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The UAV inspection method is gradually becoming popular in transmission line
inspection, but it is inefficient only through real-time manual observation.
Algorithms are available to achieve automatic image identification, but the
detection speed is slow, and video image processing is not possible. In this
paper, we propose a fast detection method for transmission line defects based
on YOLO v3. The method first establishes a YOLO v3 target detection model and
obtains the a priori size of the target candidate region by clustering analysis of the
training sample library. The training process of the model is accelerated by
adjusting the loss function to adjust the learning direction of the model. Finally,
transmission line defect detection was achieved by building a transmission line
defect sample library and conducting training. The test results show that
compared with other deep learning models, such as Faster R-CNN and SSD,
the improved model based on YOLO v3 has a huge speed advantage and the
detection accuracy is not greatly affected, which can meet the demand for
automatic defect recognition of transmission line inspection videos.
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1 Introduction

With the continuous expansion of the scale of the power grid, the workload of line
inspection has increased; meanwhile, the traditional manual inspection method is costly and
inefficient, and there are certain dangers in implementation. In recent years, the State Grid
and various electric power scientific research institutions have invested a lot of manpower
and material resources to carry out UAV power inspection research, including UAV flight
control technology, transmission line inspection aerial photography target identification,
and fault detection technology research. The use of UAV inspection has the advantages of
low cost, high efficiency, and a stronger ability to adapt to complex environments, and it can
quickly collect image and video information on transmission lines, which greatly reduces the
difficulty and danger of inspection work. Therefore, UAV inspection has a broad application
prospect in transmission line inspection (YAN et al., 2017; Cao et al., 2021). The defect
recognition method based on deep learning can automatically analyze unstructured data
effectively and use deep learning algorithms to quickly process the images collected during
inspection to achieve automatic detection and recognition of abnormal states of transmission
line equipment, which is of great significance for enhancing the intelligence of power grids
(LI et al., 2017; Li et al., 2021; WEN et al., 2021). UAVs ual recognition of the collected
images. In order to further improve the automation of machine patrol, many scholars have
proposed image-based methods for the identification of transmission line equipment and
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defects. Most of the algorithms currently applied for transmission
line target detection need to rely on manual extraction of image
features and then segmentation of targets in images by the Hough
transform, Canny operator, and Gabor operator. The effectiveness of
(Nguyen et al., 2018; Chen et al., 2021; Deng et al., 2021) these
algorithms depend on the extraction of features, which, on one hand,
is a complex task requiring strong expertise; on the other hand, there
are numerous transmission line defects, which are not sufficiently
expressed bymanually extracted features, resulting in a single type of
detection target for traditional algorithms. Some algorithms use
support vector machines, neural networks, and other shallow
learning algorithms to predict the target type (Yu-min et al.,
2010; Cerón et al., 2014; JIANG, 2017), but they still need to
extract the image features first. In recent years, machine vision
technology based on deep learning has been greatly developed, and
the corresponding image target detection algorithms have also
achieved good performance. After the extraordinary performance
of AlexNet in the image recognition competition in 2012, deep
learning algorithms based on convolutional neural networks
(CNNs) have become the main research direction for image
classification and target detection (Li et al., 2008). Deep learning-
based target detection algorithms can be divided into “dual-order
method” and “single-order method”. The "dual-order method” has
high accuracy, while the “single-order method” is fast, and the
representative algorithms are YOLO (Simonyan and Zisserman,
2014; He et al., 2015) and SSD (Ren et al., 2017). The “double-
order method” has been studied in the image detection of power
system equipment (Joseph and Ali, 2016a; Redmon et al., 2016;
WANG et al., 2017), but it is still in the theoretical research stage,
and its detection speed is slow, which cannot meet the demand of
real-time detection. In the daily UAV inspection work, a large
amount of image and video data will be generated, which
requires a very high speed for the target detection algorithm.
Therefore, this paper establishes a defect recognition model of
transmission line machine inspection images based on the YOLO
algorithm using the inspection images obtained from actual
engineering operation and maintenance for training (Hui et al.,
2018; Lei and Sui, 2019; Wang et al., 2021). Through parameter
adjustment, the practical application ability of the defect detection

model can be improved, and the real-time defect detection of the
transmission line machine patrol image can be realized, which has
high engineering practicability (Gong et al., 2003; Liu et al., 2020;
Wang et al., 2020).

2 Inspection image defect detection
model construction

The YOLO algorithm directly regresses the target location and
target class at the output layer to achieve end-to-end training and
detection, which is different from the original dual-order target
detection method based on region recommendations. YOLO
v3 adds multi-scale prediction, which makes the network more
capable of detecting targets with a wide range of size variations and
has higher detection speed and recognition accuracy (He et al.,
2015). In this paper, we detect and identify equipment defects in
transmission line inspection images based on the YOLO v3 model,
and the model framework is shown in Figure 1.

For any machine patrol picture, first, the size is adjusted to a
uniform size, and the picture is divided into S × S regions; then, the
picture features are extracted by multiple convolution layers for each
region. If the center of an electric equipment defect falls in this region,
the region is responsible for predicting this defect. The center position
and size of the equipment defect are adjusted by regression. The output
of the model prediction is S × S × (B × 5 + C), i.e., S × S regions, and
each region outputs B different sizes of defect prediction checkboxes
and C defect type information, while for each defect prediction
checkbox, there are four coordinate values and one confidence
value. Finally, the model uses extreme value suppression to remove
duplicate checkboxes and then predicts the actual defect types and
locations of electrical equipment contained in the inspection images.

2.1 Model initialization inspection image
defect detection

In this model, the input inspection images are divided into
detection areas according to three scales, with 19 × 19, 38 × 3,876

FIGURE 1
YOLO v3 model framework.
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× 76 detection areas. Subsequently, the nine prior defect sizes
obtained from the sample library are assigned to the scale of the
three detection regions, according to their size, meaning that there
are three prior defect detection anchor frames in each region. For
each scale detection area, if the center of the defect is within a
region, that region is responsible for predicting this object, as
shown in Figure 2.

2.2 Multiscale feature extraction of patrol
image based on the convolutional neural
network

The model directly performs feature extraction on the whole
input image and achieves better detection of both large and small
targets. In this study, the DarkNet-53 convolutional neural
network framework is used to extract the features of inspection
images, which consists of 53 convolutional layers, and each
convolutional layer is followed by a linear segmentation
function with leakage (Leaky ReLu) as the activation function
to adapt to the nonlinear case, where five convolutional kernels
have a step size of 2. The convolution result is up-sampled to
obtain a multi-scale feature map. The feature extraction model is
shown in Figure 3.

The model inputs a patrol image with an arbitrary RGB color
pattern, and for the convolution layer, the feature vector output after
the lth layer convolution operation can be expressed by Eq. 1.

xlj � f ∑
i∈Mj

xl−1i *klij + blj( ). (1)

Here, the range of i, j, k, l, and m depends on the structure of
DarkNet-53; the range is not stated here but is intended to introduce
the mathematical model of the network, where i represents the
number of feature maps, j represents the number of convolution
kernels, k represents the number of convolution kernels, and l
represents the number of layers of the network. Mj represents the
output feature map. xl−1

i is the ith feature map of the l − 1st layer, klij
is the j th convolution kernel, * denotes the convolution operation, f
(*) is the bias term, which represents the activation function, and
here, the Leaky ReLu function is chosen as the convolution layer
activation function, which can be expressed as follows:

f x( ) � x, x > 0,
0.1x, x ≤ 0.{ (2)

Instead of pooling layers, this model uses convolution kernels
with step size 2 in some of the convolution layers. After convolution
operations with these convolution kernels, the feature vector size of
the image becomes 1/4 of the original size, and the depth of the
feature vector gradually deepens with the increase in the convolution
window.

2.3 Defect type and location prediction
based on logistic regression

This model first clusters the defect sizes of the samples before
training to obtain nine priori anchor frames, and each scale feature
map is responsible for detecting three scales of anchor frames. In the
YOLO algorithm, the image is first cut into N × N grids, and a
specified number of candidate boxes are selected for each grid, where
N represents the number of meshes of the cut image. The range of N
generally depends on the empirical value. The image feature vectors
extracted by the DarkNet-53 convolutional neural network are input
to the fully connected layer, which performs logistic regression and
finally outputs a prediction vector of dimension N × N × [3 × (4 +
1 + 20)]; it means, for three scales of feature maps, each has N × N
regions, and the position information and confidence of the three

FIGURE 2
Target prediction.

FIGURE 3
Feature extraction network.
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prediction frames in each region and the defect type information
form a 105-dimensional feature vector. The use of 3, 4, 1, and
20 depends mainly on the empirical values widely used after the
YOLO algorithm.

2.3.1 Defect type prediction
A total of 20 equipment defect types are designed in this research,

and each box uses a set of 20-dimensional vectors to represent the defect
types. If the prediction is for the nth defect, the first value in the vector is
1 and the rest of the values are 0. Each prediction box has a confidence
level, including the possibility of having a target in the region, the defect
type, and the IOU value, as shown in Eq. 3:

P Classi
∣∣∣∣Object( )*P Object( )*IOUtruth

pred � P Classi( )*IOUtruth
pred . (3)

The model determines the possibility of a class l fault in a region
based on the features extracted from the DarkNet network as
P(Classi). The intersection ratio of the predicted region area to
the actual region area is IOUtruth

pred . P(Classi|Objⅇct) represents the
probability that the target belongs to a certain defect type under the
premise of the target in the box.

2.3.2 Defect location prediction
The cross-merge ratio IOUtruth

pred is used to measure the accuracy
of the predicted region, which is calculated as shown in Eq. 4.

IOUtruth
pred � A ∩ B( )

A ∪ B( ). (4)

Here, A and B stand for the actual area and the predicted area of the
equipment defect, respectively. The intersection ratio is the ratio of the
intersection of the predicted area and the actual area to their
concurrent set.

To overcome the instability of direct prediction, this model uses a
relative position to predict the location of the defect, i.e., the predicted
offset of the center of the defect relative to the top left corner vertex of
the region for positioning, which is shown as in Figure 4.

The learning equation for the location of the center point is as
follows:

x � cx + σ tx( ),
y � cy + σ ty( ).{ (5)

Here, (cx, cy) is the position coordinate of the upper left corner
of the region, and (tx, ty) is the deviation of the predicted position
from the actual position.

The adjustment formula of the predicted anchor box size is
expressed as follows:

w � pwe
tw ,

h � phe
th .

{ (6)

Here, pw and ph are the size of the priori anchor frame. tw and th
represent the deviation of the predicted anchor frame from the
actual anchor frame.

When learning the anchor box parameters, a target score is first
given to the region inside the box to obtain the confidence level, and
if the confidence level of the anchor box is very low, the anchor box is
directly ignored. For the checkboxes with a confidence level higher
than 0.5, if the mutual IOU value is high and the same object is
predicted, only the anchor box with the highest confidence level is
retained for learning to improve the learning speed.

2.3.3 Repeat detection target elimination based on
non-extreme value suppression

With the aforementioned steps, we will get too many anchor
frames, so we need to choose wisely to eliminate duplicate anchor
frames. In this article, we choose the maximum suppression method to
eliminate duplicate anchor frames. First, low-confidence anchor frames
are suppressed, and these anchor frames most likely do not contain the
target to be detected. The remaining check boxes are then categorized
according to the category of the predicted defect. For targets that predict
the same category of defects, first, the target with the highest confidence
is selected. If the IOUs between this anchor box and other anchor boxes
are higher than 0.5, anchor boxes with lower suppression thresholds
and anchor boxes below 0.5 will not be processed. After that, the
operation is repeated for the remaining unhidden anchor boxes. At the
end of the loop, the remaining anchor frame is considered the defect
target for the final prediction.

3 Model training and optimization
based on the patrol inspection image
sample library

This experiment is set up under the Python framework with
Python version 1.5.1 using the Windows 10 operating system.
Among them, CUDA version 11.4 and Python version 3.8 are
used in the software environment. The hardware environment is
the Windows 10 operating system, the CPU model of the testing
device is 11th Gen Intel (R) Core (TM) i5-11400 @ 2.60GHz, and the
GPU model is NVIDIA GeForce RTX 3060.

3.1 Training sample library construction

In this paper, 5,000 inspection images obtained from a province
are used to form a training sample library, of which 4,000 images form

FIGURE 4
Feature extraction network.
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the training set and another 1,000 images form the test set. The sample
images are standardized according to the Pascal VOC standard (LUO
et al., 2021). The marking objects include overhead line defects, pole
defects, insulator defects, and hardware defects; all the
aforementioned objects constitute a sample library of typical
defects of transmission lines. The size of the inspection images is
not exactly the same, and considering that the shooting targets are
often located in the middle of the images during the UAV inspection,
in order to avoid compression and deformation of the images due to
different sizes and to facilitate uniform data processing by the model,
this paper crops the training images from the center to a 3:2 size and
adjusts the pixels to 4,800 × 3,200 to remove the irrelevant parts of the
edges. The defect diagrams of towers, fittings and insulators are shown
in Figures 5-7 respectively.

3.2 Priori defect size selection based on a
clustering algorithm

In this paper, we use a clustering algorithm to obtain the a priori
dimensions of defects. The initial parameters of themodel have an impact
on the training convergence speed and training effect, and a good initial
value can accelerate the convergence of the model. Through the analysis
of the sample images, we found that although the fault pattern in different
pictures has discrepancies, the size of the same class of faults is very close.
For example, insulator faults and tower faults are generally larger in size,
and the area of conductor faults is smaller. Therefore, in this study,
k-clustering is used for defect sizes, and nine clustering centers are
obtained. The values of these nine clustering centers are used as the sizes
of the priori anchor frames of the defect detection model, which makes

FIGURE 5
Example of a tower defect.

FIGURE 6
Example of fitting defects.

FIGURE 7
Example of insulator defects.
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the selection of anchor frames better match the sizes of defects in
transmission lines, speeds up the convergence of the model, and
improves the accuracy of defect detection. As shown in Table 1, the
prior dimensions of each anchor frame are presented.

3.3 Loss function design

The loss function of this model consists of three parts: the
coordinate loss function, category loss function, and confidence loss
function. The prediction results of the three scales are calculated
separately and finally summed to obtain the loss function of the
whole network. The coordinate loss function is expressed as follows:

losscoord � ∑s2

i�0∑B

j�0l
obj
ij xi − x*i( )2 + yi − y*i( )2 + ��

wi
√ −

���
w*

i

√( )2[
+ ��

hi
√ −

��
h*i

√( )2].
(7)

The category loss function is written as follows:

lossclass � ∑s2

i�0∑B

j�0l
obj
ij ci − c*i( )2 + λnoobj∑s2

i�0∑B

j�0l
noobj
ij ci − c*i( )2.

(8)
The confidence loss function is expressed as follows:

lossprob � ∑s2

i�0∑c∈class
pi c( ) − p*i c( )( ). (9)

Here, s2 stands for the number of grid regions, B is the number
of anchor frames in each region, and lobjij denotes if the jth anchor

frame in region i is responsible for the predicted target; if true, then it
is 1, otherwise, it is 0. lnoobjij indicates the opposite.

3.4 Loss function weight adjustment

By analyzing the inspection images, the result shows that there
are no more than four defects on most of the images, while the
number of grid regions generated by each image is much larger than
the number of defects. So this paper adjusts the loss weights of the
regions with and without targets by parameter λnoobj, and after
experiments, the weight λnoobj � 0.1 is chosen.

There are 20 types of defects in the design of the model, while
there are only four coordinate parameters, which would result in
very little influence of the coordinate parameters on the loss function
if added directly. In order to increase the influence of position
coordinates on the loss function to speed up the convergence, this
paper adds weight λcoord � 5 to the coordinate loss function. The
final loss function is expressed as follows:

loss � λcoordlosscoord + lossclass + lossprob. (10)

4 Model testing and result analysis

Although the YOLO algorithm has been updated to the 8th or even
9th generation versions, its essence has not changed much. Moreover,

TABLE 1 Priori size.

Defect priori size

Scale 1 (19 × 19) (512,337), (261,272), (137,144)

Scale 2 (38 × 38) (39,281), (127,77), (63,66)

Scale 3 (76 × 76) (47,33), (26,20), (7,9)

FIGURE 8
Improved loss schematic representation of YOLO v3.

TABLE 2 Defect number statistics results.

Training set Test set

Hardware 2,496 611

Pole tower 1,926 516

Insulator 1,642 437

Ground wire 1,434 328

Total 7,498 1,892

FIGURE 9
P–R curves of individual algorithms.
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FIGURE 10
Comparison of insulator image defect detection effects.

FIGURE 11
Comparison of image defect detection effects for ground wire.
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FIGURE 12
Comparison of defect detection effects on hardware image.

FIGURE 13
Comparison of defect detection effects on tower image.
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under the version change, the new versions all add newmodules on the
basis of the version of YOLO v3, thereby increasing the complexity of
the model. This corresponds to making the model slower. For this
reason, the most classic YOLO v3 version is used for this article. This
version is different from the 1st and 2nd generation versions; not only
does it have a large change in accuracy but it is also superior in speed.
For this reason, the classic YOLO v3 algorithm was chosen for this
paper. This section conducts simulation experiments based on the
YOLO algorithm on the transmission line inspection image dataset and
compares the performance with other deep learning algorithms to
explore the advantages and shortcomings of the YOLO algorithm in
transmission line inspection applications. Improve the change of the
loss function during the training of the algorithm, as shown in Figure 8.

4.1 Defective sample analysis

The dataset used in this paper can be divided into two parts, the
training and test sets. The respective types of faults contained and
the corresponding numbers are shown in Table 2.

In the training set, the proportions of the four types of faults are
33.29%, 25.69%, 21.90%, and 19.12%, respectively; in the testing set,
the proportions of the four types of faults are 32.29%, 27.27%,
23.10%, and 17.34%, respectively. From the statistical results, it can
be seen that the number of the four types of faults is comparable,
which can better meet the needs of model training and testing.

4.2 Introduction of model evaluation
indicators

In this paper, the detection effectiveness of the transmission
line defect detection model is evaluated by using the recall rate
(recall), the precise rate (precise), and mAP (mean average
precision). The recall rate is the proportion of correctly
detected targets to all targets to be detected. For any detection
frame with a confidence level higher than a set threshold, if the
intersection ratio with a marked target is greater than 0.5 and the
predicted category matches the target, the detected target is
considered correct. The number of all detected correct
detection frames is counted and recorded as NTP, the actual
number of targets to be detected is NG, and the calculation
formula for the check-all rate is shown as follows:

Recall � NTP

NG
. (11)

Similarly, the number of detection frames with all confidence
levels satisfying the requirement is ND, and the precise rate is
calculated as follows:

Precise � NTP

ND
. (12)

mAP combined with the recall rate and the precise rate is usually
used as a more comprehensive indicator to evaluate a model .
Improve the change of Recall during the training of the
algorithm, as shown in Figure 9.

4.3 The result analysis of the patrol
inspection image defect recognition

In this research, the trained model is used to conduct defect
localization and identification tests on the inspection images
acquired in actual operation and maintenance, and the prediction
is considered accurate when the intersection ratio between the
predicted target and the actual target is greater than 0.5. Several
models with quality results are trained to serve as a comparison, and
the experimental results are presented in Table 3.

The effects of defects detected by different algorithms are shown
in Figures 10-13. Wherein Figure 10 is the insulator defect detection
effect diagram, Figure 11 is the ground wire defect detection effect
diagram, Figure 12 is the hardware defect detection effect diagram,
and Figure 13 is the tower defect detection effect diagram. Table 2
shows that Hardwa corresponds to the label “dachicun”, PoLE Towr
corresponds to “ganta”, Insulator corresponds to “jueyuanzi”, and
Ground wire corresponds to “dadixian”. Based on the experimental
results, it can be seen that although SSD and YOLO v3 of the single-order
method are slightly inferior to Faster R-CNN of the two-order method in
terms of performance, they have obvious advantages in terms of
computational speed, and the prediction time of YOLO v3 is only
about 1/9 of that of Faster R-CNN. Because of the two-order method,
it is necessary to first show the top candidate frame and then proceed to
the next step, while the single-order method directly realizes the end-to-
end one-time process to complete the object detection task. So SDD and
YOLO v3 have a clear advantage in speed. The double-order algorithm
Faster R-CNN is slow, but its improvement onmAP is not obvious, and it
is difficult to achieve fast object detection tasks. The improved YOLO
v3 algorithm has only 16.4 GFLOPs. Compared to other algorithms and
unimproved algorithms, the improved algorithm has a significant
improvement in parallel processing speed. The performance of the
improved YOLO v3 model on transmission line inspection images is
also greatly improved, its accuracy far exceeded that of the Faster R-CNN
model, and the recall rate is similar, but it still maintains the advantage of
the single-order method in speed.

In addition to the application scenarios mentioned in this article,
there are also the following scenarios:

(1) Testing the performance of the improved YOLO v3 algorithm in
different transmission line scenarios, such as different types of
transmission lines and transmission lines in different environments.

TABLE 3 Model results’ comparison.

mAP
(%)

Recall
(%)

Precise
(%)

Detection
(ms)

GFLOPs

Faster 69.4 82.7 73.5 201 140.6

R-CNN

SSD 66.2 76.1 72.3 102 89.5

YOLO v3 66.9 74.5 75.9 23 18.5

Improved
YOLO v3

68.5 78.2 79.6 24 16.4
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(2) Applying the improved YOLO v3 algorithm to other types of
equipment, such as unmanned vehicles and helicopters, to
detect the performance differences of different equipment in
transmission line defect detection.

5 Conclusion

At present, the target detection algorithms applied to the defect
detection of transmission lines are mainly fast R-CNN. They have high
recognition accuracy but slow detection speed and are unable to realize
the recognition of the large amount of video data generated in UAV
inspection. This study proposes a fast detection method for
transmission line defects based on YOLO v3. Its detection speed is
close to 50 frames per second, which can meet the needs of video
inspection. At the same time, in the dataset of this paper, the rapid
detection method of transmission line defects based on YOLO
v3 achieves a detection rate of 78.2% and a probability of 79.6%.
Under the premise of ensuring the detection speed, it has improved
comparedwith SSD andYOLOv3 in both indicators. The detection rate
is only 5.4% lower than that of Faster R-CNN-based detectionmethods.
At the same time, mAP is also improved compared with the single-
order algorithm. Therefore, this paper argues that the transmission line
detectionmethod based onYOLOv3 canmake up for the shortcomings
of the Faster R-CNN algorithm and realize the rapid detection of
transmission line defects based on video images.

The issues that still need to be further explored are as follows:

(1) Insufficient diversity of the dataset: the dataset used in this
article comes mainly from real-life images of transmission lines
in a certain region. Although it covers a certain degree of
scenarios and defect types, there may still be limitations. In
order to improve the generalization ability of the algorithm, we
can supplement transmission line data from other regions to
increase the diversity of the dataset.

(2) The robustness of algorithms is difficult to evaluate: transmission
line defect detection often faces various complex environments and
lighting conditions, so the robustness of algorithms is crucial. This
article did not evaluate the performance of the improved YOLO
v3 algorithmunder different environments and lighting conditions.

These issues are urgent research directions, and we need to
conduct further research.
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