclusions have been drawn.

1) The data required in this paper only includes the amplitude of
monitoring node sag, without the need for sampling waveform
data. This characteristic reduces the cost of data transmission,
storage, and calculation. The data can be obtained from the
existing system employed by the power supply company, which
has engineering practicality.

2) The proposed method fully considers the characteristics of
simulation and measured data and uses Transfer learning to
realize the complementary advantages offered by the two data
types. The results of numerical examples indicate that the
method’s accuracy in this paper is as high as 95% using
simulation and measured data for positioning. Moreover, the
number of iterations decreases by 27.8% compared to using only
measured data. In addition, the positioning accuracy and
convergence rate of the model are improved compared to
other training methods.

3) Although this paper exploits the advantages of simulation data to
a certain extent, it is still limited by common attributes.
Therefore, future research focuses on expanding the
combination space between simulation and measurement data
and optimizing the final positioning model. In addition, the
proposed method may fail when the same type of fault occurs at
the end of the line and the first section of the next line under the

same power grid architecture. Improving the reliability of the
algorithm is an important direction for future research.
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