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Microgrids are becoming a realistic choice for residential buildings due to the
increasing need for affordable and sustainable energy solutions in developing
nations. Throughmodeling and simulation, themain goal is to evaluate the viability
and performance of a solar microgrid system. Residential load modeling is used,
which is vital to developing an effective Energy Management System (EMS) for the
microgrid. A residential household’s load metering data is examined using
statistical methods, including time series and regression analysis. For the
residential community load in this research, Proportional-Integral-Derivative
(PID) controllers and Fuzzy Logic Controllers (FLC) are used to generate the
necessary Direct Current (DC) microgrid voltage. The simulation research shows
that FLC have benefits over PID controllers. The FLC technique performs better at
reducing total harmonic distortion, which improves themicrogrid system’s overall
power quality. The Seasonal Autoregressive Integrated Moving Average (SARIMA)
model was found to be the most appropriate and reliable model for the dataset
after the performance of the models was evaluated using the metrics. The
optimization results also showed that FLC optimization improves the microgrid
system’s stability. The exponential Gaussian process regression (GPR) produced
the highest R-squared measure of 0.49 and RSME measure of 7.9646, making it
the best goodness fit for modeling the total daily energy usage and the peak daily
usage.
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1 Introduction

Solar energy has steadily gained acceptance as a viable resource
for small to medium-scale energy systems for residential users. The
increasing affordability of solar PV systems has made renewable
energy resources more appealing for integration in microgrid
systems (Qazi, 2017). The Levelized Cost of Electricity (LCOE)
for residential solar PV systems is estimated to be down to 0.05 USD/
kWh by 2030 (sley, 2021). Residential households will play a crucial
role in the next-generation of electricity systems in Africa (IRENA,
2022). Establishing solar microgrid systems can benefit the shared
use of solar energy among community residential consumers. Solar
microgrids have become increasingly popular due to the widespread
availability of solar energy resources (Tajjour and Singh Chandel,
2023). A microgrid is a bounded section of the electricity
transmission and distribution network that combines locally
distributed generation sources, energy storage devices, and
regulated electrical loads to produce a self-sufficient energy
system (Cagnano et al., 2020).

Botswana receives a significant amount of solar insolation daily,
with a maximum of 6.2 kWh/m2/day in the Kgalagadi and Ghanzi
districts and a minimum of 5.5 kWh/m2/day in the country’s east
central and south north-eastern regions (Dabla, 2021). The
government has created several incentive programs to promote
the use of solar energy. These include adoption of solar rooftops
and home systems. The government established an isolated solar
microgrid system of 5.7 kW capacity with battery storage in the
village of Motshegaletau to power a school, clinic, some residential
houses, and a business centre (Situmbeko, 2018). A hybrid PV-wind
systemwas evaluated and designed to provide electricity for the rural
areas of Jamataka village in Botswana’s north-eastern region (Ravi
et al., 2022). The survey was conducted to determine the power
consumption of the households in the village. The financial analysis
using the Net Present Cost (NPC) method revealed that the PV/
wind/battery system configuration delivers the greatest economic
energy advantages to the community of Jamataka. The electricity
usage is 165.29 kWh/day, the peak and primary load demand is
27.31 kW, and the total load is 1165.58 kWh/day. The developed
system can help the community reduce the use of firewood, and
lower desert encroachment and reduction in the generation of
smoke with an overall environmental protection. Further, the
system can enhance economic development in the community.

Because solar power is diurnal, a backup power source is
required to ensure that residential consumers have uninterrupted
electricity supply. Control and EMS are crucial in maintaining a
microgrid system’s continuous power supply to loads. The key
nature of an EMS is to regulate the power within the
components of the microgrid system (Hasan and Bin Arif, 2018).
Hierarchical and droop control are two common control systems for
microgrids. Model Predictive Control (MPC), which employs
machine learning techniques, is a fast-growing technology for
power management in a microgrid system (Hu et al., 2020).
Through control strategies and load mixing, consumers can make
savings on their electricity bills (Palaniappan et al., 2017).
Residential energy demand modelling is necessary to identify
temporal energy consumption patterns.

Demand-side energy management in residential households
relies heavily on energy forecasting. Smart meters are essential to

studying energy usage traits in a residential building. Electricity
usage patterns at the individual household level are dependent on
multiple factors such as building design, lifestyle, occupancy
behaviour, and appliance ownership and use (Zhang et al., 2019).
Mohammad Amir et al. (Mahlooji et al., 2013) developed a battery
system to reduce the peak demand of the electricity with the reduced
losses. The high variability of daily energy usage makes it very
complex to accurately model and simulate the energy consumption
data of residential households (Alvarez et al., 2018). Residential
energy demand modelling is necessary to identify energy
consumption patterns. Analysis of energy consumption data can
be classified as predictive analytics, prescriptive analytics, and
descriptive analytics. Descriptive analytics reveals the structure
and nature of the data set, while predictive analytics forecasts the
nature of the data in the future through historical data. The
descriptive analytics comprises the measurement of central
tendency and dispersion. The predictive analysis includes
techniques such as forecasting, regression, and clustering (Deb
et al., 2017a). Time series research identifies daily energy patterns
that reveal energy forecasting coefficients. Prescriptive analytics
blends descriptive and predictive analysis to make suggestions
based on data projections (Leonori et al., 2016).

Obaro et al. (2023) performed a study on the modelling and
energy management of an off-grid distributed energy system for a
typical village in South Africa using aMATLAB program through an
enhanced mixed integer nonlinear programming optimization
algorithm. The study aimed to design a reliable energy system
while considering a scenario with a combined load demand of
sixty households. The system’s results showed reliable system
improvement and a model for an ideal distributed energy system
that is also cost-effective and environmentally friendly. A hybrid
distributed energy system of solar, wind, and biomass energy was
designed, modelled, and optimized using the HOMER program for a
remote area in western China encompassing residential, small-scale
industrial, commercial, and agricultural power loads. The study
showed that the system is feasible, economical, and environmentally
friendly.

Distributed energy systems powered by renewable energy are
key to lowering carbon emissions. When planning, modelling, and
optimizing distributed energy systems, evaluating various models, or
combining models is essential to produce more reliable outcomes.
Srivastava et al. (2022) proposed a solar PV for the urban cities
without requiring any additional land. Various energy plans, policies
and government initiatives were reviewed to access and analyze
Southern African countries’ electricity challenges and carbon
emissions Justo Jackson et al. (2013). The results suggest that off-
grid alternatives to fossil fuels should be considered to improve
electricity access and eradicate energy poverty in this region, which
has a wealth of renewable energy resources, including hydro, solar,
wind, biomass, and geothermal energy (Justo Jackson et al. (2013)).

Battery Energy Storage System (BESS) reduces power supply
variability between electrical loads and generation units (Abdi et al.,
2017; Alzahrani et al., 2017; DW, 2015). BESS is vital for urban
microgrid systems to provide power to loads during the island
mode. A BESS is required for urban microgrid systems to provide
electricity to loads during the island mode. It communicates with the
DC/DC converter, DC/AC inverter, DC link capacitor, and the
community solar PV microgrid system (Farrokhabadi et al., 2018).
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The buck-boost converter as a DC/DC converter topology enables the
charge and discharge of the BESS (Farrokhabadi et al., 2018; Kondrath,
2018). Energy Storage Systems (ESS) configurations exist in two states,
namely, distributed and aggregated ESS.When compared to distributed
ESS, aggregated ESS is better suitable for microgrids because it
efficiently suppresses power fluctuation in the microgrid system
(DW, 2015; Li and Joós, 2007). The BESS manages energy in the
microgrid system by performing load levelling and peak load shifting.
Local voltage support, grid contingency assistance, and load shifting are
ancillary services that the ESS provides to the microgrid system
(Farrokhabadi et al., 2018). The BESS models utilize the commonly
established electrochemical batteries or regulated voltage sources
(Olivier TremblayLouis and DessaintLouis, 2007). BESS models can
respond to the control system instructions and activate the reserve in
approximately 20 milliseconds. BESS capacity and lifetime are affected
by variables such as Depth of Discharge (DOD), rate of discharge, and
temperature. Eq. 1 illustrates the capacity of a battery expression
(Alzahrani et al., 2017):

Bcapacity � Eload p Doff

DODmax p ntemp
(1)

Eload is the load supplied to the microgrid system during periods of
low electrical power supply by the DG unit in ampere-hours,Doff is
the number of days the microgrid is operating in island mode,
DODmax is the depth of discharge at maximum level and ntemp

represents the temperature correction factor. Lithium-ion batteries
are the most commonly used battery type for community solar PV
microgrids because of their unique characteristics, including high
energy density, low weight, and long-life duration (Kularatna, 2015).

Since the reliability of energy delivery to consumers is affected by the
stability of the utility system. Electricity supply unreliability will primarily
affect residential consumers in urban areas. Due to many electrical
appliances and structures in use every day of the year, metropolitan areas
have high electricity consumption. According to the World Energy
Balances 2019, residential power usage climbed from42 kilo tonnes of oil
equivalent (KToe) in 2004 to 88 KToe in 2017 (U. E. I. Administration,
2019). Energy provision from solar photovoltaics presents an innovative
method to alleviate the electricity need mainly among people living in
residential areas. An assessment on the rooftop solar PV system
(microgrid) design for an urban settlement will be conducted
whereby people will be sharing electrical loads through the system.
The system to be designed will be grid tied. The research begins with the
measurement of the electricity load in an exemplary building over a
period. Afterward, a solar PV systemwill be designed and simulated for a
single household. After that, a solar PV microgrid system will be
modelled and simulated for the urban residential quarter
(25 residential houses with similar load profiles). The control and
energy management approach used will assure optimal energy
generation by the solar PV system, resulting in lower monthly
electricity expenditures. An overview will be undertaken to emphasize
the need for microgrid systems through a brief economic assessment.

2 Methodology for system model

This section of the paper comprises the design and sizing of the
solar PV microgrid system for a community of residential

households. Figure 1 shows the framework of the solar microgrid
system.

The solar PV microgrid system includes five major components,
namely, the Solar PV system, Energy Storage System (ESS),
bi-directional DC/DC converter, DC/Alternating Current (AC)
inverter, and AC electrical loads. Subsections 2.1 and
2.2 illustrate the sizing and modelling of the parameters for the
model.

2.1 Load metering

The primary goal of load metering was to determine the capacity
of the community solar PV microgrid system for the residential
community in Palapye, Botswana. The principal residence where the
studies were conducted provided the fundamental energy use
patterns typical of urban residential settings. The measurement
period was for 12 months to have a yearly overview of energy
consumption in a residential household. A smart metering device
was installed to monitor electrical parameters such as voltage,
current, and power factor. Time series and regression analysis are
two smart meter data analytics used in the study. Figure 2A shows
physical connection of energy measuring devices to the distribution
board. Figure 2B depicts the daily electricity usage and the peak
power recorded in the building.

From Figure 2B, the maximum daily peak power recorded was
9.2419 kW. Since all the residential houses in the community were
similar and contained the similar electrical appliances, it was
assumed that each resident’s daily peak usage would be 10 kW
peak. The 10 kW for 25 residential families in the community
corresponds to a planned central solar PV power system of
250 kW. The irregularity of daily energy usage makes it very
complex to accurately model and simulate the energy
consumption data of residential households. The load metering
analysis of the residential household is necessary to identify
energy usage patterns to optimize the efficiency of the EMS in
the microgrid system.

2.1.1 Regression analysis
The regression analysis reveals the best-case load model to

represent the typical load profile of a residential household. Load
forecasting is classified into three types: short-term, medium-term,
and long-term forecasting (Singh and Yassine, 2018). Short-term
load forecasting was chosen for residential load profile because it has
a greater prediction accuracy than medium and long-term types
(Aurangzeb, 2019; Ridwana et al., 2020). The most commonly used
regression analysis is simple linear regression (LR), which is defined
by a random variable (y) that can be described as a linear function of
another random variable (x) (Nelson and Biswas, 2015). The
relationship between the variables is expressed in Eq. 2:

y � βo + β1x + ε (2)
where y is the response variable, x is the predictor variable, βo and β1
are regression coefficients, and ε is an error that accounts for the
discrepancy between the predicted and observed data. Using the
smart metering data, a linear model is generated for electricity usage
in the household. A coefficient of determination (R2) is used to assess
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FIGURE 2
(A) Physical connection of energy measuring devices to the distribution board. (B) Daily electricity usage and the peak power recorded.

FIGURE 1
The framework of the solar microgrid system.
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the efficacy of the linear model (Nelson and Biswas, 2015). The
coefficient of determination is expressed in Eq. 3

R2 � 1−∑ yi − ŷi( )2∑ yi − ŷi( )2 (3)

where (yi − ŷi)2 represents the sum of the squared errors and
(yi − yi)2 represents the total sum of squares. R2 is a number
between 0 and 1. The closer R2 is to 1, the more the model
accurately indicates that the predictor variables account for a
large portion of the variability in response variables. Another
way to validate a prediction model’s performance is through the
Root Mean Square Error (RMSE) expressed in Eq. 4 (Zhang
et al., 2018).

RMSE �

����������∑N
i�1

yi − ŷi( )2
N

√√
(4)

where yi denotes the actual electricity consumption of the
household j, ŷi denotes the predicted electricity consumption,
and N is the number of observations.

2.1.2 Time series
Time series analysis uses a model to predict future values based on

previously observed values (Chou andDuc Son, 2018). Notable machine
learning algorithms for time series forecasting include Artificial Neural
Networks (ANN), Support Vector Machine (SVM), and Autoregressive
IntegratedMoving Average (ARIMA). The ARIMA algorithm is a linear
equation inwhich the predictors are the dependent variables lags and the
prediction error (Kuster et al., 2017). The ARIMA model can be
mathematically expressed in Eq. 5.

Yt� c +∅Yt−1+ ∅Yt−2. . . + ϵt (5)
where Yt represents the dependent variable, subscript t is an integer
index, c is a constant, ∅ represents the magnitude of the
autocorrelation and ϵt represents the error.

The ARIMA model forecasts a time series based on its historical
values. A form of ARIMA, SARIMA, uses a seasonal pattern in linear
forecasting (Chou and Duc Son, 2018). The SARIMAmethod can be
expressed mathematically in Eq. 6.

Yt� c +∅Yt−s + ϵt (6)
where subscript s represents the number of lags comprising one full
seasonality period. The SARIMA model comprises a linear
combination of seasonal past values and forecast errors (Deb
et al., 2017b). The Support Vector Machine (SVM) is another
time series method consisting of a hybrid of the Support Vector
Regression (SVR) and the SVM, which uses element boundary
variables to address function fitting problems (Zhang et al., 2019).

2.2 Microgrid system model design

The community solar PVmicrogrid systemdesignwill be conducted
on the MATLAB program, namely, Simulink/Simscape, by gathering
components from the library block of Sim-power frameworks. The
microgrid system exists in two primary states, namely, island and
grid-connected mode of operation. The residential households’

maximum load demand will be approximated as 250 kW. The
simulation conducted in MATLAB is for a single day; the peak-daily
profiles from the residential household in the experiment were utilized as
daily load profiles for 25 residential homes in a community. The three-
phase load block from the Simscape library was utilized, and the model
structure type selected has constant impedance.

2.2.1 Solar PV system modeling
The generic mathematical model of an ideal PV cell is expressed

in Eq. 7:

I � IPV − IO exp
NSkT( )V+RsI

q α
( )− 1[ ] − V + RsI

Rsh
(7)

The current created by incoming light is represented by IPV, the
diode saturation current is represented by Io and the series and
equivalent shunt resistances of the array are depicted by RsandRsh.
The ideality factor (α), is a constant that depends on the PV cell
technology used by the manufacturer (Bellia et al., 2014). Other
parameters include Ns which is the number of cells in series, k is the
Boltzmann’s constant (1.3806503 * 10−23 J/K), T (K) is the diode
temperature, and q represents the charge of an electron (1.60217646
* 10−19 C) (Singh et al., 2016).

Table 1 provides the module parameters for the PV panel (Solar
Tech Energy ASC-6P-72-300). In summary, the 250 kWp planned
solar microgrid system requires 15 solar modules, 4 Strings and
13 arrays with a string voltage of 546.75 V.

2.2.2 DC-DC boost converter
The Distributed Generation (DG) unit of the community

microgrid system is an erratic source that generates a highly
variable output voltage. Therefore, depending on the loads’
energy requirements, a DC/DC converter is needed to lower
voltage ripples and serve as either a step-up or step-down voltage
device. The boost converter specs are listed in Table 1.

The converter connects the solar PV system to the DCmicrogrid
system Zammit et al. (2018). In addition, the boost converter may
serve as a voltage booster for the DC bus (Farrokhabadi et al., 2018).
Inductors, capacitors, and Metal Oxide Semiconductor Field Effect
Transistor (MOSFET) devices with switching functions make up the
converter, which controls the voltage flow according to the energy
needs. Finally, the energy storage components are charged and
discharged using the bi-directional converter (Lee et al., 2011).

2.2.3 Battery energy storage system (BESS)
modelling

The battery helps to balance electricity in a microgrid by acting
as a load or generator during the charging and discharging phases.
Lithium-Ion batteries are widely utilized in solar community
microgrids as they display higher Depth of Discharge (DoD)
than other battery types such as lead-acid and nickel-hydride
batteries (Bila et al., 2016; Farrokhabadi et al., 2018; Vetter and
Rohr, 2014). Eq. 8 illustrates the capacity of a battery.

Bcapacity � Eload p Doff

DODmax p ntemp
(8)

where Eload represents the load supplied to the microgrid system
during periods of low electrical power supply by the DG unit in
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ampere-hours, Doff is the number of days the microgrid is
operating in island mode, DODmax is the depth of discharge at
maximum level and ntemp represents the temperature correction
factor. Factors such as DoD, State of Charge (SOC), and temperature
affect capacity and life (Alvarez et al., 2018).

A buck-boost converter topology was utilized to discharge and
charge the battery in the microgrid system. The BESS comprises a
lithium-ion battery model, and a MOSFET-driven circuit to enable
the charging and discharge of the battery depending on the available
power in the DC bus of the microgrid system. A voltage reference of
835 V is set as the DC bus voltage. It also includes a control scheme
that utilizes PID controllers and Pulse Width Modulation (PWM)
DC-DC generators to boost the converter’s output and the desired
load voltage level in themicrogrid system. PID control is widely used
in automation and engineering to govern a wide range of operations,
such as power management, using a control loop feedback
mechanism (Shezan et al., 2023). Adaptive neuro fuzzy control
system proposed by (Bramareswara Rao et al., 2022) shows the
good power quality indices. Table 1 presents the characteristics of
the lithium-ion battery.

The battery was rated as 550 V due to the Vmpp of the solar PV
module that is rated as 546 V; thereby, during periods of low solar
radiation, the battery capacity will be able to meet the desired DC
bus voltage of 835 V. The aggregate configuration for the battery
packs will be utilized, whereby all the lithium-ion battery units will
be stored in a central location (DW, 2015). The system design
calculations dictate that approximately 40% of the daily energy usage
is at night; thus, estimates for a 100-kWh battery system were
designed. Table 1 provides the battery array specifications.

2.2.4 Grid-connected inverter control
The microgrid and its link to the utility grid defines the

grid-connected mode of operation. An analogue circuit built of a
two-level converter consisting of switching devices changes
the waveform of DC voltage to AC voltage is used in a
grid-connected inverter. A grid-connected inverter synchronizes
the microgrid’s frequency and voltage with the utility grid
(Rahimi et al., 2018). The converter is connected to an inductor-
capacitor-inductor filter, removing harmonics in the output
waveforms and yielding a pure sine wave.

2.2.4.1 Inner control loop
A Voltage Source Inverter (VSI) control system between the

inverter and the grid is necessary to synchronize the frequency and
allow the desired currents to inject the desired levels of active (P) and
reactive power (Q) for certain measured grid voltages (Kabiri et al.,
2013) Figure 3 depicts the control scheme of a three-phase grid-
connected inverter.

Eq. 9 expresses the grid-connected inverter’s mathematical
control model:

ud

uq
[ ]� L

d

dt
id
iq

[ ]+R id
iq

[ ]+ωL −iq
id

[ ] + ed
eq

[ ] (9)

where the grid voltage park conversion component is represented by
ed and eq, and the elements of the park transformation of the
inverter output are represented by ud and uq. The active and reactive
transformation components of the inverter current are represented

by id and iq respectively. ω and L represent the angular grid
frequency and inductance between the grid-connected inverter
and grid, respectively. A closed-loop current regulatory powers a
high-frequency PWM switching controller. The Direct-Quadrature
(DQ) transformation control is employed because it can run near a
power factor of unity with any amount of solar energy.

As indicated in Figure 3, P and Q can be processed from the
generator to the load with bidirectional control and vice versa. PID and
Phase Locked Loop (PLL) controllers are included in the DQ control,
and they can regulate DC variables and extract the grid voltage’s phase
angle, respectively (Phuong et al., 2015). The major function of the
inverter side control is to extract as much electricity as possible from the
solar PV system and convert it to AC power. The active and reactive

TABLE 1 System design parameters.

Solar PV system parameters

Description Value

Maximum power (Pmax ) 299.9835 W

The voltage at the maximum point (60°C) (VMPP) 36.45 V

Open circuit voltage (−10°C) (Voc) 44.75 V

Maximum power current (IMPP) 8.23 A

Short circuit current (Isc) 8.62 A

Cell per module (Ncell) 72

DC-DC converter parameters

Boost converter parameters Value

String Voltage (Vin) 546.75 V

Output Voltage (Vo) 835 V

Switching Frequency (fs) 5 kHz

Converter Power (P) 20 kW

Inductor Resistance (RL) 2.064e-04 H

Resistor Capacitor (Rc) 1.00e-03 F

Duty ratio (D) 0.3452

Characteristics of the lithium-ion battery

Description Value

Initial SOC 50%

Nominal voltage 550 V

Rated capacity 200 A h

Specification of the BESS

Parameter Value

Number of batteries/strings 3

Number of strings/arrays 3

Number of arrays 2

String voltage 72 V

Energy stored/array (kWh) 43.2 kWh
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inverter currents can be removed using the DQ transformation. PID
controllers are then used to compensate for current error between the
measured output current and the appropriate injected current into the
utility grid. Grid-side control includes regulating the amount of power
fed into the grid and grid synchronization. PWM techniques regulate the
active and reactive components of current delivered to the grid through a
current control loop (Ahmed and Abdelhalim, 2012). Inverter
specifications are listed in Table 2.

2.2.4.2 LCL filter design
The LCL filters are extensively used to connect inverters to the

grid because they serve the primary objective of reducing harmonics
in the output, presenting a resonant frequency, and giving superior
fading of the ripple currents in the grid current (Ngoc Nam et al.,
2019). The maximum allowed Total Harmonic Distortion (THD)
from the grid side current should be within 5% according to the
IEEE-519 standard (Hasiah et al., 2014). The distortion of voltage or
current by harmonics is known as THD. Table 3 provides the
parameters for the filter design.

2.3 Optimization through fuzzy logic
control (FLC)

The FLC control system is an alternative technique for energy
management in microgrids instead of PID controllers. Through
guiding principles, the FLC system may efficiently regulate the
power flow between the microgrid system’s components (Al-
Sakkaf et al., 2019).

2.3.1 Energy flow in microgrid system through
fuzzy logic control

The FLC executes power management in the microgrid system
per the energy requirements. Maintaining the desired DC bus
voltage required for the constant power supply to the electrical
loads in a settlement is the fundamental goal of the control system.
The FLC algorithm-maintained power between the PV unit, battery,

TABLE 3 Filter design parameters.

Parameters Symbol Magnitude

Resonant frequency f res 5,000 Hz

Grid current Ig 181.2 A

Ripple grid current IGSW 0.544 A

Inverter inductor L1 8.0825e-04 H

Capacitor C 6.2679e-05 F

Grid inductor L2 8.0825e-04 H

TABLE 2 Inverter specifications.

Parameter Value

Number of inverters 5

Input voltage (Vi) 835

Power rating (kW) 50

Output voltage (Vac) 460

FIGURE 3
The control scheme of a three-phase grid-connected inverter in a microgrid. SOURCE (Chen et al., 2018).
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and utility grid. The FLC structure comprises input and output
variables. Figure 4 illustrates the FLC structure.

The change in power and the variation in battery SOC will serve
as the fuzzy logic’s input variables, and the output will be a current
reference (Iref). The fuzzification process involves the
transformation of a crisp quantity into a fuzzy quantity (Reyes-
García and Torres-Garcia, 2022). The interference engine is guided
by a set of rules based on “IF” statements between the two inputs,
ΔPbalance and ΔSOC(t). The defuzzification process involves
converting linguistic values into crips values. The generated
current reference instructs the grid-connected inverter when to
discharge electricity from the grid and when to recharge the grid
with extra solar PV power generated. The primary purpose of the
FLC is to maintain the desired DC bus voltage of 835 V required by
the loads. The current reference generated by the FLC sends a
control signal to the components of the microgrid, such as a
solar PV system, a battery, or the electric grid to discharge or
charge power in the microgrid bus to achieve the desired bus
voltage. The desired input range is the data range of the battery’s
SOC. Eqs 10 and 11 represent the mathematical expressions for
the input battery SOC.

SOCmin ≤ SOC t( ) ≤ SOCmax (10)
ΔSOC t( ) � SOCoriginal t( ) − SOCnow t( ) (11)

where SOCmin and SOCmax reflect the battery’s minimum and
maximum SOC. The charging and discharging of the battery are
time dependent. When solar PV generation is negligible at night,
the battery will supply the DC microgrid with the desired
voltage. The difference between the original SOC and the
actual SOC of the battery is computed to determine the
change in ΔSOC(t). Another input for the FLC algorithm was
the power balance (ΔPbalance) in the microgrid system. Eq. 12
represents the power balance.

ΔPbalance � Ppv − Pload (12)

where Pload and Ppv depict the load demand power and the solar PV
generated power, respectively. Excess solar PV power charges the
battery when the P balance is positive. Once the battery is fully
charged, the excess electricity generated by the solar PV system is fed
into the grid.

3 Results analysis

The solar microgrid system’s data analysis and performance
assessment were conducted in simulation environments such as
SPSS and MATLAB/Simulink.

3.1 Load metering analysis

Smart meter data analytics were used in the load metering
analysis. The regression and time series analyses were carried out
using simulation software.

3.1.1 Overall load profiles
Using statistical data from August 2020 and August 2021, the

average daily electricity usage (kWh) of the house in
experimentation is 27.39991 kWh. Graphs for the 15-min
intervals, hourly and daily intervals are illustrated below. Figure 5
provides a graphical representation of the 15-min interval energies
record for the 21st of August 2020.

From Figure 5, the peak energy demand occurs around 2,300 h.
The peaks and valleys across the results are usually due to the
behavioural usage behaviour of the residents. Therefore, the peak
energy demand varies daily and depends on the inhabitants’ energy
usage behaviour in the residential household. Figure 6 provides a
weekly load profile for the house in experimentation.

The average weekly analysis reveals an average electricity usage
of 27.28 kWh. Between week eight and week 13, as illustrated by
Figure, a steep rise was identified, indicating the increased Air

FIGURE 4
FLC operation structure.
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Conditioner (AC) usage in the residential household. Another steep
climb occurred between weeks 40 and 45. The maximum and
minimum weekly energy usage was recorded at 45.7 kWh and
15.84 kWh. Figures 7, 8 represent the daily electricity usage and
peak power, respectively, for the residential household in
experimentation.

From Figures 7, 8, it can be concluded that high peaks are
experienced during the week, and low peaks occur during the
weekends. The daily average electricity usage was 27.4 kWh from
the experimental recordings, while the daily peak power usage was
recorded at 5.575 kW. The maximum daily electricity usage and
peak power was recorded at 73.797 kWh and 9.249 kW,
respectively.

3.1.2 Seasonal analysis
The yearly metered data was sampled through the year’s

summer, autumn, spring, and winter. The y-axis is the electricity
consumption in kW and the x-axis is the days/months of the
respective seasons. In addition, daily usage graphs of peak days
of the seasons experienced in Botswana were prepared. A semi-arid

climate throughout the year characterizes Botswana’s weather; thus,
it generally experiences summer and winter seasons. The summer
period is from November to March and the winter period is from
May to August. Figure 9 and Figure 10 depict the peak load profiles
for summer and winter period, respectively.

The highest hourly peak electricity usage was recorded during
the summer season, followed by the season winter. From Figure 9,
the peak hourly usages are in the early mornings and late evenings.
The winter season from Figure 10 indicates that the energy peaks
occur late morning, early afternoon, and evening. Figure 11 provides
a graphic description of the seasonal electricity usage by month in
Botswana.

The dataset was analysed, and it revealed the following:
The mean electricity consumption was recorded at

0.229563 kW in the summer season, with the maximum and
minimum hourly usage at 1.87773 kW and 0.0144 kW,
respectively. The total electricity consumption recorded was
831.9379 kW. Descriptive statistics reveal that the standard
deviation and variance of the hourly metered data were found
to be 0.233701 and 0.054616.

FIGURE 6
Weekly energy consumption load profile (kWh).

FIGURE 5
The 15-min energies.
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In the winter season, the mean electricity was recorded at
0.281758 kW, with the maximum and minimum hourly usage
was recorded at 2.88389 kW and 0.00975 kW, respectively. The
total electricity consumption recorded was 966.992 kW.
Descriptive statistics reveal that the standard deviation and
variance of the hourly metered data were found to be
0.297272 and 0.08837.

The summer season was the highest amongst the other
seasons regarding the total electricity usage per season in

Botswana. High temperatures and rainfall characterize it,
thus the increased use of air-conditioners during those
months. In addition, the smart metering observation revealed
a steep rise in the energy usage of air-conditioners during the
summer period.

3.1.3 Regression
The total daily energy and peak daily usage were fed through a

regression modeler to identify a relationship between the two

FIGURE 7
Daily electricity usage Profile (kWh).

FIGURE 8
Daily peak power.
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FIGURE 9
Peak hourly profiles during the summer period.

FIGURE 10
Peak hourly profiles during the winter season.

FIGURE 11
Seasonal electricity usage by months.
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parameters. The daily peak power is the predictor value, and the
daily electricity usage is the response variable. Various models were
trained and tested in the MATLAB software environment using the
regression modeler tool. Figure 12 depicts the linear regression
prediction model. Table 4 depicts the regression models under
investigation and their goodness of fit.

For Linear model Poly5 as shown in Eq. 13 is applied:
f x( ) � p1px̂5 + p2px̂4 + p3px̂3 + p4px̂2 + p5px + p6 (13)
Coefficients (with 95% confidence bounds):
p1 = 0.2242 (0.08935, 0.359).
p2 = −6.9 (−11.11, −2.694).

p3 = 82.27 (30.85, 133.7).
p4 = −474.6 (−782, −167.2).
p5 = 1331 (433.5, 2230).
p6 = −1441 (−2465, −417.4).
Where p1, p2, p3, p4, p5, p6 represent the regression coefficients. It

can be determined that the greater the polynomial degree, the greater the
goodness of fit between the daily electricity usage and peak power and
indicates a linear regression fit between electricity usage and peak power.

According to the results, the regression modeler with the best
goodness of fit between the parameters of daily electricity usage and
peak power was discovered to be exponential GPR. From Table 4 the
Exponential GPR model had the greatest R-squared of all the test
models at 0.49, while the LR model (robust linear) had the lowest
R-squared at 0.43.

3.1.4 Time series
A brief time series analysis was conducted on the dataset to

identify the daily energy patterns that reveal energy forecasting
coefficients. Figure 13 represents the yearly metered and forecasted
daily peak power.

The dataset revealed a repeating cycle or trend in the daily
peak power in the residential household. Analysis of the SPSS
program revealed that the SARIMA model is the most accurate
model for the dataset. The model statistics reveal that the RSME,
MAPE, and R2 were found to be 0.969, 13.222, and
0.633 respectively. Furthermore, the descriptive statistics of

TABLE 4 Regression models and their goodness of fit.

Model R-squared RSME

LR models (linear) 0.44 8.3449

LR models (robust linear) 0.43 8.4076

SVM (linear) 0.43 8.4291

SVM (Gaussian fine) 0.45 8.2564

SVM (Medium Gaussian) 0.48 8.068

Gaussian matern 5/2 0.48 8.0429

Exponential Gaussian process regression (GPR) 0.49 7.9646

FIGURE 12
Linear prediction model utilizing electricity usage and peak power.
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the observed data indicate that the mean, maximum, and
minimum were 5.5752 kW, 9.2491, and 3.1995 kWh,
respectively. On the other hand, the forecasted model
statistics indicate that the mean, maximum, and minimum
energy usage as 5.574 kW, 7.664 kW, and 4.246 kW, respectively.

3.2 Microgrid solar PV system

The key parameters assessed in the simulation study in
MATLAB/Simulink were solar PV power generation, DC bus
voltage, battery SOC, and THD.

3.2.1 Energy flow in microgrid system through
fuzzy logic control

A control system is utilized to manage the power flow of the
microgrid system. The core aim of the control system is to maintain
the desired DC bus voltage necessary for the continuous power
supply to the electrical loads in a settlement. The energy flow in a
grid-connected microgrid system occurs between the solar PV
system, BESS, and the utility grid. Therefore, the primary energy
supplier to the microgrid system is the solar PV system. The fuzzy
logic control (FLC) algorithm was utilized to maintain power
between the PV unit, battery, and utility grid. The FLC operates
as a supervisory control to inform the charging and discharging of
the battery depending on the amount of solar PV power generated
(Devi and Mahesh, 2017). Control systems are characterized by
using one physical component to change another so that it exhibits
desired attributes. The basic components of the FLC framework are
a fuzzifier, a fuzzy inference engine in which the ruleset runs, and a
defuzzifier. The FLC structure consists of crisp input quantities with
either a value of 0 or 1 (Torres-García et al., 2021). The crispy

quantities are transformed into fuzzy quantities throughout the
fuzzification process. The elements of fuzzy quantities have a
degree of membership in a set. The fuzzy logic utilizes a set of if-
then rules to execute commands. The defuzzification process then
converts the fuzzy quantities into crisps quantities. The
defuzzification technique converts the fuzzy sets’ membership
degree into real values (Nebey et al., 2020). The deffuzified values
present as action commands in a control system. The FLC structure
also comprises of input and output variables. Figure 14 shows a
process flowchart of the fuzzy logic control structure.

The input variables for the fuzzy logic will be the change in power
and the change in battery SOC, while the output will be a current
reference (Iref). The current reference generated informs the grid-
connected inverter to discharge power from the grid and when to
charge the grid with the excess solar PV power produced. The primary
purpose of the FLC is to maintain the desired DC bus voltage of 835 V
required by the loads. The current reference generated by the FLC sends
a control signal to the components of the microgrid, such as a solar
photovoltaic system, a battery, or an electric grid to discharge or charge
power in the microgrid bus to achieve the desired bus voltage. The data
range of the SOC of the battery is set as the input range of the desired.
Eqs 14 and (15) show the mathematical expressions for the input SOC.

SOCmin ≤ SOC t( ) ≤ SOCmax (14)
ΔSOC t( ) � SOCoriginal t( ) − SOCnow t( ) (15)

Where SOCmin and SOCmax represent the minimum and
maximum SOC of the battery. The charging and discharging of
the battery are relative to the time of day. To determine the change in
SOC (ΔSOC(t)), the difference between the original SOC and the
actual SOC of the battery is computed. Then, the power balance
Equation is expressed mathematically in Eq. (16):

FIGURE 13
Metered and forecasted daily peak power.
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ΔPbalance � Ppv − Pload (16)

Where Ppv and Pload represent the solar PV power generated and
the load demand power, respectively. Where ΔPbalance represents the

power balance in the microgrid system. When the ΔPbalance is positive,
excess solar PV power is used to charge the battery. The extra electricity
generated by the solar PV system is fed into the grid once the battery is
fully charged. The fuzzification process involves converting a crips input
into a linguistic variable as per the assigned membership functions. The
range of values of the inputs was given membership function terms to
enable the rules execution of the logic algorithm. The membership
functions of fuzzy variables are Negative Big (NB), Negative Small (NS),
Zero (ZO), Positive Small (PS), Positive Big (PB).

3.2.2 Rules
The interference engine is instructed by a list of rules that occur

based on IF statements between the two inputs being
ΔPbalance & ΔSOC(t).Table 5 illustrates the list of rules for the FLC
algorithm.

The result of the ΔPbalance and ΔSOC(t) generates a signal to the
grid-connected inverter to relay the power exchange between the
microgrid and the grid. As a result, during high peak solar
generation hours, the battery SOC increases, and the PCC is
disconnected. Still, during low solar generation hours, the grid
supplies energy to the electrical loads while charging the battery.

3.2.3 Irradiation profile
Figure 15 depicts the input solar irradiation daily profile for the

simulation on MATLAB/Simulink.

3.2.4 Solar PV power generation
A graph of the ideal solar PV power generated, and the actual

solar PV power generated was prepared. Peak solar irradiation hour
(1500 hs) corresponded to 222.5293 kW and 222.2798 kW for the
ideal PV and actual PV power, respectively.

Figure 16 indicates the correlation between the ideal solar PV
power and the true PV power generated. The ideal PV and real PV
peaks were respectively 222.5293 kW and 222.2798 kW during the
peak solar irradiation time (1500 hs).

3.2.5 Battery SOC
Figure 17 depicts the battery SOC (percentage) on the y-axis and

time on the x-axis (hrs.).
According to Figure 15 there is virtually little solar PV power

generation between 0000 hs and 0900 hs. Therefore, the battery will
discharge to power the electrical loads, as depicted in Figure 16. The
significant rise in solar insolation between 0900 hs and 1500 hs

FIGURE 14
FLC structure.

TABLE 5 List of the 25 rules for the FLC.

Rule# ΔPbalance & ΔSOC(t) Iref

1 If ΔPbalance is NB and ΔSOC(t) is NB Then Iref is PB

2 If ΔPbalance is NB and ΔSOC(t) is NS Then Iref is PB

3 If ΔPbalance is NB and ΔSOC(t) is ZO Then Iref is ZO

4 If ΔPbalance is NB and ΔSOC(t) is PS Then Iref is NS

5 If ΔPbalance is NB and ΔSOC(t) is PB Then Iref is NB

6 If ΔPbalance is NS and ΔSOC(t) is NB Then Iref is PB

7 If ΔPbalance is NS and ΔSOC(t) is NS Then Iref is PB

8 If ΔPbalance is NS and ΔSOC(t) is ZO Then Iref is ZO

9 If ΔPbalance is NS and ΔSOC(t) is PS Then Iref is NS

10 If ΔPbalance is NS and ΔSOC(t) is PB Then Iref is NB

11 If ΔPbalance is ZO and ΔSOC(t) is NB Then Iref is PB

12 If ΔPbalance is ZO and ΔSOC(t) is NS Then Iref is PS

13 If ΔPbalance is ZO and ΔSOC(t) is ZO Then Iref is ZO

14 If ΔPbalance is ZO and ΔSOC(t) is PS Then Iref is NS

15 If ΔPbalance is ZO and ΔSOC(t) is PB Then Iref is NB

16 If ΔPbalance is PS and ΔSOC(t) is NB Then Iref is PB

17 If ΔPbalance is PS and ΔSOC(t) is NS Then Iref is PS

18 If ΔPbalance is PS and ΔSOC(t) is ZO Then Iref is PS

19 If ΔPbalance is PS and ΔSOC(t) is PS Then Iref is NS

20 If ΔPbalance is PS and ΔSOC(t) is PB Then Iref is NB

21 If ΔPbalance is PB and ΔSOC(t) is NB Then Iref is PB

22 If ΔPbalance is PB and ΔSOC(t) is NS Then Iref is PB

23 If ΔPbalance is PB and ΔSOC(t) is ZO Then Iref is PB

24 If ΔPbalance is PB and ΔSOC(t) is PS Then Iref is PB

25 If ΔPbalance is PB and ΔSOC(t) is PB Then Iref is PB
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corresponds to the solar PV power generation. The battery SOC
charges and discharges in response to the solar insolation received
and the load demand in the microgrid system.

3.2.6 Total harmonic distortion (THD)
Another parameter that was assessed was the THD experienced

in the inverter-grid side current. Figure 18 provides a schematic
diagram for the THD.

According to Figure 18, the THD-generated peak was around
6.5%, while the trough was at 2.5%.

3.3 Fuzzy logic control optimized

Graphs were created to demonstrate the impact of using FLCs
instead of PID controllers in the power management strategy for the

FIGURE 15
Solar irradiation profile.

FIGURE 16
Actual (Ppv) and ideal (Pmpp) solar PV power generation.
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microgrid system. Figure 19 depicts the daily PV power generated
and the battery SOC.

Figure 19 shows the utility grid supplies power to the
electrical loads while charging the battery. The battery
stabilizes the DC bus voltage for the microgrid system during
the transition from island mode to grid-connected mode. The
microgrid system will be in island mode with battery support
between 1400 hs and 1600 hs. When the solar PV power
generation decreases after 1600 h s, the battery supplies
auxiliary power to the electrical loads until the connection to
the utility grid is restored. Following that, around 2000 h, when
solar PV power generation was at its lowest, the microgrid

system began to operate in grid-connected mode. Figure 20
illustrates the THD experienced in the grid-side current
inverter.

From Figure 20, it can be observed that the average THD
percentage recorded was approximately 3%. By optimizing the
microgrid system through FLC, the generated THD was more
stable and closer to the allowable THD within 5% as per IEEE-
519 standard. The momentary spike in the THD at 2000 hs was due
to the transition from the island to a grid-connected mode of
operation. The FLC optimization indicated a more stable THD
with fewer spikes, which improved the stability of the microgrid
system.

FIGURE 18
Total harmonic distortion (THD).

FIGURE 17
Battery SOC.
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4 Conclusion

Solar microgrid systems in residential areas of developing
countries have the potential to provide affordable and
sustainable electricity. This work has modelled and simulated
a solar PV microgrid system for a home in Palapye, Botswana.
Load metering analysis and advanced control algorithms utilized
in this study indicated that the energy consumption patterns in
residential areas vary significantly. Regression models with

RMSE values ranging from 0.43 to 0.49 accurately matched
the dataset. Control algorithms were developed to address the
unpredictability of renewable energy generation and enhance
energy efficiency.

The daily performance of a 250-kW peak load solar PV
microgrid with PID controllers maintained the DC bus voltage
at 835 V for the community load. The battery served as a backup
power source during mode switches. The grid-inverter current’s
THD ranged from 3% to 7%, complying with the IEEE-519

FIGURE 20
THD experienced in the grid-side inverter current.

FIGURE 19
Daily PV power generated and the battery SOC.
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standard of 5%–7%. FLC algorithm was implemented to maintain
a THD of 3% throughout the day. However, the transition from
island to grid-connected mode temporarily increased THD,
indicating the need for further research on the influence of FLC
on the microgrid system. Additional technologies, such as linear
programming, are required to address power quality issues in
microgrids. Based on the system performance, application of load
metering, accurate modelling, and FLC in developing reliable and
efficient microgrid systems yields a dependable and sustainable
energy supply.
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