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This study employs DMSP-OLS and NPP-VIIS nighttime light remote sensing data
to develop a carbon emission regression model based on energy consumption,
analyzing the spatiotemporal evolution of carbon emissions in 57 cities within
the Yellow River Basin from 2012 to 2021. The analysis uses a quantile regression
model to identify factors affecting carbon emissions, aiming to enhance the
basin’s emission mechanism and foster low-carbon development. Key findings
include: 1) Carbon emissions from energy consumption increased in this period,
with a decreasing growth rate. 2) Emissions were concentrated along the
Yellow River and its tributaries, forming high-density carbon emission centers.
3) The Yellow River Basin has mainly formed a “high-high” agglomeration area
centered on resource-based cities such as Shanxi and Inner Mongolia’s coal,
and a “low-low” agglomeration area centered on Gansu and Ningxia. The
standard deviation ellipse of carbon emissions in the Yellow River Basin generally
extends from east to west, and its center of gravity tends to move northward
during the study period. 4) Technological innovation, economic development,
and population agglomeration suppressed emissions, with digital economy and
foreign investment increasing them in certain cities. Urbanization correlated
positively with emissions, but adjusting a single industrial structure showed
insignificant impact.

KEYWORDS

energy-related carbon emissions, DMSP-OLS, NPP-VIIS, spatiotemporal evolution,
influencing factors

1 Introduction

Theenvironmental issues caused by greenhouse gas emissions are becoming increasingly
severe, and the development of a low-carbon economy has reached a consensus (Jia et al.,
2019; Liu P. et al., 2023; Hou et al., 2023). The Chinese government continues to plan and
design low-carbon development paths and strategies, clearly incorporating the carbon
peak carbon neutrality target into the overall layout of ecological civilization construction
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(Ding et al., 2019; Pan, 2021). At this stage, there are obvious
regional differences in China’s economic development, population
size, energy consumption, and industrial structure, and the
requirements for carbon emissions and energy conservation
and emission reduction are also different (Yang et al., 2020;
Liu et al., 2022a). The Yellow River Basin is an important ecological
barrier, economic zone, energy and chemical base, and food
production base in China, and it is of great significance for the
overall realization of ecological protection, economic and social
development, and ecological civilization construction in China
(Deng et al., 2019a). However, the economic development of the
Yellow River Basin mainly relies on the energy and chemical
industry, the scale of high-knowledge-content strategic emerging
industries is small, and in addition, the contradiction between
ecological environment protection and high-quality development
in this region is prominent, making it one of the typical regions
for carbon reduction in China (Deng et al., 2019b). How to achieve
green and low-carbon development, transform the economic
development mode, and improve the energy consumption structure
in the Yellow River Basin should be the essence of realizing high-
quality development in the entire basin. Therefore, under the “dual
carbon” goal, accurately grasping the temporal and spatial evolution
characteristics of carbon emissions in the prefecture-level cities
of the Yellow River Basin and its influencing factors, and then
formulating more reasonable carbon reduction countermeasures,
can provide an important basis for the construction of a low-carbon
ecological basin.

At present, many scholars have conducted extensive research on
carbon emissions and their drivingmechanisms, with research areas
involvingmultiple scales such as global, national, provincial, and city
levels (Zhang et al., 2022; Zhou et al., 2022; Liu et al., 2023; Shi et al.,
2023). The research content mainly includes the measurement
of carbon emissions, temporal and spatial dynamic evolution,
and analysis of influencing factors (Du et al., 2021; Ji et al., 2022;
Song et al., 2023). In terms of research methods, carbon emissions
are often estimated by carbon emission inventory estimation,
input-output models, and panel data models (Su and Ang, 2015;
Guo et al., 2016; Chen et al., 2020), while spatial differences in
carbon emissions are explored using Gini coefficients, variation
coefficients, Theil indexes, etc., (Chen et al., 2016; Liu et al., 2020;
He et al., 2022). Based on this, the driving mechanism of carbon
emissions is discussed using DID double-difference models, LMDI
decomposition methods, Tapio decoupling models, STIRPAT
models, and geographically weighted regressions (Jia et al., 2009;
Wang et al., 2017; Ma and Cai, 2019; Liu, 2022). However, the
validity of regional statistical data has always been a core issue in
the study of carbon emission methods. The rapid development of
global nighttime light image data has effectively addressed the lack
of related regional statistical data. Some scholars have conducted
research on economic development, population estimation, energy
consumption, resource utilization, etc., based on nighttime light
remote sensing data (Xiao et al., 2018; Du et al., 2021). Other
scholars have used nighttime light remote sensing data to explore
carbon emissions and their spatiotemporal evolution characteristics,
but there are problemswith the goodness of fit and simulation effects
of linear regression models estimating carbon emissions using
nighttime light remote sensing data (Jiang et al., 2023; Yang et al.,
2023).

While the aforementioned research has provided valuable
references for simulating carbon emissions with nighttime light
remote sensing data, there are still some deficiencies: 1) Carbon
emissions research based on traditional statistical data is often
limited to the national or provincial level due to data limitations,
making it difficult to refine to the spatial scale, which in turn
is unable to provide more robust support for the formulation
of regional and differentiated carbon reduction policies. 2) A
river basin, as a natural-social integrated system formed by the
connection of rivers, has interrelated resources and environments
within it. However, existing research on carbon emissions at
the basin scale is relatively rare, overlooking the relevance
of low-carbon development of basin geographical units and
the importance of systematic emission reduction. Therefore,
this study calibrates and fits DMSP-OLS and NPP-VIIS annual
nighttime light remote sensing data to obtain a long-time series
of nighttime light remote sensing data from 2012 to 2021.
It constructs a carbon emission regression estimation model
based on energy consumption, and systematically analyzes the
temporal and spatial evolution patterns of carbon emissions in
57 prefecture-level cities in the Yellow River Basin. Using a
quantile regressionmodel, the study explores the factors influencing
carbon emissions, in the hope of providing a reference for
further enhancing and improving the basin’s emission mechanism
and promoting high-quality low-carbon development in the
basin.

This paper makes contributions resides in several aspects:
1) The application of nighttime light data to the measurement
of energy-related carbon emissions, which addressed the lack of
statistical carbon emission data accuracy; 2) Carried out carbon
emission-related research from the perspective of river basins, which
contributed useful supplement to the correlation of low-carbon
development in geographical units of river basin, thus reflecting the
importance of systematic emission reductions; 3) Through methods
such as spatial autocorrelation and, standard deviation ellipses,
the spatial and temporal evolution of carbon emissions is more
precisely depicted at the municipal scale, while the understanding
of the differences in the spatial and temporal distribution patterns
of carbon emissions is improved; 4) Based on the Stochastic
Impacts by Regression on Population, Affluence and Technology
(STIRPAT) model framework and the Environmental Kuznets
Curve (EKC) hypothesis, the panel quantile regression model is
used to quantify the nonlinear impact of socioeconomic factors on
carbon emissions, to reveal the differences in the implementation
effects of energy-saving and emission-reduction measures under
different carbon emission levels, and provide a theoretical basis
for the implementation of stage-specific carbon emission reduction
measures.

2 Materials and methods

2.1 Study area and data source

The Yellow River, the mother river of the Chinese nation,
and its basin constitute a crucial economic corridor for China’s
“Belt and Road” initiative. This basin is an essential economic link
covering eastern, central, and western provinces and plays a vital
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role in national economic and social development and ecological
protection. The Yellow River Basin includes nine provinces and
regions, namely, Qinghai, Sichuan, Gansu, Ningxia, InnerMongolia,
Shanxi, Shaanxi, Henan, and Shandong (Liu et al., 2022b). This
study delineates the scope of the Yellow River Basin based on
the natural river basin’s support, considering the integrity of
regional research units and the direct association of regional
economies with the Yellow River. The study focuses on 57
prefecture-level cities located in the core areas of the main stream
and major tributaries of the Yellow River Basin, as shown in
Figure 1.

(1) Thenon-radiometrically calibratedDMSP-OLSnighttime stable
light data have a pixel grayscale value range of 0–63 and
a spatial resolution of 30″. The NPP-VIIRS nighttime light

remote sensing data have a spatial resolution of 15″and are
monthly scale data. Both types of nighttime light remote sensing
data are sourced from the official website of the National
Geophysical Data Center (NGDC) of the National Oceanic
and Atmospheric Administration (NOAA) of the United
States.

(2) The various statistical data mainly come from city (state) urban
statistical yearbooks, city (state) national economic and social
development statistical bulletins, and bulletins from relevant
units of city (state) statistical bureaus and environmental
protection bureaus, “China Energy Statistical Yearbook,” and
“China City Statistical Yearbook.” Some missing data have been
filled using mean values of adjacent years or interpolation
methods.

FIGURE 1
Map of the study area.
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TABLE 1 Fitting parameter values for 2012 DMSP-OLS and NPP-VIIRS.

No. Fitting function R2

1) f(x) = 4.293x + 3.791 0.8931

2) f(x) = 0.00023x2 + 2.323x + 3765.2 0.4325

3) f(x) = 57.982x0.5578 0.2232

4) f(x) = 3878.2e0.00002x 0.5129

2.2 Calibration and processing of nighttime
light remote sensing data

(1) DMSP-OLS data preprocessing. Firstly, the image reprojection,
resampling, and cropping of 2012–2013 DMSP-OLS data were
performed (Ash andMazur, 2020), yielding light data within the
administrative boundary of the Yellow River Basin. Secondly,
inter-image mutual calibration was performed. The city of
Zhengzhou, Henan Province, which has relatively stable socio-
economic development, was selected as the invariant target
area. The 2011 data was selected as the reference dataset, and a
quadratic regressionmodel was constructed with other years for
the second in-year fusion calibration, aiming to resolve the issue
of inconsistency among nighttime light images from different
satellites (Ma et al., 2020). After temporal sequence calibration,
the corrected DMSP-OLS nighttime light remote sensing data
for the Yellow River Basin from 2012 to 2013 were obtained.

(2) NPP-VIIRS data preprocessing. Firstly, the image annual
synthesis, reprojection, resampling, and cropping of 2012–2021
NPP-VIIRS data were performed tomatch the spatial resolution
of DMSP-OLS data (Liu et al., 2022). Secondly, stability
calibration and outlier removal were performed for the invariant
area. The stable light-emitting area of the 2016 synthesized
data was chosen as the invariant area, and the 2012–2021
data underwent stability calibration. After temporal sequence
calibration, the corrected NPP-VIIRS nighttime light remote
sensing dataset for the Yellow River Basin from 2012 to 2021
was obtained.

(3) Fusion calibration of DMSP-OLS and NPP-VIIRS data. Firstly,
the 2012–2013 data of DMSP-OLS and NPP-VIIRS at the city
scale were statistically processed to yield two sets of light data.
Secondly, a regression relationship was established between the
2012–2013 data of DMSP-OLS and NPP-VIIRS at the city scale.
The parameters and goodness of fit of the regression for the two
datasets are shown in Table 1.

Among the models, model 1) has an R2 value of 0.8931, which is
higher than that of the other models and indicates good accuracy.
Therefore, model 1) was selected as the fitting equation for the
dataset. The corrected formula is:

f(x) = 4.293x+ 3.791 (1)

In the equation, f(x) represents the 2012–2013 annual data
of DMSP-OLS nighttime light remote sensing, and x represents
the 2012–2013 annual data of NPP-VIIRS nighttime light remote
sensing. Based on this, downscaling grid correction was performed
on the 2013–2021 NPP-VIIRS data. This method reconstructed

TABLE 2 Standard coal conversion degree and carbon emission degree of
different energy sources.

Energy type Standard coal
conversion factor

Carbon emission
factor

Coal 0.714 0.756

Coke 0.971 0.855

Crude Oil 1.483 0.590

Gasoline 1.471 0.590

Kerosene 1.471 0.570

Diesel Fuel 1.457 0.590

Fuel Oil 1.429 0.620

Natural Gas 12.143 0.448

Electricity 0.123 0.213

a long-term, comparable dataset of DMSP-OLS and NPP-VIIRS
nighttime light remote sensing, providing excellent data support
for the long-term dynamic monitoring of carbon emissions
characteristics.

2.3 Energy-related carbon emission
estimation and accuracy verification

Given the types and distribution of energy in the Yellow
River Basin, this study uses the calculation formula of the
Intergovernmental Panel on Climate Change (IPCC) to estimate
CO2 emissions (Monteiro et al., 2022). Coal, coke, crude oil, and
other energy sources are used as representatives of the main
consumed energy. The specific calculation method is as follows:

CO2 =
8

∑
I=1

Ei ×NCVi ×CCi ×COFi ×
44
12

(2)

In the equation, CO2 represents carbon emissions, Ei represents
the consumption of various types of energy, NCi represents the
average low calorific value of the ith type of energy, CCi represents
the carbon level per unit heat, and COFi represents the oxidation
factor of the ith type of energy. 12 and 44 are the molecular weights
of carbon and carbon dioxide, respectively.The energy consumption
coefficients are as shown in Table 2.

Furthermore, the carbon emissions estimation model assumes
that there is a linear relationship between DN values and carbon
emissions; the larger the DN value, the larger the carbon emissions
(Huang et al., 2023). There is a consistent correlation at the
provincial, city, and county scales with the pixel scale.The estimation
model is as follows:

CEi
= αDNi + β (3)

In the equation, CEi
is the estimated carbon emissions of

the ith pixel; DN is the DN value of the ith pixel; α and β
are regression parameters. As seen from Figure 2, the total DN
value of nighttime light remote sensing data and the statistical
value of energy consumption carbon emissions have a good linear
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FIGURE 2
Fitting of statistical carbon emissions and DN values.

FIGURE 3
The trend of carbon emissions in the Yellow River Basin from 2012 to 2021.

correlation, with a goodness of fit reaching 0.8976. The specific
formula is as follows:

Cp = 0.0218Dp + 272.531 (4)

In the equation, Cp represents the carbon emissions of city p, and
Dp represents the DN value of city p.

Due to limited available statistical data, many studies, such as
those by Yu et al. (2022) and Xu et al. (2021), could not evaluate
the accuracy of their estimation models at the city level. Based on
the availability of data in this study, the accuracy of the estimation

results at the city scale is evaluated. Correlation testing shows
that the estimated carbon emissions have a significant correlation
with the statistical values, with a coefficient of determination R2

of 0.9127. To verify the reliability of this result, the relative error
between the estimated value of carbon emissions and the statistical
value needs to be calculated. The result shows that the sample
size with a relative error less than 20% exceeds 85%, meeting
the estimation accuracy requirement. Therefore, the accuracy
of estimation at the city scale is high, satisfying the research
needs.
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2.4 Moran’s index

Moran’s I is an important indicator to measure the spatial
correlation of correlated variables (Liu et al., 2022). This study
explores the spatial correlation and spatial agglomeration
characteristics of carbon emissions in the Yellow River Basin by
calculating the Global Moran’s I and Local Moran’s I.

2.4.1 Global Moran’s index

I =

n

∑
i=1

n

∑
j=1

Wij(χi − χ)(χj − χ)

S2
n

∑
i=1

n

∑
j=1

Wij

(5)

In the equation, n is the number of cities, S2 represents the sample
variance, Wij is the spatial weight, xi and xj represent the carbon
emissions of city i and city j, and χ is the average. I ∈ [−1,1], If I >
0, it indicates positive autocorrelation, i.e., high values are adjacent
to high values and low values are adjacent to low values in carbon
emissions in the Yellow River Basin. If I < 0, it indicates negative
autocorrelation, i.e., high values are adjacent to low values. If I is
close to 0, it means that carbon emissions are randomly distributed
in space.

2.4.2 Local Moran’s index
Although the global Moran’s index can indicate whether there

is spatial autocorrelation in carbon emissions in the Yellow River
Basin, it cannot reveal the spatial agglomeration mode of carbon
emissions in various cities (Lemmerz et al., 2023). Therefore, the
local Moran’s index is used for further analysis.

Ii =
(χi − χ)

S2

n

∑
j=1

Wij(χj − χ) (6)

In the equation, the meanings of S2,Wij,χi,χj and χ are the same as
formula (9). If Ii > 0, the agglomeration pattern is a “high-high” or
“low-low” cluster; if Ii < 0, it is a “low-high” or “high-low” cluster; if
Ii = 0, it means that local carbon emissions are randomly distributed.

2.5 Standard deviation ellipse

The standard deviation ellipse can intuitively analyze the spatial
expansion form of carbon emissions in the Yellow River Basin. The
center of the ellipse can represent the center of carbon emissions
distribution in the entire area, the area of the ellipse can characterize
the concentration or dispersion of the city, and the azimuth angle
can analyze themain driving direction of the city’s carbon emissions
expansion in the entire area (Zhao et al., 2022). The formulas for
calculating the area and azimuth angle of the ellipse center are as
follows:

Χ =

n

∑
i=1

aixi
n

∑
i=1

ai

,Υ =

n

∑
i=1

aiyi
n

∑
i=1

ai

(7)

In the equation, xi and yi are the position coordinates of the ith
feature, ai is the weight of the ith feature, X and Y are the centroid
coordinates of the normalized ellipse, and n is the total number of
pixels.

SDEx =
√

n

∑
i=1
(xi − x)

2

n
,SDEy =

√

n

∑
i=1
(yi − y)

2

n
(8)

( x
SDEx
)
2
+(

y
SDEy
)
2
= S (9)

In the equation,X and Y are the arithmetic mean centers of xi and yi;
SDEx and SDEy are the long and short axes of the normalized ellipse;
S is the area of the standard deviation ellipse.

tanθ =

(
n

∑
i=1
̃xi2 −

n

∑
i=1
̃yi
2)+√(

n

∑
i=1
̃xi2 −

n

∑
i=1
̃yi2)

2

+ 4(
n

∑
i=1
̃xi ̃yi)

2

2
n

∑
i=1
̃xi ̃yi

(10)

mx =
√
2

n

∑
i=1
( ̃xicosθ− ̃yisinθ)2

n
,my =
√
2

n

∑
i=1
( ̃xisinθ+ ̃yicosθ)

2

n
(11)

In the equation, θ is the azimuth angle of the standard deviation
ellipse, rotating clockwise from the north direction is positive. ̃xi and
̃yi are the differences between xi and yi and X and Y, respectively,

and mx and my are the standard deviations of the x-axis and y-axis,
respectively.

2.6 Panel quantile regression

The general panel regression follows the principle of ordinary
least squares (OLS) estimation, essentially a conditional mean
regression (Vélez-Henao et al., 2019). When the random error term
of the regression conforms to economic assumptions such as
normal distribution and zero mean, OLS satisfies the condition of
the minimum variance unbiased estimate (Fu et al., 2022). When
the data distribution is non-normal or the regression coefficients
fluctuate greatly at different quantiles, quantile regression can
capture the extent to which the explained variable y is affected at
different quantile levels, making the estimation results more robust
(Williamson et al., 2023).

Combining the relevant literature, this study selects seven
factors - digital economy, technological innovation, industrial
structure adjustment, economic development, population, foreign
investment, and urbanization - to study their impact on carbon
emissions (Liu et al., 2023; Rönkkö et al., 2023; Sun and Wu, 2023).
The panel data of 57 prefecture-level cities in the Yellow River
Basin from 2012 to 2021 are statistically analyzed, and the entropy
method is used to process the influencing factors (see Table 3
for specific indicators). Considering the unity of dimensions and
symmetry, all variables are log-transformed. Based on the STIRPAT
model and the EKC theory hypothesis, this paper uses the panel
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TABLE 3 Control variable indicators.

Primary indicators Secondary indicators Tertiary indicators unit

Level of digital economic development Digital foundation Internet penetration rate %

Mobile phone penetration rate %

Digital industry Employees in information transmission and technology services 104 people

Postal industry employees 104 people

Per capita telecommunications business income 104 CNY

Digital finance Year-end financial institution RMB deposits 108 CNY

Inclusive finance index %

Level of technological innovation Investment in science and innovation Number of R&D personnel people

R&D fund input intensity %

Proportion of education fiscal expenditure %

Output of science and innovation Number of patent authorizations piece

Number of invention patents per 10,000 people piece

Number of scientific and technical papers included in major foreign retrieval tools article

Industrial structure adjustment Rationalization of industrial structure Weighted structural deviation —

Advanced industrial structure Industrial structure hierarchy index —

Economic development level — Per capita GDP 104 CNY

Population level — Total urban population 104 people

Level of foreign investment — Dependence on foreign investment %

Urbanization level — Urbanization rate %

quantile regressionwith fixed effects, and the specific expression is as
follows:

QklnCi = β1(k)lnDEi1 + β2(k)lnTIi2 + β3(k)lnISi3 + β4(k)lnGDPi4

+ β5(k)lnPOPi5 + β6(k)lnTradei6 + β7(k)lnUrbi7 (12)

In the formula: QklnCi represents the carbon emissions at the kth
quantile; β is the coefficient of the control variable; lnDE represents
the degree of digital economic development; lnTI represents
technological innovation; lnIS represents the degree of industrial
structure optimization, for specific indicators see Table 9; lnGDP
represents the regional economic development situation; lnPOP
represents the total population of the region; lnTrade represents the
degree of foreign investment; lnUrb represents the urbanization rate.
i = 1, … ,n.

3 Manuscript formatting

3.1 Time series characteristics

As shown in Figure 3, from 2012 to 2021, the carbon emissions
in the Yellow River Basin were on a growth trend, increasing from
558.85 million tonnes in 2012 to 1,685.49 million tonnes in 2021,
with an average growth rate of 14.69%. The growth of carbon
emissions was relatively slow from 2012 to 2014. In 2015, the carbon
emissions in the Yellow River Basin decreased by 2.7% from the
previous year, indicating that the emission reduction targets and

tasks established by China at the 2015 Paris Climate Conference
had some impact on the carbon emission reduction in the Yellow
River Basin in the post-Kyoto era. After 2016, carbon emissions grew
rapidly, but as time went on, the growth rate of carbon emissions
slowed down. From 2019 to 2021, the average growth rate of carbon
emissions was 4.19%, 71.45% lower than the average growth rate
during the research period, indicating that the strategy of ecological
protection and high-quality development in the Yellow River Basin
has achieved remarkable results (Chen et al., 2023).

Specifically, from 2012 to 2016, apart from the higher growth
rate of carbon emissions in the downstream of the Yellow River
Basin, the growth of carbon emissions in the middle and upper
reaches was slow, and the carbon emissions in the middle reaches
showed a negative growth trend. After 2016, carbon emissions
in the upper, middle and lower reaches of the Yellow River
Basin all showed significant growth. From the perspective of
proportion, the proportion of downstream carbon emissions during
the research period was always higher than 52%, indicating that
the downstream has always been in the stage of pursuing rapid
economic development, and the energy consumption brought about
by this has driven the growth of carbon emissions. The proportion
of carbon emissions in the middle and upper reaches did not
significantly rise, and the middle and upper reaches have a strong
dependence on energy. Although the implementation of energy-
saving and emission-reduction policies has to some extent curbed
the growth trend of carbon emissions, there is still a large space for
carbon emission reduction.
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FIGURE 4
Spatial distribution of carbon emissions in the Yellow River Basin in 2012, 2016, and 2021.

3.2 Spatial distribution characteristics

Figure 4 is a spatial distribution map of carbon emissions in the
Yellow River Basin from 2012 to 2021, simulated based on night-
time light remote sensing data. From 2012 to 2021, the carbon
emissions in the Yellow River Basin were distributed in series along
the main stream of the Yellow River and its major tributaries (such
as the Fen River, Wei River, etc.), relying on provincial capitals
such as Taiyuan, Xi’an, Zhengzhou, Jinan, andmajor industrial cities
such as Baotou, Datong, Zibo, etc., presenting a co-existing situation
of central agglomeration and peripheral diffusion, and forming a
number of high-density carbon emission centers of varying sizes and
scales.

Specifically, in 2012, the overall carbon emissions in the Yellow
River Basin were at a relatively low level, but the distribution range
was wide, and the carbon emissions were mostly concentrated in
the downstream and the eastern part of the middle stream, showing
a belt-like distribution. In the upstream, the carbon emissions of
Yinchuan and Lanzhou were connected in series and spread to the
surrounding areas, with the orientation of the main stream of the
Yellow River in cities like Shizuishan, Wuhai, Bayannur, Baotou;
in the middle stream, cities like Linfen, Taiyuan, and Datong took
the Wei River as the orientation, while Xi’an, Xianyang, Baoji,
and Weinan took the Fen River, a major tributary of the Yellow
River, as the orientation; in the downstream, cities like Zhengzhou,
Jinan, and Binzhou took the main stream of the Yellow River as
the orientation, and the central carbon emissions increased and

gradually spread from the periphery, but there were fewer high-
density carbon emission centers. In 2016, the scale of the carbon
emission area decreased, but there was a more concentrated trend,
the area and number of high-density carbon emission aggregation
areas increased, forming a point-like distribution with high density
as the core. In 2021, the area and number of high-density carbon
emission areas continued to increase, and the carbon emission area
showed a scale distribution, basically forming and establishing the
center-periphery pattern of carbon emissions, eventually forming
high-density carbon emission areas of various scales from large to
small from provincial capitals to small and medium-sized cities. The
distribution range of carbon emissions is basically consistent with
the city level and city location.

3.3 Spatial correlation analysis

First, the global Moran’s I is used to analyze the spatial effect of
carbon emissions in the Yellow River Basin. The global Moran’s I of
carbon emissions in the YellowRiver Basin is obtained by calculating
the panel data through GeoDa software, and its significance is
verified using the MCMC method, as shown in Table 4. The global
Moran’s I of carbon emissions in the Yellow River Basin changes
dynamically over time and is significantly positive at the 5% level,
indicating that there is a positive correlation in the level of carbon
emissions in theYellowRiver Basin, i.e., the level of carbon emissions
in each city will be affected by neighboring cities. Looking at
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FIGURE 5
LISA clustering map of carbon emissions in the Yellow River Basin in 2012, 2016, and 2021.

TABLE 4 Moran’s I value of carbon emissions in theYellow River Basin.

Years Moran’s I z value p-value

2012 0.284 4.546 0.001

2013 0.206 3.659 0.002

2014 0.196 2.250 0.006

2015 0.192 2.374 0.015

2016 0.239 2.944 0.005

2017 0.246 2.831 0.005

2018 0.258 2.503 0.012

2019 0.277 3.182 0.023

2020 0.286 2.590 0.010

2021 0.398 4.600 0.001

the trend of change, the Moran’s I index shows a trend of rising
in fluctuations over time, indicating that the spatial aggregation
characteristics of carbon emissions are strengthening, and the
correlation between regions within the basin is still increasing.

To further explore the relationship between carbon emissions
in the cities of the Yellow River Basin and neighboring cities, the
LISA cluster map of carbon emissions in the Yellow River Basin is
drawn based on the calculation results of the local Moran index, as

shown in Figure 5. It can be seen that: 1) The aggregation degree
of carbon emissions among the 57 cities in the Yellow River Basin
is mainly dominated by “high-high” aggregation and “low-low”
aggregation, with high spatial stability, indicating that there is a
certain degree of polarization in the level of carbon emissions in the
Yellow River Basin. 2) The “high-high” aggregation area has a large
change, with the number increasing from 9 in 2012 to 20 in 2021.
The “high-high” aggregation area in 2012 is mainly concentrated in
the Shandong Peninsula and around some provincial capitals, and
then extends to the northern part of Shanxi and Shaanxi, and the
central part of Inner Mongolia, forming a “high-high” aggregation
with resource-based cities such as Shaanxi and InnerMongolia as the
core. The middle and upper reaches of the Jinsha-Mongolia region
is a major energy base in China, and the “energy golden triangle”
led by Yulin, Ordos, and Yinchuan is the coal reserve base after
Shanxi Province (Chen et al., 2023). With the rapid development of
the coal industry and its extensive operation mode and backward
technology level, it leads to high energy consumption and “high-
high” aggregation of carbon emissions. 3)The “low-low” aggregation
area has a small change and always shows a scale distribution, and
the spatial distribution range is relatively stable, mainly distributed
in Gansu and Ningxia, forming a “low-low” contiguous area with
cities such as Zhongwei, Baiyin, and Dingxi as the main body. The
Ganning region is mainly located on the east side of the Qinghai-
Tibet Plateau and the southwest side of the Loess Plateau. This
region has strong ecological environment constraints, inconvenient
transportation and sparse population, and the central cities have
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FIGURE 6
Standard deviation ellipse of carbon emissions in the Yellow River Basin in 2012, 2016, and 2021.

TABLE 5 Area and azimuth angle of the standard deviation ellipse of carbon
emissions in theYellow River Basin in 2012, 2016, and 2021.

Years Area/104 km2 Azimuth angle/°

2012 57.75 94.64

2016 58.18 95.36

2021 58.39 94.08

insufficient self-development and weak contact with neighboring
cities. The economy relies on the primary industry, resulting in
“low-low” aggregation of its carbon emissions. 4) Lanzhou, as a
major industrial city in the northwest, has carbon emissions far
higher than other cities, belonging to a long-term stable state of
“high-low” aggregation. The “low-high” aggregation has a certain
spatial mobility and is relatively dispersed. In 2012, the “low-
high” aggregation included three prefecture-level cities: Bayannur,
Ulanqab, and Liaocheng, while in 2016 and 2021, only Bayannur, a
prefecture-level city, was included.

3.4 Standard deviation ellipse analysis

Figure 6 shows the standard deviation ellipse and the moving
trajectory of the centroid of carbon emissions in the Yellow River
Basin in 2012, 2016, and 2021. It can be seen from the figure that the
standard deviation ellipse of carbon emissions in the Yellow River
Basin is roughly east-west oriented, and its centroid shows a trend of
moving north over a period of 10 years. From the perspective of the

coverage area of the standard deviation ellipse (Table 5), its value has
risen from 57.75 × 104km2 in 2012 to 58.39 × 104km2 in 2021, with
a growth rate of 1.1%, indicating that the carbon emissions in the
Yellow River Basin are gradually expanding. From the perspective
of the azimuth angle of the standard deviation ellipse, its value has
changed from 94.64° in 2012 to 94.08° in 2021, indicating that the
overall carbon emissions in the Yellow River Basin are showing
a trend of concentrating and expanding to the north, which is
inseparable from the increase in carbon emissions in the “Energy
Golden Triangle” region and Shanxi Province, and also verifies the
related conclusions in the spatial correlation analysis.

3.5 Analysis of influencing factors

First, this paper conducts descriptive statistics for each variable
(Table 6). At the same time, in order to avoid the occurrence of
spurious regression, this paper adopts three unit root test methods:
LLC test, IPS test, and HT test. The results of the unit root test
obtained through Stata16.0 show (Table 7) that the P values of all
data are less than 0.05, that is, they pass the 5% significance test, and
the validity of the estimation results is verified.

After the unit root test, it is necessary to test the correlation
and multicollinearity of the variables to ensure the robustness of
the model and the credibility of the regression results (Table 8).
The maximum value of the variance inflation factor (VIF) between
variables is 2.62, and the average value is 1.65, which is lower than the
warning value of 10, indicating that there is no serious collinearity
problem.
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TABLE 6 Descriptive statistics of each variable.

Variables Unit Observations Average Standard deviation Minimum value Maximum value

C 104 tonnes 570 1163.351 1264.159 11.601 9885.118

DE — 570 0.164 0.066 0.069 0.576

TI — 570 0.084 0.084 0.004 0.583

IS — 570 0.067 0.078 0.003 0.940

GDP CNY 570 54492.060 37585.340 6910.724 283865.000

POP 104 peolple 570 436.945 314.081 51.520 1599.006

Trade % 570 7.099 9.358 0.001 55.865

Urb % 570 54.581 15.041 21.260 95.370

TABLE 7 Unit root test results for each variable.

Variables LLC IPS HT

lnC 0.000 0.000 0.000

lnDE 0.034 0.002 0.017

lnTI 0.000 0.000 0.000

lnIS 0.000 0.020 0.012

lnPOP 0.000 0.000 0.000

lnGDP 0.000 0.000 0.000

lnTrade 0.000 0.011 0.006

lnUrb 0.001 0.023 0.009

TABLE 8 VIF values of each variable.

Variables VIF 1/VIF

lnDE 1.48 0.677

lnTI 2.62 0.382

lnIS 1.11 0.901

lnGDP 1.51 0.664

lnPOP 1.45 0.690

lnTrade 1.64 0.609

lnUrb 1.72 0.581

Following the research of Dai et al. (2023), this paper sets 5
quantile indices: 10th, 25th, 50th, 75th, and 90th to assess the
influencing factors of carbon emissions and their distribution under
different conditions. Table 9 presents the panel quantile regression
results of the influencing factors of carbon emissions in the Yellow
River Basin, and Figure 7 shows the distribution of the elasticity
coefficients of the influencing factors.The following conclusions can
be drawn:

(1) The digital economy can significantly promote the increase
of carbon emissions in medium and high quantile cities. At
present, the digital economy in the Yellow River Basin has
a short development time, and its infrastructure industry
still lacks large-scale application of renewable energy, which
has limited effect on carbon emissions. However, enterprises,

TABLE 9 Regression results of panel data of quantile.

Influencing factors Quantile

10th 25th 50th 75th 90th

lnDE −0.0045 0.1665 0.0204 0.1083* 0.2229**

(0.0320) (0.3153) (0.0385) (0.0636) (0.0812)

lnTI −0.0147 −0.0530** −0.1220*** −0.2120*** −0.4527***

(0.0185) (0.2176) (0.0296) (0.0480) (0.0714)

lnIS 0.008 −0.0057 0.0515 0.0393 −0.064

(0.2355) (0.0303) (0.4190) (0.0394) (0.0566)

lnGDP −0.0433*** −0.0690*** −0.0980*** −0.1431*** −0.2199***

(0.0088) (0.0106) (0.0124) (0.0161) (0.0228)

lnPOP −0.0488*** −0.0602*** −0.0618*** −0.1048*** −0.1814***

(0.1075) (0.0114) (0.0095) (0.0124) (0.0164)

lnTrade 0.0049 0.0137 0.0280** 0.0434** 0.2632**

(0.1026) (0.1085) (0.0118) (0.0175) (0.0836)

lnUrb 0.0512*** 0.0666*** 0.0942*** 0.1206*** 0.2000***

(0.0118) (0.0131) (0.0152) (0.0238) (0.0323)

-cons 0.0253*** 0.0360*** 0.0458*** 0.0699*** 0.1033***

(0.0058) (0.0068) (0.0098) (0.1069) (0.0205)

***p < 0.01, **p < 0.05, *p < 0.1.

as the main body of digital economy development, increase
coordination costs and risk control costs in the process of large-
scale production customization due to the increase of factor
suppliers, leading to an increase in carbon emissions.

(2) The regression coefficient of technological innovation is
negative, and except for the 10th point, all other points pass
the significance test. With the increase of the point, the energy-
saving and emission-reducing effect of technological innovation
is stronger. The possible explanation is that the improvement of
the level of technological innovation can broaden the sources of
energy, improve the level of waste gas treatment, reduce energy
consumption, and thus reduce carbon dioxide emissions.

(3) The regression coefficient of economic development level
is negative and significant, which indicates that economic
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FIGURE 7
Distribution of regression elasticity coefficients.

development can significantly inhibit carbon emissions.
Industrial agglomeration has positive externalities. The
rapid development of emerging industries and energy-
saving and environmental protection technologies forces the
transformation of economic development and the updating of
enterprise production technologies, which shows a suppressing
effect on carbon emissions.

(4) The regression coefficient of population level is negative and
significant at the 1% confidence level, indicating that population
agglomeration has a suppressing effect on carbon emissions.
Compared with medium and low quantile cities, the inhibitory
effect of population on carbon emissions is more significant
in high quantile cities. Urbanization drives the agglomeration
of population and other resources. The agglomeration of
population changes energy use and transportation modes, and
reducesmarginal emission reduction costs through scale effects.

(5) Foreign investment can significantly increase carbon emissions
in medium and high quantile cities. The Yellow River Basin is
richer in natural resources compared to coastal cities, but its
degree of openness is lower. Foreign investors in this region
are more inclined to invest in resource-intensive industries,
and high-energy-consuming, high-pollution foreign enterprises
eliminated by coastal cities migrate to the Yellow River Basin,
causing a certain “pollution haven” effect.

(6) The regression coefficient of urbanization is positive and
significant, indicating that urbanization has a promoting effect
on carbon emissions.With the rapid expansion of the process of

urbanization and the continuous increase of infrastructure, the
energy consumption has risen sharply, leading to an increase in
carbon emissions.

(7) The adjustment of industrial structure has no significant impact
on carbon emissions, indicating that the process of industrial
structure optimization in the Yellow River Basin is relatively
slow, and the level of resource allocation and service-oriented
industrial structure urgently needs to be further improved.

4 Conclusions and recommendations

4.1 Conclusions

Based on the calibration of the 2012–2013 DMSP-OLS and
2012–2021 NPP-VIIRS global nighttime light remote sensing data,
this paper adopts the four-step method for fusion correction, and
obtains the long-time series nighttime light remote sensing dataset
of the Yellow River Basin from 2012 to 2021. Through ArcGIS
visualization, Moran’s Index, and standard deviation ellipse, we
analyze the spatio-temporal evolution characteristics of carbon
emissions in the Yellow River Basin, and finally use quantile
regression to explore its influencing factors, and draw the following
conclusions:

(1) From 2012 to 2021, the total energy consumption and carbon
emissions in the Yellow River Basin have been continuously
increasing, but the growth rate has been decreasing. The total
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amount has increased from 558.85 million tonnes in 2012 to
1,685.49million tonnes in 2021.The average annual growth rate
from 2019 to 2021 is only 4.19%, which is 71.45% lower than the
average annual growth rate during the entire research period.
This shows a converging trend, but it has not yet reached the
carbon peak. The carbon emissions in the lower reaches of the
Yellow River always account for more than 52%, which is the
main source of carbon emissions in the Yellow River Basin.

(2) From 2012 to 2021, the carbon emissions in the Yellow River
Basin are distributed along the main stream of the Yellow River
and the main tributaries (such as the Fen River and the Wei
River). They rely on provincial capital cities such as Taiyuan,
Xi’an, Zhengzhou, Jinan and major industrial cities such as
Baotou,Datong, andZibo, showing a situationwhere centripetal
agglomeration and peripheral diffusion coexist, forming several
high-density carbon emission centers of different sizes and
scales.

(3) The Yellow River Basin is mainly dominated by ‘high-high’
clustering and ‘low-low’ clustering. The ‘high-high’ clustering
extends from the Shandong Peninsula to the north of Shanxi
and Shaanxi, and the middle of Inner Mongolia, forming a
‘high-high’ aggregation area centered on resource-based cities
such as Jin-Meng coal. The ‘low-low’ aggregation area is mainly
distributed in Gansu and Ningxia regions, forming a ‘low-low’
continuous area dominated by cities such as Zhongwei, Baiyin,
and Dingxi. The standard deviation ellipse of carbon emissions
in the Yellow River Basin roughly extends in the east-west
direction, and its center of gravity shows a trend of moving
towards the northeast during the research period, showing a
gradually expanding situation.

(4) Technological innovation, economic development, and
population agglomeration can significantly inhibit carbon
emissions, and the higher the city quantile, the stronger
its impact. The digital economy and foreign investment
can significantly increase carbon emissions in medium and
high quantile cities. The level of urbanization is significantly
positively correlated with carbon emissions, but the adjustment
of a single industrial structure does not have a significant effect
on carbon emissions.

4.2 Suggestions

(1) Strengthen the application of remote sensing technology.
Government departments should consider combining remote
sensing technology with statistical data to establish a more
refined, multi-scale carbon emission database, which is
convenient for dynamically monitoring the carbon emissions
of various regions and cities, providing important data support
for government relevant departments to implement carbon
emission reduction policies, and providing more systematic
and differentiated schemes to assist China’s carbon peaking and
neutralization actions at the regional and city scale.

(2) Break through the traditional economic development path
dominated by coal and heavy industry, particularly focusing on
typical cities like Hohhot, Baotou, E’erduosi, Yulin, Lvliang, and
Shuozhou. Promote the transformation and upgrading of high-
energy-consuming industries such as chemical industry, power,

and steel, and improve energy utilization efficiency. Promote the
spillover and drive of technology and capital from developed
cities in the east to underdeveloped cities in the northwest,
and achieve coordinated development of socio-economic and
ecological environment between regions.

(3) As a basin life community connected by rivers, the Yellow
River Basin needs to develop in coordination and plan as a
whole. According to the characteristics of the upper, middle,
and lower reaches, formulate carbon emission reduction policies
and carbon trading quotas, strive to reach the carbon peak as
soon as possible through the implementation of systematic and
differentiated emission reduction policies.

(4) In production activities, it is necessary to accelerate the
transformation and upgrading of traditional energy utilization
technologies and increase the proportion of clean energy in
the energy composition. In addition, actively guide foreign
investment towards low-energy consumption and high-output
industries to avoid the ‘pollution haven’ effect. As it is difficult
to change the coal-based energy structure in the short term,
reducing carbon emissions by leveraging the advantages of
technology, economy, and population agglomeration and scale
effects is the main path for carbon reduction in the Yellow River
Basin.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

Conceptualization, JL and TS; investigation, TS and LP;
methodology, TS and ZH; supervision, JL and ZH; data curation,
LP; writing—original draft, TS and LH;writing—review and editing,
JL and ZH. All authors contributed to the article and approved the
submitted version.

Funding

This study was funded by the Henan Institute for Chinese
Development Strategy of Engineering and Technology (Grant
No. 2022HENZDA02), the Soft Science Major Project of Henan
Province (GrantNo. 212400410002), and theNational Social Science
Foundation of China (21FGLB092).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1231322
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. 10.3389/fenrg.2023.1231322

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Ash, K., and Mazur, K. (2020). Identifying and correcting signal shift in DMSP-OLS
data. Remote Sens. 12 (14), 2219. doi:10.3390/rs12142219

Chen, J., Cheng, S., Song, M., and Wang, J. (2016). Interregional
differences of coal carbon dioxide emissions in China. Energy Policy 96, 1–13.
doi:10.1016/j.enpol.2016.05.015

Chen, S., Ding, Y., Song, Y., Zhang, M., and Nie, R. (2023a). Study on China’s energy
system resilience under the scenarios of long-term shortage of imported oil. Energy 270,
126831. doi:10.1016/j.energy.2023.126831

Chen,X.N., Li, F.,Wu, F. P., Xu,X., andZhao, Y. (2023b). Initial water rights allocation
of Industry in the Yellow River basin driven by high-quality development. Ecol. Model.
477, 110272. doi:10.1016/j.ecolmodel.2022.110272

Chen, Y., Kershaw, J. A., Hsu, Y. H., and Yang, T. R. (2020). Carbon estimation using
sampling to correct LiDAR-assisted enhanced forest inventory estimates. For. Chron. 96
(1), 9–19. doi:10.5558/tfc2020-003

Dai, Z., Zhang, X., and Yin, Z. (2023). Extreme time-varying spillovers between high
carbon emission stocks, green bond and crude oil: Evidence from a quantile-based
analysis. Energy Econ. 118, 106511. doi:10.1016/j.eneco.2023.106511

Deng, Y., Li, Z., Li, Z., and Wang, J. (2019a). The experiment of fracture
mechanics characteristics of Yellow River Ice. Cold Regions Sci. Technol. 168, 102896.
doi:10.1016/j.coldregions.2019.102896

Deng, Y., Li, Z., Wang, J., and Xu, L. (2019b). The microstructure of yellow river ice
in the freezing period. Crystals 9 (9), 484. doi:10.3390/cryst9090484

Ding, S., Zhang, M., and Song, Y. (2019). Exploring China’s carbon emissions
peak for different carbon tax scenarios. Energy Policy 129, 1245–1252.
doi:10.1016/j.enpol.2019.03.037

Du, Q., Pang, Q., Bao, T., Guo, X., and Deng, Y. (2021a). Critical factors influencing
carbon emissions of prefabricated building supply chains in China. J. Clean. Prod. 280,
124398. doi:10.1016/j.jclepro.2020.124398

Du, X., Shen, L., Wong, S. W., Meng, C., and Yang, Z. (2021b). Night-time light data
based decoupling relationship analysis between economic growth and carbon emission
in 289 Chinese cities. Sustain. Cities Soc. 73, 103119. doi:10.1016/j.scs.2021.103119

Fu, Z., Ahmad, I., Fenta, A., Dar, M. A., Teka, A. H., Belew, A. Z., et al. (2022).
Identification of potential dam sites using OLS regression and fuzzy logic approach.
Environ. Sci. Eur. 34 (1), 105. doi:10.1186/s12302-022-00660-w

Guo, X., Ren, D., and Shi, J. (2016). Carbon emissions, logistics volume and GDP
in China: Empirical analysis based on panel data model. Environ. Sci. Pollut. Res. 23,
24758–24767. doi:10.1007/s11356-016-7615-z

He, W., Liu, D., and Wang, C. (2022). Are Chinese provincial carbon emissions
allowances misallocated over 2000–2017? Evidence from an extended gini-coefficient
approach. Sustain. Prod. Consum. 29, 564–573. doi:10.1016/j.spc.2021.11.007

Hou, Z., Huang, L., Xie, Y.,Wu, L., Fang, Y.,Wang, Q., et al. (2023). Economic analysis
of methanating CO2 and hydrogen-rich industrial waste gas in depleted natural gas
reservoirs. Energies 16 (9), 3633. doi:10.3390/en16093633

Huang, L., Hou, Z., Fang, Y., Liu, J., and Shi, T. (2023). Evolution of CCUS
technologies using LDA topic model and derwent patent data. Energies 16 (6), 2556.
doi:10.3390/en16062556

Ji, Y., Dong, J., Jiang, H., Wang, G., and Fei, X. (2022). Research on carbon emission
measurement of Shanghai expressway under the vision of peaking carbon emissions.
Transp. Lett., 1–15. doi:10.1080/19427867.2022.2091669

Jia, J., Deng, H., Duan, J., and Zhao, J. (2009). Analysis of the major
drivers of the ecological footprint using the STIRPAT model and the PLS
method—a case study in henan province, China. Ecol. Econ. 68 (11), 2818–2824.
doi:10.1016/j.ecolecon.2009.05.012

Jia, J., Jian, H., Xie, D., Gu, Z., and Chen, C. (2019). Multi-scale decomposition of
energy-related industrial carbon emission by an extended logarithmic mean divisia
index: A case study of jiangxi, China. Energy Effic. 12, 2161–2186. doi:10.1007/s12053-
019-09814-x

Jiang, F., Chen, B., Li, P., Jiang, J., Zhang, Q., Wang, J., et al. (2023). Spatio-temporal
evolution and influencing factors of synergizing the reduction of pollution and carbon
emissions-Utilizing multi-source remote sensing data and GTWR model. Environ. Res.
229, 115775. doi:10.1016/j.envres.2023.115775

Lemmerz, T., Herlé, S., and Blankenbach, J. (2023). Geostatistics on real-
time geodata streams—an extended spatiotemporal moran’s I index with

distributed stream processing technologies. ISPRS Int. J. Geo-Information 12 (3),
87. doi:10.3390/ijgi12030087

Liu, F. (2022). The impact of China’s low-carbon city pilot policy on carbon
emissions: Based on the multi-period DID model. Environ. Sci. Pollut. Res., 1–15.
doi:10.1007/s11356-022-20188-z

Liu, J., Shi, T., and Huang, L. (2022a). A study on the impact of industrial
restructuring on carbon dioxide emissions and scenario simulation in the yellow River
Basin. Water 14 (23), 3833. doi:10.3390/w14233833

Liu, J., Wang, H., Ho, H., and Huang, L. (2022b). Impact of heterogeneous
environmental regulation on manufacturing sector green transformation
and sustainability. Front. Environ. Sci. 933, 938509. doi:10.3389/fenvs.2022.
938509

Liu, P., Qin, Y., Luo, Y., Wang, X., and Guo, X. (2023a). Structure of low-carbon
economy spatial correlation network in urban agglomeration. J. Clean. Prod. 394,
136359. doi:10.1016/j.jclepro.2023.136359

Liu, S., Jia, J., Huang, H., Chen, D., Zhong, Y., and Zhou, Y. (2023b). China’s
CO2 emissions: A thorough analysis of spatiotemporal characteristics and sustainable
policy from the agricultural land-use perspective during 1995–2020. Land 12, 1220.
doi:10.3390/land12061220

Liu, S., Zhao, X., Zhang, F., Qiu, A., Chen, L., Huang, J., et al. (2022c).
Spatial downscaling of NPP-viirs nighttime light data using multiscale geographically
weighted regression and multi-source variables. Remote Sens. 14 (24), 6400.
doi:10.3390/rs14246400

Liu, X. J., Jin, X. B., Luo, X. L., and Zhou, Y. K. (2023c). Multi-scale variations and
impact factors of carbon emission intensity in China. Sci. Total Environ. 857, 159403.
doi:10.1016/j.scitotenv.2022.159403

Liu, X., Liu, Z., Lin, K. C., Huang, Z. L., Ling, M. Y., Chen, P. Q., et al.
(2022d). Evaluation of the operation process of medical equipment to enhance
ergonomic reliability based on FRAM–moran’s I and CREAM. Appl. Sci. 12 (1), 200.
doi:10.3390/app12010200

Liu, X., Yang, X., and Guo, R. (2020). Regional differences in fossil energy-
related carbon emissions in China’s eight economic regions: Based on the
Theil index and PLS-VIP method. Sustainability 12 (7), 2576. doi:10.3390/su-
12072576

Ma, J., Guo, J., Ahmad, S., Li, Z., and Hong, J. (2020). Constructing a new inter-
calibration method for DMSP-OLS and NPP-VIIRS nighttime light. Remote Sens. 12
(6), 937. doi:10.3390/rs12060937

Ma, M., and Cai, W. (2019). Do commercial building sector-derived carbon
emissions decouple from the economic growth in tertiary industry? A case
study of four municipalities in China. Sci. Total Environ. 650, 822–834.
doi:10.1016/j.scitotenv.2018.08.078

Monteiro, A., Ankrah, J., Madureira, H., and Pacheco, M. O. (2022). Climate
risk mitigation and adaptation concerns in urban areas: A systematic review
of the impact of IPCC assessment reports. Climate 10 (8), 115. doi:10.3390/cli-
10080115

Pan, J. (2021). Lowering the carbon emissions peak and accelerating the
transition towards net zero carbon. Chin. J. Urban Environ. Stud. 9 (03), 2150013.
doi:10.1142/S2345748121500135

Rönkkö, T., Saarikoski, S., Kuittinen, N., Karjalainen, P., Keskinen, H.,
Järvinen, A., et al. (2023). Review of black carbon emission factors from different
anthropogenic sources. Environ. Res. Lett. 18 (3), 033004. doi:10.1088/1748-9326/
acbb1b

Shi, Y., Sorrell, S., and Foxon, T. (2023). The impact of teleworking on domestic
energy use and carbon emissions: An assessment for England. Energy Build. 287,
112996. doi:10.1016/j.enbuild.2023.112996

Song, W., Yin, S., Zhang, Y., Qi, L., and Yi, X. (2023). Spatial-temporal
evolution characteristics and drivers of carbon emission intensity of resource-
based cities in China. Resour. Effic. Environ. Impact Assess. 67, 16648714.
doi:10.3389/fenvs.2022.972563

Su, B., and Ang, B. W. (2015). Multiplicative decomposition of aggregate
carbon intensity change using input–output analysis. Appl. Energy 154, 13–20.
doi:10.1016/j.apenergy.2015.04.101

Sun, J., and Wu, X. (2023). Research on the mechanism and countermeasures
of digital economy development promoting carbon emission reduction in

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1231322
https://doi.org/10.3390/rs12142219
https://doi.org/10.1016/j.enpol.2016.05.015
https://doi.org/10.1016/j.energy.2023.126831
https://doi.org/10.1016/j.ecolmodel.2022.110272
https://doi.org/10.5558/tfc2020-003
https://doi.org/10.1016/j.eneco.2023.106511
https://doi.org/10.1016/j.coldregions.2019.102896
https://doi.org/10.3390/cryst9090484
https://doi.org/10.1016/j.enpol.2019.03.037
https://doi.org/10.1016/j.jclepro.2020.124398
https://doi.org/10.1016/j.scs.2021.103119
https://doi.org/10.1186/s12302-022-00660-w
https://doi.org/10.1007/s11356-016-7615-z
https://doi.org/10.1016/j.spc.2021.11.007
https://doi.org/10.3390/en16093633
https://doi.org/10.3390/en16062556
https://doi.org/10.1080/19427867.2022.2091669
https://doi.org/10.1016/j.ecolecon.2009.05.012
https://doi.org/10.1007/s12053-019-09814-x
https://doi.org/10.1007/s12053-019-09814-x
https://doi.org/10.1016/j.envres.2023.115775
https://doi.org/10.3390/ijgi12030087
https://doi.org/10.1007/s11356-022-20188-z
https://doi.org/10.3390/w14233833
https://doi.org/10.3389/fenvs.2022.938509
https://doi.org/10.3389/fenvs.2022.938509
https://doi.org/10.1016/j.jclepro.2023.136359
https://doi.org/10.3390/land12061220
https://doi.org/10.3390/rs14246400
https://doi.org/10.1016/j.scitotenv.2022.159403
https://doi.org/10.3390/app12010200
https://doi.org/10.3390/su-12072576
https://doi.org/10.3390/su-12072576
https://doi.org/10.3390/rs12060937
https://doi.org/10.1016/j.scitotenv.2018.08.078
https://doi.org/10.3390/cli-10080115
https://doi.org/10.3390/cli-10080115
https://doi.org/10.1142/S2345748121500135
https://doi.org/10.1088/1748-9326/acbb1b
https://doi.org/10.1088/1748-9326/acbb1b
https://doi.org/10.1016/j.enbuild.2023.112996
https://doi.org/10.3389/fenvs.2022.972563
https://doi.org/10.1016/j.apenergy.2015.04.101
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Liu et al. 10.3389/fenrg.2023.1231322

jiangxi province. Environ. Res. Commun. 5 (3), 035002. doi:10.1088/2515-7620/
acbd8b

Vélez-Henao, J. A., Vivanco,D. F., andHernández-Riveros, J. A. (2019). Technological
change and the rebound effect in the STIRPATmodel: A critical view. Energy Policy 129,
1372–1381. doi:10.1016/j.enpol.2019.03.044

Wang, S., Liu, X., Zhou, C., Hu, J., and Ou, J. (2017). Examining the impacts of
socioeconomic factors, urban form, and transportation networks on CO2 emissions in
China’s megacities. Appl. energy 185, 189–200. doi:10.1016/j.apenergy.2016.10.052

Williamson, J. M., Lin, H. M., and Lyles, R. H. (2023). A censored quantile regression
approach for relative survival analysis: Relative survival quantile regression. Biometrical
J. 65, 2200127. doi:10.1002/bimj.202200127

Xiao, H., Ma, Z., Mi, Z., Kelsey, J., Zheng, J., Yin, W., et al. (2018). Spatio-temporal
simulation of energy consumption in China’s provinces based on satellite night-time
light data. Appl. Energy 231, 1070–1078. doi:10.1016/j.apenergy.2018.09.200

Xu, K., Kang, H., Wang, W., Jiang, P., and Li, N. (2021). Carbon emission estimation
of assembled composite concrete beams during construction. Energies 14 (7), 1810.
doi:10.3390/en14071810

Yang, J., Li, W., Chen, J., and Sun, C. (2023). Refined carbon emission measurement
based on NPP-viirs nighttime light data: A case study of the pearl river delta region,
China. Sensors 23 (1), 191. doi:10.3390/s23010191

Yang, Y., Jia, J., and Chen, C. (2020). Residential energy-related CO2 emissions in
China’s less developed regions: A case study of jiangxi. Sustainability 12 (5), 2000.
doi:10.3390/su12052000

Yu, Y., Sun, R., Sun, Y., and Shu, Y. (2022). Integrated carbon emission estimation
method and energy conservation analysis: The port of los angles case study. J. Mar. Sci.
Eng. 10 (6), 717. doi:10.3390/jmse10060717

Zhang, F., Wang, X., and Liu, G. (2022). Allocation of carbon emission quotas
based on global equality perspective. Environ. Sci. Pollut. Res. 29 (35), 53553–53568.
doi:10.1007/s11356-022-19619-8

Zhao, Y., Wu, Q., Wei, P., Zhao, H., Zhang, X., and Pang, C. (2022). Explore the
mitigation mechanism of urban thermal environment by integrating geographic
detector and standard deviation ellipse (SDE). Remote Sens. 14 (14), 3411.
doi:10.3390/rs14143411

Zhou, Y., Chen, M., Tang, Z., and Zhao, Y. (2022). City-level carbon emissions
accounting and differentiation integrated nighttime light and city attributes. Resour.
Conservation Recycl. 182, 106337. doi:10.1016/j.resconrec.2022.106337

Frontiers in Energy Research 15 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1231322
https://doi.org/10.1088/2515-7620/acbd8b
https://doi.org/10.1088/2515-7620/acbd8b
https://doi.org/10.1016/j.enpol.2019.03.044
https://doi.org/10.1016/j.apenergy.2016.10.052
https://doi.org/10.1002/bimj.202200127
https://doi.org/10.1016/j.apenergy.2018.09.200
https://doi.org/10.3390/en14071810
https://doi.org/10.3390/s23010191
https://doi.org/10.3390/su12052000
https://doi.org/10.3390/jmse10060717
https://doi.org/10.1007/s11356-022-19619-8
https://doi.org/10.3390/rs14143411
https://doi.org/10.1016/j.resconrec.2022.106337
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles

