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In this work, modal decomposition is employed to generate more data for
matching scenarios with more complex topography for predicting wind power
output in the case of complex terrain. The existing literature shows that a single
wind power output forecast model is difficult to cope with complex terrain and
thus the accuracy of wind power output forecast is limited. This work combines
the advantages of attention mechanism and convolutional neural network for a
novel network based on modal decomposition of historical data for wind power
output forecast on complex terrain. The proposed novel network can break
through the limitations of a single wind power output forecast model. In
addition, the signals that are modally decomposed can be predicted more
accurately. The presented method is contrasted with various other algorithms
for the wind power output prediction problem in complex terrain. Comparative
experiments show that the proposed network achieves a higher accuracy rate.
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1 Introduction

Many countries worldwide have joined carbon neutral and carbon peaking programs to
protect the environment and sustainable development (Ma et al., 2023). For example, China
is speeding up the development of new electric power systems based on new sources of
energy.While new energy sources bring environmental protection to the new power systems,
new energy sources also bring challenges to the economic dispatch of the systems (Qi et al.,
2023). For example, wind power output in complex terrain brings many burdens for dispatch
of power systems (Wang et al., 2022). Fast, long-term and accurate forecasting of wind power
output in complex terrain is an essential foundation for ensuring the secure and robust
performance of new power systems (Qian and Ishihara, 2022).

Wind power output is affected by complex terrain and climate. The popular data-driven
methods for predicting wind energy output fall into the following five categories: time series
methods, deep neural network methods, convolutional neural network (CNN) methods, other
single model regression methods, and combined data-driven methods (Chen et al., 2021).

The more representative time series methods are recurrent neural network (RNN) series
methods and temporal convolutional network methods. Recurrent neural network methods
have been gradually developed into long and short-term memory (LSTM) network method,
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bidirectional long and short-termmemory (BiLSTM) network method,
and gated recurrent unit (GRU) method (Shahid et al., 2020). The
temporal convolutional network methods have been further developed
as temporal convolutional network methods with multi-feature spatio-
temporal fusion (GuZhaoJian, 2022). The time-series data-driven
methods are suitable for cases with very small amounts of inputs
and strong signal continuity (López-Oriona and Vilar, 2021). For
example, RNNs are more accurate than historical averaging (HA),
autoregressive integrated moving average model (ARIMA), and vector
autoregressive model (VAR) methods in the field of predicting crowd
flows (Tang et al., 2022). LSTM network method can be utilized for
predicting the prices of some energy products, such as carbon and oil
(Zhou et al., 2022). The BiLSTM network is more effective in predicting
time series than the LSTMnetwork (Kulshrestha et al., 2020). The GRU
method is a time series method based on the LSTM network, and is
theoretically more effective than the LSTM network for time series (Sun
et al., 2023). Temporal convolutional networks have been utilized to
predict the electricity load in multiple regions (Yin and Xie, 2021). The
attentional mechanism approach has been combined with temporal
convolutional networks to solve the remaining useful life (RUL)
prediction problem (Wang et al., 2021).

Deep neural networks are most skilled in the characterization of
multiple inputs and multiple outputs (Shi et al., 2020). Deep neural
networks represented by deep fully connected layers have even been
applied behind recurrent and CNNs to characterize the connection
between input and output (Ashtiani et al., 2022). The use of deep neural
networks alone to characterize multi-input and multi-output
relationships has limitations as well (Yang et al., 2022). Combining
LSTM and graph convolutional networks to form a two-channel deep
network model results in superior results to the single-channel deep
neural network approach, however, the accuracy still has room to rise.
And the dual-channel deep network model is utilized for super-short-
term forecasting and has some limitations (Liu et al., 2023).

Although the inputs of most convolutional neural networks are
pictures, historical data and complex terrain data can be arranged in
the form of pictures and entered into convolutional neural networks
for predicting wind power output (Yildiz et al., 2021). Compared to
time series or feature inputs, the information contained in the
pictures that a convolutional neural network requires as input is
enormous (Harbola and Coors, 2019). Convolutional neural
networks, represented by residual networks, have been applied to
wind power output prediction, obtaining more accurate results than
other comparative algorithms (Yin and Liu, 2020).

Other single data-driven models for predicting wind energy
output or load electricity utilization abound. For example, the deep
forest regression algorithm has been employed for forecasting near-
term loads (He et al., 2020). Multi-layer support vector machine
regression model has been applied to prediction problems for
obtaining accurate predictions (Lv et al., 2020). Adding potential
random variables to the encoder-decoder network can accurately
model complex wind speeds and wind sequences (Zheng and Zhang,
2023). The four single time series forecasting models mentioned
above have different superiority in different problems, however, the
four models all have some limitations (Lin et al., 2020).

To address the limitations of a single model, many combined data-
driven methods have been presented to deal with problems like
prediction or classification. For example, CNNs, deep neural
networks, and LSTM networks were combined to solve image

sequence prediction tasks (Balderas et al., 2019). LSTM networks
were combined with autoencoder neural networks for solving the
monitoring problem of inhomogeneous dynamic processes (Deng
et al., 2023). CNNs and attention mechanisms (AM) were combined
for forecasting wind speed, and utilizing ensemble empirical modal
decomposition for removing noise from the raw wind speed data as well
(Shang et al., 2023). Combining the modeling approach with the
convolutional neural network approach, wind power time series
expressed as ordinary differential equations are predicted with neural
networks incorporating AM (Liu et al., 2022). Convolutional neural
networks and sparse pooling layers are combined for extracting potential
features describing local spatial correlations in the raw data and retaining
meaningful values that have the highest probability of contributing to the
final prediction. The underlying temporal characteristics of the output
are fetched by the recursive process of LSTM (Liu and Zhang, 2022).
K-shape and K-mean guided CNN combined with GRU for over
prediction of wind turbine power production (Liu et al., 2021).
Inspired by the above five data-driven methods, this work presents a
modal decomposition attentional convolutional network (MDACN)
based prediction method combining modal decomposition,
attentional mechanism and convolutional neural network to tackle
the wind power output forecasting issue in complex terrain. A
summary of the contributions of this work is set out below:

(1) This work incorporates themodal decompositionmethod based on
the state-of-the-art algorithm of the new energy output prediction.
Modal decomposition removes noise from the raw data and refines
the mixed features into distinct features to be predicted separately.
The data-driven approach incorporating the modal decomposition
is able to forecast wind energy output more accurately.

(2) In addition, this work incorporates an AM based on the latest new
energy output prediction algorithm. The data-driven method
incorporating AM that assign weights to different data can
reduce the pressure on network processing, speed up network
training, and reduce the dependence of the network on
computational memory.

(3) TheMDACN proposed in this work is based on the state-of-the-
art BiLSTM network. The network proposed in this work
overcomes the limitations of a single data-driven model and
employs deep fully connected layers for overcoming the
disadvantages of a single data-driven model with low accuracy.

The rest of the chapters in this article are arranged as follows.
Section 2 of this work presents the issues and evaluation metrics
associated with wind output model of complex terrain. Section 3 of
this work presents the proposed MDACN method in detail. Section
4 of this work presents the specific experimental results. Section 5 of
this work briefly summarizes the work.

2 Wind power output prediction model
of complex terrain

2.1 Characteristics of wind power output
prediction in complex terrain

Wind farms in complex terrain, such as mountain wind farms,
are characterized by complex topography, large differences in wind
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elevation, significant differences in wind speed and wind direction,
irregular tail currents, and different turbulence effects, these factors
contribute to the difficulty of wind power prediction in wind farms
in complex terrain. Hills, cliffs, steep slopes, and ridges all have
additional effects on wind speed: peaks or mountain tops have an
acceleration effect on the wind, and bottoms or valleys have a
deceleration effect on the wind. Temperature, pressure, and air
density are affected by changes in altitude. In high altitude areas,
the unique conditions, such as high altitude, frequent
thunderstorms, low wind density, low average wind speed,
frequent wind direction changes, and complex terrain conditions
in mountain wind farms, can result in more difficult wind power
predictions.

2.2 Wind power output model of
complex terrain

2.2.1 Statistical model
Statistical models, called time series models as well, are mainly

based on historical wind measurement data and are built based on
statistical methods of parameter estimation combined with pattern
recognition. The most commonly applied statistical models are
autoregressive models (AR), moving average models (MA), and
autoregressive dynamic adaptive models (ARDA). The model is
suitable for short-term (less than 6 hours) forecasting on small
time scales.

2.2.2 Physical model
A typical physical model is numerical weather prediction.

Numerical weather prediction is a method of calculating
numerically by means of a mainframe machine on the basis of
actual atmospheric conditions and under specified initial and
marginal conditions. Then, predicting the state of atmospheric
motion and weather phenomena for a future period by solving a
system of equations characterizing the evolution of weather. This
method is more suitable for medium-term (generally more than
6 hours) wind speed prediction.

2.2.3 Dynamic spatio-temporal model
Dynamic spatio-temporal model requires to consider the

temporal sequences of wind velocities at the wind field and
the surrounding wind measurement points, based on the
correlation between the wind velocity of the surrounding wind
measurement points and the wind farm for prediction. Generally,
several remote monitoring points around the wind farm are
required to forecast wind velocity and wind direction based on
the correlation results, resulting in smaller errors, generally
within a short period of time (one to 4 hours). In fact, the
error is mainly related to the number of monitoring points in
the wind farm.

2.2.4 Intelligent model of artificial neural
network (ANN)

In contrast to statistical and physical models, intelligent model
of ANN is data-driven and has machine learning capabilities.
The intelligent model of ANN has the advantage of high
precision by utilizing the method of fuzzy logic and vector

machine learning theory, utilizing historical data, barometric
pressure and temperature as inputs to build a prediction model
for wind speed without establishing the atmospheric
equations of motion.

2.2.5 Combined prediction model
Each forecasting model has theoretical limitations, and to

optimize the forecasting process and provide forecasting
accuracy, combined forecasting is increasingly applied in practice.
For example, the optimized physical model and the artificial
intelligence model combined with the dual model, exploiting
various physical situations (e.g., wake effect) to simulate the
atmospheric processes and obtain the physical model to obtain
the wind velocity prediction. The wind velocity is considered as
importation and the wind power output is predicted by intelligent
models with neural networks, and the results obtained are more
accurate than those of other models.

2.3 Evaluation index of wind power output
model on complex terrain

To provide a more intuitive comparison of the accuracy of
different prediction methods, six assessment metrics are cited.

Sum of squares for error (SSE) Eq. 1:

SSE � ∑n

i�1 yi − ŷi( )2, (1)

The scope of values is (0,+∞) and if the forecasted results match
the real results, then the model is an ideal model. As the error
increases, the value increases and the behavior of the
model decreases.

Mean squared error (MSE) Eq. 2:

MSE � 1
n
∑n

i�1 yi − ŷi( )2, (2)

Root mean square error (RMSE) Eq. 3:

RMSE �
�������������
1
n
∑n

i�1 yi − ŷi( )2√
, (3)

Mean absolute error (MAE) Eq. 4:

MAE � 1
n
∑n

i�1 yi − ŷi
∣∣∣∣ ∣∣∣∣, (4)

The MAE is the average of the extreme difference between the
forecast and the actual value, and better reflects the reality of the
forecast error. The scope of values is (0,+∞) and if the forecasted
results match the real results, then the model is an ideal model. As
the error increases, the value increases and the behavior of the
model decreases.

Symmetric mean absolute percentage error (SMAPE) Eq. 5:

SMAPE � 100%
n

∑n

i�1
yi − ŷi
∣∣∣∣ ∣∣∣∣
ŷi
∣∣∣∣ ∣∣∣∣ + yi

∣∣∣∣ ∣∣∣∣( )/2, (5)

In the scope of [0,+∞], a SMAPE value of zero represents a
performe model, whereas a SMAPE value higher than 100%
represents a model of unfavorable quality.

Coefficient of determination (R2-R-Square) Eq. 6:
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FIGURE 1
Steps of proposed MDACN.

FIGURE 2
Steps of CEEMDAN in MDACN.
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R2 � 1 − ∑i ŷi − yi( )2∑i �yi − yi( )2, (6)

The R2 judgment factors are drawn from [0, 1]. when R2 = 1, it
indicates that the model adequately forecasts the material; when the
value of R2 is zero, it indicates that the model fails to provide a
reasonable description of the material evolution. Generally, the
R2 judgment factors are employed to measure the performance
of each model, and when its number is approaching 1, it shows that
the model is better able to interpret more changes in the data.

From the formula, n is the count of forecast sites, yi and ŷi are
the actual and forecast results in point i of the data set, separately.

3 Modal decomposition attentional
convolutional network

The proposed MDACN combines the advantages of modal
decomposition, attention mechanism, and convolutional neural
network. The steps of the MDACN are presented in Figure 1.
The wind velocity and wind energy output data are first
decomposed by CEEMDAN into modal components with more
refined characteristics. Each modal component is weighted
separately with the AM, giving higher weights to important data.
The weighted data are then predicted by BiLSTM, and finally each
modal component of the prediction is summed up to obtain the
final result.

3.1 Modal decomposition in proposedmodal
decomposition attentional
convolutional network

Modal decomposition breaks down the raw signals into modal
components with more regular characteristics. Features that are
more distinct and easy to categorize are extracted for separate
prediction, preventing low accuracy caused by feature mixing
clutter. The pre-processing of the original data utilizing the
method of mode decomposition results in better
characterization, thus improving the reliability of the forecasts.
This project intended to improve the accuracy of decomposition by
capitalizing on the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAM), which
effectively overcomes the problems of mode aliasing and the
presence of excess noise in the decomposed signal. The
CEEMDAN process in MDACN (Figure 2) is as follows. First,
white noise with different positive and negative components is
added to the original signal x(t) to obtain the new signal
x(t) ± ni(t). On this basis, the empirical mode decomposition
(EMD) method is adopted to acquire the first-order mode
components ci,1+(t) and ci,1−(t) for every fresh signal. Then, the
first-order vibrational components c1(t) are obtained by summing
and averaging the first-order vibrational components, as Eq. 7

c1 t( ) � ∑i
k�1

ck,1+ t( ) + ck,1− t( )( ) (7)

FIGURE 3
Steps of AM in MDACN.
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Subtracting the first-order vibrational components from the
original input signal, the resulting first-order residual constituent
is Eq. 8:

x2 t( ) � x t( ) − c1 t( ) (8)
White noise is appended to the input signal until a residual

component is produced, the process is called S1. Next, each residual
component is employed as an import signal until the output mode
constituents c1(t), c2(t) and the residual constituent x3(t).

Through modal decomposition, the original signal is
broken down into a series of modal components with different
rules. These modal components contain more information and are
easier to be classified and predicted. By extracting these regular
features, the problem of low accuracy resulting from feature mixing
and clutter can be effectively avoided.

3.2 Attention mechanism in proposedmodal
decomposition attentional
convolutional network

The basic idea of the AM is to divide the raw data into an array
of <Key,Value> couples. For a specific goal factor Query, the degree
of resemblance or similarity with each keyword is compared, the
weights of each keyword are calculated, and then a weighting
operation is performed on each keyword to achieve the ultimate
result. Then, based on the theory of fuzzy sets, the weights of each
factor are calculated by adding up the weights of each factor, and
then combining the Query and Key. If Value is denoted as Lx, the
fundamental concept can be expressed as Eq. 9

Attention Query, Source( ) � ∑Lx

i�1Similarity Query,Keyi( )*Valuei.
(9)

FIGURE 4
Structure of LSTM.

FIGURE 5
Structure of BiLSTM in MDACN.
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First, the AM method retrieves the Key with fuzzy
composite judgments to get the weighting factors. The dot
product method can be applied to calculate the
resemblance between Query and Key. The calculation formula is
as follows Eq. 10

Similarity Query,Keyi( ) � Query * Keyi. (10)

Next, the weights of the phase one are standardized with softmax
function. The importance factor weights can be given more
prominence by the intrinsic scheme of softmax. Simi is denoted
as the resemblance between Query and Keyi. It is generally
computed with the following equation Eq. 11

ai � SoftMax Simi( ) � eSimi

∑Lx
j�1e

Simj
. (11)

FIGURE 6
Partial structure of LSTM combined with AM in MDACN.

FIGURE 7
Data excerpts for 10 days: (A) wind velocity data; (B) wind energy export data.
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FIGURE 8
Three components of the wind speed data after decomposition: (A) first modal constituent; (B) second modal constituent; (C) residual constituent.

FIGURE 9
Three components of the wind power output data after decomposition: (A) first modal constituent; (B) second modal constituent; (C) residual
constituent.
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Finally, the weights of the indicators and the respective weights
are summed up to produce the ultimate value. The equation for the
calculation is as follows Eq. 12

Attention Query, Source( ) � ∑Lx

i�1ai*Valuei. (12)

Figure 3 presents the flow chart of the AM.
A data-driven approach that incorporates an AM that

assigns weights to different data allows the network to be trained
faster. In addition, when employing the approach, since the network
requires very little computational memory, it is also able to reason
more efficiently during the training process.

3.3 Convolutional neural networks in
proposed modal decomposition attentional
convolutional network

The BiLSTM is employed to forecast the output of wind energy
in complex terrain based on modal decomposition attention

convolution network. Figure 4 shows the LSTM network
structure. x1(t) and x1(t + 1) are inputs. y1(t − 1), y1(t) and
y1(t + 1) are outputs. s(t − 1) is previous memory element and,
s(t) is current memory element.

The BiLSTM network consists of two LSTM structures in
opposite directions. The network has concealed layers in
both positive and negative directions. Transmit two exports
to two long and short memory networks in reverse orientations
and concatenate their exports to form the ultimate export.
Figure 5 presents the BiLSTM architecture.

CNNs follow a forward transmission of information when
learning. This type of processing does not do a good job of mining
the valuable messages included in the wind turbine timesteps,
and is not efficient. BiLSTM can effectively exploit existing
historical and futuristic data to improve forecast accuracy.
BiLSTM is a bi-directional loop based neural network with
both positive and negative transmission mechanisms. BiLSTM
then well compensates for the lack of information
present in LSTM.

TABLE 1 Parameterization of MDACN and comparison methods.

Method Solver name Max epochs Mini batch size Initial learn rate Number of neurons

GRU SGDM 100 128 0.01 50

LSTM SGDM 100 128 0.01 50

BiLSTM SGDM 100 128 0.01 50

MDACN SGDM 100 128 0.01 50

FIGURE 10
Forecasting results for the three modal constituents: (A) first modal constituent; (B) second modal constituent; (C) residual constituent.
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3.4 Application steps of the proposed modal
decomposition attentional convolutional
network for wind energy output forecast

Firstly, the original wind velocity and energy output data are
modally decomposed by CEEMDAN, and the wind speed modal
decomposition exports two modal constituents c1(t) and c2(t)
with one remnant constituent x3(t). The modal components of
wind speed decomposition are employed to predict the
corresponding modal constituents of wind power output.
After adding the attention weights, the information of these

three wind velocity components is fed into the BiLSTM. To give
an example with the modal component c1(t), convolution of the
enter data of the current instant with the output data of the
previous instant to obtain the attention goal. c1(t) is utilized to
compute the value of the Query and y1(t − 1) is utilized to
compute the value of the Key. Next, the attentional goals are
regularized and then multiplied with the input data in elemental
order. Finally, the weighted data from AM is entered to BiLSTM
for forecasting, and the ultimate results of the modal
components are obtained. The predictions from the three
parts are summed to produce the final wind energy output

FIGURE 11
Forecasting results compared to the raw data: (A) MDACN; (B) GRU; (C) LSTM; (D) BiLSTM.
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forecast. Figure 6 shows a partial structure of the BiLSTM
network combined with the AM.

The advantages of the MDACN prediction approach are
generalized as follows.

(1) The CEEMDAN algorithm gives higher accuracy by refining the
original signal. Pattern decomposition is a noise elimination
method that distills a mixture of features into several separate,
independently predictable features.

TABLE 2 Fault indexes of the four forecasting approaches.

Method SSE MSE RMSE MAE SMAPE R2

GRU 5.3583e+05 3.1895e+03 56.4756 44.8843 0.0905 0.6295

LSTM 1.2442e+06 7.4062e+03 86.0591 77.3762 0.1439 0.1397

BiLSTM 9.2609e+05 5.5124e+03 74.2457 55.7885 0.1170 0.3597

MDACN 1.0253e+05 0.6103e+03 24.7042 20.0992 0.0602 0.9291

Bold indicates the best values corresponding to that indices.

FIGURE 12
Fault profiles of the four forecasting approaches.

FIGURE 13
Prediction results of the three modal components with BiLSTM: (A) first modal constituent; (B) second modal constituent; (C) residual constituent.
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(2) BiLSTM efficiently exploits characteristic messages in both
directions by superposition with two LSTM levels. The
method breaks through the restriction of forecasting the
future time series based on the previous time series, and
enables a greater convergence of export and situation.

(3) As the amount of data grows, the storage ability of RNN
gradually reduces and fails to reflect long-time dependencies.
AM is able to accurately determine the connection between the
region and the whole prior to forecasting, thus simultaneously
overcoming storage inefficiencies and increasing the
forecasting accuracy.

4 Case studies

Experimental simulations are performed on MATLAB R2022a
with a 2.10 GHz CPU and 32 GB on a 64-bit Windows 10 system.
This experiment utilizes 9,072 sets of wind velocity and wind energy
export data. Figure 7 shows the excerpted wind velocity and wind
energy export data of 10 days. Because the intercepts are obtained
from the wind velocity and wind energy export data at the same
time, the wind energy export data have approximately the same
pattern of ups and downs as the wind speed data indicating that the
wind energy export is strongly influenced by the wind velocity.

FIGURE 14
Comparison of the forecasting outcomes of the ablation experiment andMDACNmethod: (A)MDACN; (B)MDACNwithout CEEMDAN; (C)MDACN
without AM.

TABLE 3 Evaluation indexes of the ablation experiments and the MDACN method.

Method SSE MSE RMSE MAE SMAPE R2

Without CEEMDAN 4.8456e+05 2.8672e+03 53.5466 42.1927 0.0916 0.6682

Without AM 3.1051e+05 1.8483e+03 42.9917 32.1434 0.0754 0.7853

MDACN 1.0253e+05 0.6103e+03 24.7042 20.0992 0.0602 0.9291

Bold indicates the best values corresponding to that indices.
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Therefore, the wind velocity data can be utilized to forecast the wind
power output.

First, the wind velocity and wind energy export data are
decomposed by the same CEEMDAN, that is, the same white
noise is added before each empirical modal decomposition for
both types of data, and two modal components and one residual
component are obtained respectively. If the amount of modal
components is over set, the features may be corrupted, preventing
the subsequent network from predicting accurately. If the
amount of modal compositions is set too small, the features
cannot be decomposed sufficiently to achieve the purpose of
feature refinement. Figure 8 shows the three components of the
wind speed data after decomposition. Figure 9 shows the three
components of the wind energy export data after decomposition.
The first two modal components are highly characterized parts of
the raw signal, and extracting these parts, which are easy to find
patterns, into a new signal for prediction can improve the
prediction accuracy.

Figure 8 and Figure 9 show that the originally irregular data are
decomposed into three sets of data with more regular ups and downs
and more refined characteristics, thus allowing for more accurate
predictions afterwards.

The MDACN prediction method is applied to each of the three
modal components, and the modal decomposed wind speed modal
component is employed to forecast the corresponding wind energy
export modal component. 8,904 datasets are utilized as train sets and
the remaining 168 datasets are utilized for testing sets. Table 1 shows
the parameter settings of MDACN and the comparison methods.
The solver utilizes stochastic gradient descent with momentum
(SGDM). Compared to other solvers, SGDM converges better
and the training process is more stable. According to the
principle of control variables, the same parameters are utilized
for all four methods. If max epochs is set too large, the model is
likely to be overfitted and more time and computational resources
are consumed, although the results may not be significantly
improved. If max epochs is set too low, the network can fail to
capture patterns and features in the training data, resulting in
insufficient training and poor model performance. If the mini
batch size is set too small, more time is spent, the gradient
oscillation is severe, and the network is not favorable for
convergence. Too large a mini batch size causes the network to
easily fall into local minima. If the initial learn rate is too large, the
loss function may diverge. If the initial learn rate is too small, the
training speed will be very slow. Excessive hidden layer neurons will
increase the computational power of the network and cause
overfitting problem. If the number of neurons is too small, the
desired effect will not be achieved.

Figure 10 presents the prediction outcomes for the three
modal components. Comparison of raw and predicted data
shows that the signal prediction after decomposition is
effective, and the prediction curve and the raw data curve are
basically coincident. Modal decomposition has a positive impact
on signal prediction.

Finally, the forecast outcomes of the three modal compositions
are summed up and the ultimate results are composed with those
predicted by the LSTM, GRU and BiLSTM models individually
(Figure 11). Figure 11 indicates that the forecast value curve of the
MDACN prediction method has a higher degree of overlap with the

real value curve, suggesting that the MDACN has a high
forecast accuracy.

The results of the four prediction methods are calculated
separately for the six prediction indicators proposed in this work
(Table 2) and the fault profiles of the four forecasting
approaches (Figure 12).

As can be seen in Table 1 and Figure 12, the MDACN method
minimizes all error indicators and has a slicker error curve that is
approaching the zero level. This indicates that the forecasting
outcome of the MDACN produces small error and high
accuracy, and it also indicates that the model of the MDACN is
well fitted.

In order to verify the importance of AM and CEEMDAN in the
MDACN approach, some ablation experiments are performed in
this work. The AM in the MDACNmethod is first removed, and the
raw signal after modal decomposition is predicted with BiLSTM.
The forecasting outcomes of modal constituents predicted by
BiLSTM (Figure 13) are compared with the forecasting outcomes
of modal constituents predicted by MDACN (Figure 10), and the
forecasting outcomes of the BiLSTM are less accurate in the part of
the signal that has a large undulation. For the prediction of modal
components, BiLSTM is not as accurate as the MDACN method.

The CEEMDAN in the MDACN method is removed, and the
raw signals are directly predicted by the BiLSTM network with the
AM added. Figure 14 shows the outcome of the ablation experiments
contrasted to the MDACN forecasts. The overlap between the
predicted and true curves is not as high as in the MDACN
method, whether AM or CEEMDAN is subtracted, indicating
that both AM and CEEMDAN perform an important role in the
MDACN method.

Table 3 shows the comparison of the evaluation indexes between
the ablation experiments and the MDACN method. All six
evaluation metrics of the MDACN method have smaller errors
than the evaluation metrics of the ablation experiments,
indicating the superior performance of the MDACN model. AM
and CEEMDAN contributed a beneficial role to the high accuracy of
the results.

5 Conclusion

Wind power output is influenced by complex terrain and climate
imposing many burdens on the dispatch of power systems. This
work proposes a method that combines modal decomposition, AM
and CNN for fast and accurate prediction of wind energy export
in complex terrain. The MDACN prediction method is
emulated and evaluated in comparison with the other three
models, and the outcomes show the MDACN proposed in this
paper achieves more accurate outcomes in forecasting the export
of wind energy from complex terrains. This work describes
the following.

(1) This work in used a modal decomposition approach. modal
decomposition removes noise from the raw data and refines the
mixture of features into distinct features that can be predicted
individually. The data-driven approach combined with modal
decomposition enables more accurate prediction of wind
energy output.
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(2) This work combines the AM algorithm with BiLSTM networks.
AM relieves the network processing pressure, speeds up
network training, and reduces the dependency of the
network on computational memory. The BiLSTM network
surmounts the restriction of a single data-driven model by
adopting a deep fully-connected layer to surmount the
disadvantage of low accuracy of a single data-driven model.

(3) The MDACN prediction approach has higher accuracy and
improved system fitting in comparison to the forecasting of
other CNN models individually.

In the next study, i) find the modal decomposition method
that works better and enables more accurate and distinctive data
after modal decomposition. ii) Keep improving the model
structure and the methodology employed to continue to
increase the reliability of the forecasting accuracy. iii) Simplify
the structure of the model. For example, the operation of
predicting and then adding the three modal components
separately is complicated, and the structure needs to be
simplified for improving the speed of model prediction.
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