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Low-carbon economic operation
of integrated energy systems in
consideration of demand-side
management and carbon trading

Qiang Fan, Jiaming Weng* and Dong Liu

Key Laboratory of Control of Power Transmission and Conversion, Ministry of Education, School of
Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China

Under the background of carbon emission abatement worldwide, carbon
trading is becoming an important carbon financing policy to promote emission
mitigation. Aiming at the emerging coupling among various energy sectors,
this paper proposes a bi-level scheduling model to investigate the low-carbon
operation of the electricity and natural gas integrated energy systems (IES). Firstly,
an optimal energy flow model considering carbon trading is formulated at the
upper level, in which carbon emission flow model is employed to track the
carbon flows accompanying energy flows and identify the emission responsibility
from the consumption-based perspective, and the locational marginal price is
determined at the same time. Then at the lower level, a developed demand-side
management strategy is introduced, which can manage demands in response to
both the dynamic energy prices and the nodal carbon intensities, enabling the
user side to participate in the joint energy and carbon trading. The bi-level model
is solved iteratively and reaches an equilibrium. Finally, case studies based on the
IEEE 39-bus system and the Belgium 20-node system illustrate the effectiveness
of the proposed method in reducing carbon emissions and improving consumer
surplus.
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integrated energy system, carbon trading, demand-side management, carbon emission
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1 Introduction

With the increasingly severe energy crisis and environmental problems, energy
conservation and emission reduction have become the consensus of all countries for
sustainable development. According to the statistics provided by the International Energy
Agency (IEA), electricity and heat industry accounts for more than 40% of the global
CO2 emissions in 2021 (IEA, 2022). Therefore, developing low-carbon electricity is of great
significance to the control of carbon emissions.

The emerging integrated energy system (IES), as a carrier of multi-energy coupling,
has been recognized as an efficient method to promote the consumption of renewable
energy and reduce carbon emissions. A lot of efforts have been made on the coordinated
optimization and market operation of the electricity and natural gas IES at present. In
literature (Jiang et al., 2022), a bi-level strategic bidding model was proposed to study the
market behaviors of the gas-fired units in interdependent electricity and natural gasmarkets.
In literature (Chen et al., 2020), the operational equilibria of electric and natural gas systems
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was obtained under different levels of temporal and spatial
granularity. A mixed-integer linear programming (MILP) approach
was addressed to solve the security-constrained joint expansion
planning problems of natural gas and electricity transmission
systems in literature (Zhang et al., 2018). Besides the transmission
level, the energy hub (EH), which integrates multiple energy
sources at the distribution level, plays an important role in
energy production, transmission, conversion, and storage (Geidl
and Andersson, 2007). The modeling (Wang et al., 2019), planning
(Huang et al., 2019), and operation (Paudyal et al., 2015) of IES with
EHs have also attracted extensive attention. However, the natural
gas flow equation is nonlinear and nonconvex, which will bring
great challenges to solve the IES operation problem. In literature
(Zhang et al., 2018), piecewise linearization method was applied
to convert the Weymouth equation into the MILP form, but the
solution accuracy and efficiency were affected by the number
of 0–1 variables. A second-order cone (SOC) relaxation method
was proposed in literature (Borraz-Sánchez et al., 2016) for model
convexification, while the relaxation would cause an optimality gap
due to the expansion of the feasible region. How to solve the natural
gas flow equation accurately and efficiently still needs to be studied
in IES research.

Meanwhile, when considering the low-carbon operation of
IES, low-carbon factors can be embedded into the problems with
emission constraints (Olsen et al., 2019; Gu et al., 2020) or objective
functions including environmental costs (Li et al., 2018). Moreover,
the rise of carbon emission trading provides a market solution
for carbon abatement and regulation, in which the cap-and-trade
scheme has been proven as one of the most effective mechanisms
in real-world implementations such as Europe (EMBER, 2021) and
China (Fang et al., 2019). In the process of carbon cap-and-trade
scheme, the government issues a set amount of permits to companies
that comprise a cap on allowed CO2 emissions, and companies that
surpass the cap are taxed, while companies that cut their emissions
may sell or trade the unused credits. In this context, the coordination
of carbon trading and energy trading has become a common
concern. Existing research has been conducted on how to develop a
joint energy and carbon market scheme. An IES co-trading market
including electricity, natural gas, and carbon trading was proposed
in literature (Sun et al., 2022), where an improved Multi-agent Deep
Deterministic Policy Gradient algorithm was applied to achieve fair
trade and entity privacy protection. Literature (Liu, 2022) analyzed
the characteristics of the carbon-electricity integrated market and
constructed a carbon-electricity integrated optimal bidding model
for the virtual power plant (VPP) with the consideration of multiple
uncertainties. To promote local decarbonization, a peer-to-peer
(P2P) joint electricity and carbon trading model to co-optimize
the energy and carbon permit transactions considering the trading
preferences in the distribution network was proposed in literature
(Lu et al., 2023), in which a carbon-aware distribution locational
marginal pricing was formulated to guide the P2P transactions
among prosumers.

However, the works above normally focus on the “observed”
emission and attribute the emission responsibility to the generation
side. But it is a fact that end-users create the need for the combustion
of fossil fuels and are the underlying driving force of emissions, the
intuitive generation-based settlement cannot clarify the emission
responsibility of the demand side, which may result in uneven

incentives (Wang et al., 2020). Therefore, it is important to track
the carbon emission path and identify emission amount from the
perspective of energy users. A demand-side management (DSM)
approach aiming at carbon footprint control was proposed in
literature (Pourakbari-Kasmaei et al., 2020), whichwas proven fairer
and superior compared to existing policies. The concept of carbon
emission flow (CEF) was introduced in literature (Kang et al.,
2015), where CEF was regarded as a virtual attachment to the
power flow and accumulated at the demand side. On this basis,
the CEF model was extended to the multiple energy systems
(MESs) in literature (Cheng et al., 2019). The low-carbon operation
of MESs by coordinating the transmission-level and distribution-
level via the energy-carbon integrated prices was studied in
literature (Cheng et al., 2020), in which the carbon emissions of
different energy systems are uniformly priced using the CEF model.
Although the CEF model provides a more accurate method for
carbon accounting and a fairer way for emission responsibility
clarification, the literaturesmentioned above have not involved user-
side participation in the joint energy and carbon trading process.

Accordingly, this paper proposes a bi-level economic operation
model for the electricity and natural gas IES with the consideration
of DSM and carbon trading. The proposed method relies on CEF
model to obtain the overall carbon flow distribution, and guides
demand response through the nodal carbon intensities (NCIs) and
the locational marginal prices (LMPs), realizing the IES low-carbon
economic dispatch with the participation of user side. The main
contributions are summarized as follows.

1) The carbon-constrained locational electricity marginal price
(LMEP) and locational marginal gas price (LMGP) are
formulated to describe the impacts of carbon trading scheme to
the demand side, where the sequential cone programming (SCP)
method is applied to guarantee the strictness of the relaxation of
natural gas flow equation.

2) A developed demand response model is introduced. Our model
can manage energy users to adjust their demands by means of
transfer or substitution in response to both the carbon emission
intensities and the locational marginal prices.

3) A bi-level scheduling model is proposed to investigate the low-
carbon economic operation of the IES. An optimal energy
flow model aiming at minimizing the negative social welfare
considering carbon trading is formulated at the upper level,
and demands on the user side are managed to maximize the
consumer surplus at the lower level. The two levels interact
iteratively to reach an equilibrium.

The rest of this paper is organized as follows. Section 2
provides the formulations of the proposed model. The linearization
method and iterative procedure are presented in Section 3. Section 4
provides case study results based on an actual IES. Finally,
conclusions are drawn in Section 5.

2 Model formulations

2.1 Problem statement

Before building the mathematical model, we need to make the
following assumptions:
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1) Since the carbon emissions in the electricity network are mainly
related to active power and rarely affected by reactive power, both
power flow and carbon flow analyses of the electricity network
in this paper use the DC power flow model, and carbon and
network losses are ignored.

2) A simplified steady-state gas flow model without considering
line-pack is adopted in this paper. The power system and natural
gas system are coupled via gas-turbine units at the transmission
level.

3) The electricity and gas supply and consumption are paid at
LMEPs and LMGPs, which are determined by the independent
system operator (ISO) and natural gas market operator (GMO)
in the market clearing process, respectively.

4) Carbon trading exists not only on the generation side but also on
the demand side. Energy users calculate their carbon emissions
via the CEFmodel, and the carbon emission allowances for users
are pre-determined.

On this basis, the proposed framework can be modeled as
a hierarchical problem which contains two levels, as shown in
Figure 1. The upper level is formulated as an optimal power flow
problem to minimize the negative social welfare, including the
power generation cost and the carbon trading cost at the generation
side. Meanwhile, the carbon emission intensities of each bus in the
IES and LMPs can be obtained at the upper level and transmitted
to the lower level. At the lower level, energy users make a response
to the indicators passed from the upper level to maximize their
consumer surplus. In this process, energy users would be motivated
to cut demands with high carbon emission intensities to get benefits
in the carbon trading market at the demand side. Afterward, the
updated electricity and gas demands are sent back to the upper level
to reschedule the power output. This bi-level interaction procedure
iterates until equilibrium is reached.

2.2 Carbon emission model

Although CO2 is directly emitted by generators, consumers are
the main driving force of emissions due to energy use. Clarification
of the emission responsibility is essential to mitigate carbon
emissions.TheCEFmodel can be used to trace the carbon emissions
from the generation side to the demand side. In the CEF model,
carbon emission intensity is one of the key indicators, which denotes
the accompanying carbon emissions per unit of energy flow. In this
paper, nodal carbon emission intensity (NCI) and branch carbon
emission intensity (BCI) are mainly considered.

In the electricity network, for a given node n, its NCI can be
represented as,

eENn,t =
∑

k:(k,n)∈ΩEN+
n
| fkn,t| ⋅ ρ

line
kn,t +∑i∈ΩTU

n ∪ΩGT
n
PGi,t ⋅ eGi

∑
k:(k,n)∈ΩEN+

n
| fkn,t| +∑i∈ΩTU

n ∪ΩGT
n
PGi,t

(1)

where ΩEN+
n , ΩTU

n , and ΩGT
n denote the set of transmission lines

that inject power into node n, the set of coal-fired thermal units
connected to node n, and the set of gas-turbine units connected to
node n, respectively. fkn,t and ρlinekn,t are the power flow and the BCI of
transmission line kn, respectively. PGi,t and eGi are the injected power
and the carbon emission intensity of generator i, respectively.

FIGURE 1
The framework of the proposed bi-level model.

And the BCI of the transmission line kn can be expressed as,

ρlinekn,t =
{
{
{

eENk,t , i f fkn,t ≥ 0

eENn,t , i f fkn,t < 0
(2)

Based on the results of NCI and BCI, the emission accounting
can be implemented in a fairer way. Specifically, for the supply side,
the carbon emission amount EGi,t of generator i can be calculated as
follows,

EGi,t = PGi,t ⋅ eGi ⋅ Δt,∀i ∈Ω
TU
n ∪Ω

GT
n , t (3)

where Δt is the time interval. Note here we treat eGi as a time-
independent known parameter since for a single generator, its
carbon emission intensity, which is also known as the generation
carbon intensity (GCI), can be determined by the carbon emission
factor of fuel and its fuel consumption rate, and we consider it to
be an inherent generator parameter similar to the generation cost
coefficient (i.e. a, b, c).

For the demand side, the “virtual” carbon emission amount EDn,t
due to the nodal power consumption PDn,t can be obtained in the
same way,

EDn,t = PDn,t ⋅ e
EN
n,t ⋅ Δt,∀n ∈Ω

EN
D , t (4)

where ΩEN
D is the set of demand buses in the electricity network.

Similarly, for the gas network, the NCI of a node m depends on
the injected gas flow and the connected gas source. Mathematically,

eGNm,t =
∑

b:(b,m)∈ΩGN+
m
|wbm,t| ⋅ ρ

pipe
bm,t +∑j∈ΩGW

m
gj,t ⋅ ej

∑
b:(b,m)∈ΩGN+

m
|wbm,t| +∑j∈ΩGW

m
gj,t

(5)

ρpipebm,t =
{
{
{

eGNb,t , i f wbm,t ≥ 0

eGNm,t , i f wbm,t < 0
(6)

where ΩGN+
m and ΩGW

m denote the set of gas pipelines that inject
natural gas into node m and the set of gas sources connected to

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1230878
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Fan et al. 10.3389/fenrg.2023.1230878

node m, respectively. wbm,t and ρpipebm,t are the gas flow and the BCI of
gas pipeline bm, respectively. gj,t and ej are respectively the injected
natural gas and the carbon emission intensity of gas source j, where
ej equals the emission factor of natural gas as methane contains
carbon. The typical value of ej is 0.20tCO2/(MWh) (Cheng et al.,
2019).

2.3 Upper-level model

The upper level is formulated as an objective function that
minimizes the negative social welfare in the energy market
and the carbon trading market, which can be presented
as,

min∑
t
( ∑
i∈ΩTU

C(PGi,t) + ∑
j∈ΩGW

γj,t ⋅ gj,t +Ccar) (7)

C(PGi,t) = ai ⋅ (PGi,t)
2 + bi ⋅ PGi,t + ci,∀i ∈Ω

TU, t (8)

The first term in (7) denotes the generation cost of coal-fired
thermal units i, which is a quadratic function of the electricity
productionPGi,t as in (8) and can be piecewise linearized.The second
term in (7) denotes the natural gas production cost of gas source
j, with the production price γj,t. The third term in (7) denotes the
carbon trading cost, specifically,

Ccar = κ ⋅ (∑i∈ΩTU∪ΩGT(EGi,t −E
cap
Gi ) +∑j∈ΩGW(EGj,t −E

cap
Gj )) (9)

where κ denotes the carbon trading price, EcapGi and EcapGj denote
the allocated carbon allowances of generator i and gas source j,
respectively.

2.3.1 Power system constraints

∑
i∈ΩTU

n ∪ΩGT
n

PGi,t + ∑
r∈ΩWG

n

PWG
r,t + ∑

k:(k,n)∈ΩEN
n

fkn,t − PDn,t

= 0,∀n ∈ΩEN, t:λENn,t (10)

−Fmax
kn ≤ fkn,t = (θk,t − θn,t)/xkn ≤ F

max
kn ,∀(k,n) ∈Ω

EN, t (11)

Pmin
Gi ≤ PGi,t ≤ P

max
Gi ,∀i ∈Ω

TU ∪ΩGT, t (12)

{
{
{

PGi,t − PGi,t−1 ≤ R
up
Gi , i f PGi,t ≥ PGi,t−1

PGi,t−1 − PGi,t ≤ R
down
Gi , i f PGi,t−1 ≥ PGi,t

,∀i ∈ΩTU ∪ΩGT, t (13)

Where ΩEN denotes the set of buses in electricity network,
ΩWG

n denotes the set of renewable energy sources connected to
node n, and its power output is PWG

r,t . xkn denotes the impedance of
transmission line kn. θk,t and θn,t are the nodal phase angle of the two
end nodes of line kn at time t. Fmax

kn is the transmission capacity of
line kn. Pmin

Gi and Pmax
Gi are the minimum andmaximum power limits

of generator i. Rup
Gi and Rdown

Gi are the ramp-up and ramp-down limits
of generator i, respectively.

Constraint (10) guarantees the power balance at each bus of
the electricity network. Constraint (11) enforces the transmission
capacity limits. Constraints about generators are imposed in (12),
(13), which are generation limits and ramping up/down limits
respectively.

2.3.2 Gas system constraints

∑
j∈ΩGW

m

gj,t + ∑
b:(b,m)∈ΩGN

m

wbm,t −QDm,t − ∑
i∈ΩGT

m

QGT
i,t − ∑

s∈Ωcom
m

Qcom
s,t

= 0,∀m ∈ΩGN, t:λGNm,t (14)

QGT
i,t = αi + βiPGi,t + γi(PGi,t)

2,∀i ∈ΩGT, t (15)

gmin
j ≤ gj,t ≤ g

max
j ,∀j ∈Ω

GW, t (16)

wbm,t = Cbmsgn(δb,t,δm,t)√|δ2
b,t − δ

2
m,t|,∀(b,m) ∈Ω

GN, t (17)

−wmax
bm ≤ wbm,t ≤ w

max
bm ,∀(b,m) ∈Ω

GN, t (18)

δmin
m ≤ δm,t ≤ δ

max
m ,∀m ∈Ω

GN, t (19)

Qcom
s,t = Bsw

com
s,t ((δb,t/δm,t)

Zs − 1) (20)

Where ΩGN denotes the set of nodes in gas network, ΩGT
m

and Ωcom
m denote the set of gas-turbine units and compressors

connected to node m. Constraint (14) guarantees the nodal gas
balance, whereQDm,t is the gas demand at nodem,QGT

i,t is the natural
gas consumption of gas-turbine units i, which can be expressed
as the quadratic function of PGi,t as in (15). Qcom

s,t is the gas flow
consumed by compressor s, which is shown in (20), where Bs
and Zs are constants related to the temperature and efficiency of
compressor s, wcom

s,t is the inflow gas of compressor s. gmin
j and gmax

j
are the minimum and maximum production limits of gas source
j, respectively. Constraint (17) applies the Weymouth equation to
calculate the pipeline gas flow (Zlotnik et al., 2017), where wbm,t
is determined by the pressure difference between the two end
nodes b and m. Cbm is a constant parameter related to the physical
characteristics of pipeline bm. δb,t and δm,t are the pressure of
node b and node m. The sign function sgn(⋅) indicates the gas flow
direction, i.e., sgn(δb,t,δm,t) = 1 when δb,t ≥ δm,t and −1 otherwise.
Constraint (18) is the gas flow constraint of pipelines where wmax

bm
is the capacity limit of pipeline bm. Constraint (19) enforces the
nodal pressure limits for the gas network, where δmin

m and δmax
m

are the minimum and maximum bounds of the nodal pressure,
respectively.

2.4 Lower-level model

After running the optimal energy flow at the upper level, the
NCI and LMP of each node can be obtained, where the LMEP and
LMGP are equal to the dual variables of the energy pricing model,
i.e., λENn,t and λGNm,t .Then at the lower level, energy users would respond
to these two indicators. In this paper, we assume that users can be
divided into traditional users and energy hubs. Traditional users
have a fixed energy consumption form, and their demand response
is normally price-based, that is, users spontaneously transfer their
energy consumption periods according to the price signals. While
energy hubs can choose different forms of energy to meet the
demand of end-users with the same quality.This kind of substitution
between electricity and natural gas can help improve the flexibility
of the system effectively. Note that since there is no load shedding,
demand response compensation for users is not considered in
this paper. On this premise, the lower level can be formulated
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to maximize the end users’ surplus, which can be expressed
as,

max∑
t
∑

n∈ΩEN
D

(U(P′Dn,t) − λ
EN
n,t P
′
Dn,t − κ(E

′
Dn,t −E

cap
Dn))

+∑
t
∑

m∈ΩGN
D

(U(Q′Dm,t) − λ
GN
m,tQ
′
Dm,t − κ(E

′
Dm,t −E

cap
Dm)) (21)

P′Dn,t = PDn,t +ΔP
tran
Dn,t +ΔP

sub
Dn,t (22)

Q′Dm,t = QDm,t +ΔQ
tran
Dm,t +ΔQ

sub
Dm,t (23)

Where P′Dn,t and Q′Dm,t are respectively the electricity load and
gas load after demand response, and they can be expressed as in
(22) and (23), in which superscripts “tran” and “sub” represent the
demand response amount for transfer and substitution respectively.
EcapDn and EcapDm denote the carbon allowances of the demand.

Function U(⋅) denotes the consumer utility which describes the
satisfaction of consumers’ consumption of electricity and natural
gas, in this paper, we use a piecewise function to model this
relationship. In the first step, consumer utility grows with the
increase of energy consumption, but the uptrend gradually slows
down. In the second step, consumer utility reaches the maximum
and increasing energy consumption does not make a change. Take
the electricity consumers as example, the overall utility function can
be formulated as,

U(PDn,t) =
{
{
{

k1PDn,t − k2(PDn,t)
2,PDn,t < k1/2k2

(k1)2/4k2,PDn,t ≥ k1/2k2

(24)

where k1 and k2 are coefficients of the utility function.
The objective function (21) is subjected to

{
{
{

∑tΔP
tran
Dn,t = 0,−ΔP

tran,max
Dn,t ≤ ΔP

tran
Dn,t ≤ ΔP

tran,max
Dn,t ,∀n ∈Ω

EN
D , t

∑tΔQ
tran
Dm,t = 0,−Q

tran,max
Dm,t ≤ ΔQ

tran
Dm,t ≤ Q

tran,max
Dm,t ,∀m ∈Ω

GN
D , t

(25)

{{{{
{{{{
{

ΔPsubDn,t = −φΔQ
sub
Dm,t

ΔPsub,min
Dn,t ≤ ΔP

sub
Dn,t ≤ ΔP

sub,max
Dn,t

ΔQsub,min
Dm,t ≤ ΔQ

sub
Dm,t ≤ ΔQ

sub,max
Dm,t

(26)

Constraint (25) indicates that the total amount of transferable
demand remains unchanged in a scheduling cycle. Constraint (26)
shows the substitution relationship between electricity and gas
demand, where φ is the energy conversion coefficient, here we adopt
φ = 0.06MW/kc f (1kc f = 28.317m3). Other expressions in (25) and
(26) set the upper and lower bounds on the demand response
amount.

3 Solution method

3.1 Model linearization

Nonlinear constraints (15) and (17) make the optimal energy
flow model at the upper level nonconvex and hard to solve.
SOC reformulation is an effective method for convexification,

however, there may be optimality gap since the feasible region of
the original problem will be expanded during the reformulation
process.

Specifically, constraint (15) can be directly converted into
the following SOC form, which is always tight and there is
no need for relaxation gap detection because unnecessary gas
consumption will increase operating costs and carbon emission
costs.

QGT
i,t ≥ αi + βiPGi,t + γi(PGi,t)

2,∀i ∈ΩGT, t (27)

For pipeline flow constraint (17), it can be firstly converted
into a mixed-integer nonlinear programming (MINLP) form as
follows,

(I+bm − I
−
bm)(πb,t − πm,t) = (1/Cbm)

2(wbm,t)
2 (28)

−(1− I+bm)w
max
bm ≤ wbm,t ≤ (1− I−bm)w

max
bm (29)

I+bm + I
−
bm = 1 (30)

πmin
m ≤ πm ≤ πmax

m (31)

where πb,t and πm,t denote the squared nodal pressure, binary
variables I+bm and I−bm indicate the gas flow direction in pipeline
bm. Further, (28) can be relaxed and transformed into a
mixed-integer second-order cone programming (MISOCP)
problem,

Ybm,t ≥ (1/Cbm)
2(wbm,t)

2 (32)

Ybm,t ≥ πm,t − πb,t + (I
+
bm − I
−
bm + 1)(π

min
b − π

max
m ) (33)

Ybm,t ≥ πb,t − πm,t + (I
+
bm − I
−
bm − 1)(π

max
b − π

min
m ) (34)

Ybm,t ≤ πm,t − πb,t + (I
+
bm − I
−
bm + 1)(π

max
b − π

min
m ) (35)

Ybm,t ≤ πb,t − πm,t + (I
+
bm − I
−
bm − 1)(π

min
b − π

max
m ) (36)

where Ybm,t is the auxiliary variable for SOC relaxation. Note
that constraints (32-36) are equivalent to primal constraint (28)
only when (32) is tight. Therefore, the relaxation process causes
a relaxation gap, making the optimized solution infeasible to the
primal model. To this end, a concave constraint (37) is firstly
introduced to ensure (32) is tight, then the SCP method (Yan et al.,
2021) is applied here to solve theMISOCPwith concave constraints.
The detailed steps are as follows.

Ybm,t − (1/Cbm)
2(wbm,t)

2 ≤ 0 (37)

Step 1: Parameter initialization. Set gas flow starting value
w0
bm,t, penalty factor χ0, maximum penalty factor χmax, growth

factor ν > 1, SCP residuals tolerances εz, εs, and iteration index
k = 1.
Step 2: Introduce non-negative auxiliary variables skbm,t and
linearize (37) into (38) using the first-order Taylor expansion with
respect to wk−1

bm,t obtained in the last iteration,

Yk
bm,t − (1/Cbm)

2[(wk−1
bm,t)

2 + 2wk−1
bm,t ⋅ (w

k
bm,t −w

k−1
bm,t)] ≤ s

k
bm,t (38)
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Step 3: Convert the primal upper-level nonlinear nonconvex
problem into the following MISOCP problem,

{{{{{
{{{{{
{

minzk =min (7) + ∑
bm,t

χk ⋅ skbm,t

s.t.(1) − (3), (5) − (6), (8) − (14), (16),

(18) − (20), (27), (29) − (36), (38)

(39)

Step 4: Calculate the SCP residuals and check if they are within the
tolerances,

{
{
{

gapz = zk − zk−1 ≤ εz

gaps =∑ skbm,t ≤ ε
s

(40)

If (40) is satisfied, then terminate the iteration. Otherwise,
update penalty factor χk by

χk =min(νχk−1,χmax) (41)

Step 5: Update k = k+ 1, and repeat Step 2 to Step 4 until (40) is
satisfied, that is, convergence.

3.2 Bi-level interaction procedure

In the proposed model, the upper level and lower level interact
and iteratively optimize to reach an equilibrium. At the upper level,
both the nodal carbon intensities and the energy prices are decided
with fixed demand amount. At the lower level, the nodal carbon
intensities and the energy prices are used as parameters to update the
demand amount. These demands are then transferred to the upper
level for the next iteration. From the game theoretical point of view, it
can be regarded as a single-leader multi-follower Stackelberg game.
The bi-level interaction terminates until the convergence criteria are
met, i.e.,

{{
{{
{

|P(s)Dn,t − P
(s−1)
Dn,t |/P

(s)
Dn,t ≤ ξ,∀n ∈Ω

EN
D , t

|Q(s)Dm,t −Q
(s−1)
Dm,t|/Q

(s)
Dm,t ≤ ξ,∀m ∈Ω

GN
D , t

(42)

where ξ is the tolerance and s is the bi-level iteration index. The
flowchart of the bi-level interaction procedure is shown inFigure 2.

4 Case studies

4.1 System description

The proposed method is tested on an IES consisting of a
modified IEEE 39-bus system and a modified Belgian 20-node
natural gas system, as shown in Figure 3. The detailed network
parameters can be found in (Jiang et al., 2018). The system includes
eleven generators (five coal-fired thermal units, three gas-turbine
units, two hydro plants with total capacity of 75MW, and one wind
farm), four gas wells, and two compressors. The parameters of these
facilities are provided in Tables 1–4. Nodes 1, 9, and 14 of the natural
gas network are connected to buses 26, 32, and 36 of the electricity
network via gas-turbine units, respectively. In addition, the carbon
trading price is set as 30$/ton, the carbon emission allowances

per unit of active power output is set as 0.648tCO2/(MWh). The
coefficients of utility function are adopted as k1 = 2000$/(MWh)
and k2 = 10$/(MWh)2. SCP parameters are shown in Table 5. The
24-h electricity load, gas load, and wind power output profiles are
shown in Figure 4. The proposed bi-level model is verified using the
following three cases:
Case 1: Traditional power scheduling in the IES without carbon
trading and DSM.
Case 2: Power scheduling considering carbon trading but without
demand response on the user side.
Case 3: Proposed bi-level scheduling model with carbon trading
policy and DSM.

4.2 Results of carbon emission intensity
and LMP

In this paper, we mainly focus on the power scheduling of the
electricity system.TheNCIs of the 39 buses in the electricity network
under two typical hours, peak hour and valley hour, are illustrated
in Figure 5.

It can be observed that the average value of carbon emission
intensities in peak hour is higher than those in valley hour. It
is mainly because, in valley hour, wind power output is larger,
and clean energy accounts for a higher proportion in the system,
reducing the NCIs at the overall level. In both typical hours, Case
1 has the highest carbon intensities, followed by Case 2 and Case
3. This indicates the proposed carbon trading and DSM strategies
can effectively reduce the carbon emission intensities. It should
be noted that there are nodes with zero carbon intensities in the
system, such as buses 35, 37 in peak hour and buses 1, 9, 39 in
valley hour. This is because that they are either directly connected
to zero-carbon units or their demands can be fully met by clean
energy.

In peak hour, the carbon intensities in Case 2 are generally lower
than those of Case 1. However, several buses, such as 21, 22, 23, 25,
and 26, have higher carbon intensities than Case 1. This is due to
the carbon trading in Case 2, which forces the coal-fired thermal
units to reduce their output and turn to gas-turbine units with lower
carbon emission intensities for power supply. As a result, although
the overall carbon intensities of the system decrease, the carbon
intensities of the buses near gas-turbine units increase. Compared
with Case 2, the NCIs in Case 3 decrease, in which buses originally
with higher carbon emissions have greater changes, like the carbon
intensity of bus 8 decreases from 0.73 to 0.66. This is because the
buses with higher carbon emissions would have larger adjustment of
energy users’ demands through DSM, making the carbon intensity
curve smoother. In valley hour, the wind power is more active,
resulting in the carbon intensities of nearby buses (bus 1 and 9)
remain zero in all three cases. For bus 22, due to the limited capacity
of hydro power, the output increase of gas-turbine unit at bus 36 in
Case 2 would change the power flow direction between bus 22 and
bus 23, and there would be “carbon embedded” power flow injected
to bus 22, thus improving the carbon intensity from 0 in Case 1 to
0.2 in Case 2.

The dynamic electricity prices of bus 15 in three cases are
examined in this paper, as shown in Figure 6. Compared with Case
1, it is clear to see the electricity prices are raised due to the
consideration of carbon emissions in Case 2. The price differences

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2023.1230878
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Fan et al. 10.3389/fenrg.2023.1230878

FIGURE 2
Flowchart of the bi-level interaction procedure.

between the two cases are relatively larger in the periods when the
NCI of bus 15 is high (periods 8, 18). The different LMEPs among
three cases, on the other hand, can reflect the distinct NCIs in
different periods. For Case 3 with the proposed DSM strategy, it
can be observed that the fluctuations of price become smoother, and
prices stay at around 55$/MWh.

4.3 Results of optimal scheduling

Asmentioned in the case setting, in case 1, the objective function
is tominimize the generation cost and the gas production cost of IES,
and in case 2, carbon trading cost is added to the objective function,
as shown in Eq. 7. Both case 1 and case 2 do not consider DSM, so
the electricity and gas loads in these two cases will not change andwe
model them as single-level, which can be solved easily by the off-the
-shelf commercial solver.While case 3 presents the proposed bi-level

scheduling model considering carbon trading and DSM, and we can
solve it through the methods shown inSection 3.

The details of the total carbon emissions and the financial
conditions are shown in Table 6, where the total carbon
emissions are derived from Eq. 3, the generation cost refers to
∑
t
(∑i∈ΩTUC(PGi,t) +∑j∈ΩGWγj,t ⋅ gj,t), the consumer utility and carbon

trading cost can be calculated according to Eq. 24 and Eq. 9,
respectively. As can be seen, cases considering carbon trading have
a decided advantage in carbon emission mitigation, the total carbon
emission amount in Case 2 is 19.4% lower than that of Case 1. DSM
strategies can also help reduce carbon emissions, the total carbon
emission amount in Case 3 is reduced by 7.7% compared to Case 2.
However, the generation cost in Case 2 and Case 3 increase because
more gas-turbine units with lower carbon intensities are being used,
which aremore expensive than coal-fired thermal units. It should be
noted that the consumer utility in Case 3 has a 5.75% decrease. This
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FIGURE 3
Diagram of the integrated energy system.

TABLE 1 Parameters of the coal-fired thermal units.

Parameter G1 G2 G3 G4 G5

Capacity/MW 90 120 140 140 150

Emission intensity/(tCO2/MWh) 0.80 0.85 0.875 0.875 0.90

a/($/MWh2) 0.077 0.009 0.030 0.077 0.077

b($/MWh) 19.71 21.02 20.31 24.02 19.71

c/$ 89 110 94 55 100

TABLE 2 Parameters of the gas-turbine units.

Parameter GT1 GT2 GT3

Capacity/MW 160 160 200

Emission intensity/(tCO2/MWh) 0.5 0.5 0.5

α/(km3/h) 45.28 53.46 45.28

β/(km3/MWh) 19.71 25.34 19.71

γ/(km3/MW2h) 0.003 0.006 0.003

is because the DSM strategy in Case 3 would motivate energy users
to cut demands with high emission intensities to seek the maximum
consumer surplus, whichmight reduce the consumer utility to some
extent.

Moreover, Case 2 has the highest carbon trading cost, while the
carbon trading cost in Case 3 is decreased by 77.1%. The reason for
this result is twofold. Firstly, there is fewer carbon emissions in Case
3, which means more carbon sources are below their emission caps
so that the extra allowances that generators need to purchase are
fewer. Secondly, due to the DSM, energy users in Case 3 can also
sell carbon allowances to earn extra revenues in certain periods. It is

TABLE 3 Parameters of gas wells.

Parameter S1 S2 S3 S4

Maximum gas production/(km3/h) 6.5 3.6 5.5 4.6

Minimum gas production/(km3/h) 0 0 0 0

Gas production cost/($/m3) 0.25 0.25 0.42 0.42

TABLE 4 Parameters of compressors.

Compress No. Start node End nodeCompression ratio Bs Zs

1 8 9 1.1 124.74 0.2334

2 17 18 1.2 124.74 0.2334

TABLE 5 Parameters of the SCP algorithm.

χ0 χmax Ν εz εs

0.1 1,000 2 0.1 0.01

obvious that whether users can obtain profits is dependent on the
emission allowances allocation. When the emission allocation on
the demand side is loose, the benefits of selling emission allowances
would stimulate end users to participate in DSM to reduce the total
carbon emissions.

The optimal scheduling results of the electricity system for all
three cases on a typical day are shown in Figure 7. The hydro power
remains constant in three cases because we assume that the hydro
power plants are operating at theirmaximumpower. It is evident that
there is a significant reduction in the output of coal-fired thermal
units from Case 1 to Case 3. The power produced by coal holds
almost 54.2% of the total power generation in Case 1, and this value
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FIGURE 4
Profiles of 24-h electricity load, gas load and wind power output.

changes to about 50.4% in Case 2% and 44.5% in Case 3. On the
contrary, the output of gas-turbine units is increasing gradually,
which means under the effect of carbon trading, more GTs with
lower emissions are put into use to replace the coal-fired units. The
area between the generation cost and the consumer utility curves in
Figure 7 represents the negative social welfare. By comparing Case 2
and Case 3, it can be seen that the proposed model has a remarkable
effect on reducing the negative social welfare.

In addition, the scheduling results of the natural gas system of
Case 1 and Case 3 are shown in Figure 8. Compared with Case 1, the
increase of the gas-turbine units output and gas load adjustments
in Case 3 result in a 17.68% increase of the gas well output, and so
do the corresponding carbon emissions of the natural gas system.
And the load adjustment results after DSM in Case 3 are illustrated
in Figure 9. It can be observed that the electricity users tend to cut
their demands in the peak hours and transfer them to the valley
hours, because in valley hours, the LMEPs and NCIs are relatively
low, and the demand transfer can help electricity users to optimize
their cost. While the natural gas loads show the opposite trend. This
is mainly because the lower level is built as a linear programming
problem, when the electricity loads decrease, the natural gas users

FIGURE 6
LMEPs of bus 15 in three cases.

would increase their demands to raise their consumer utility, thus
maximizing the whole consumer surplus.

Finally, the convergence process of SCP algorithm is presented
in Figure 10. Constraint violations are significant at the beginning
and decrease dramatically as the penalty factor grows. Solution with
SCP is found after 6 iterations, which is feasible for the primal
problem. Besides, the convergence of the bi-level interaction is
illustrated in Figure 11. The demand response amount of bus 15
in the electricity network and bus 12 in the natural gas network at
13:00 in each iteration are investigated. The optimization in Case 3
can finally converge to equilibrium with 20 iterations, and the total
computation time is 430s. This result verifies the feasibility of the
adopted bi-level optimization model.

4.4 Impact of the carbon trading price and
gas production

The carbon trading price κ can represent the weight of the
low-carbon objective in the proposed model, and the change of

FIGURE 5
NCIs of 39 buses in (A) peak hour and (B) valley hour.
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carbon trading price will affect the operating state of the system.
The impact of the carbon trading price on total carbon emissions
and carbon trading cost in Case 3 is shown in Figure 12. Initially,
when the carbon trading price is below 15$/ton, the total carbon
emissions remain almost unchanged, and the carbon trading cost
increases steadily with the increase of carbon trading price. In such
a case, the carbon trading cost plays a minor role in the integrated
objective function, and coal-fired units account for the major parts
of power generation because of their cheapness. When the carbon
trading price rises to 20$/ton, gas-turbine units become competitive,
especially during peak hours. As a result, the total carbon emissions
begin to decline significantly, and so does the cost of carbon trading.
When the carbon trading price increases to around 32.5$/ton, the
carbon trading cost drops to 0, which means the carbon emissions
of the system is equal to the carbon allowances allocation at this
point, and then environmental profits would be generated, making
the carbon emissions drop rapidly.The total carbon emissions can be
reduced by 40.5% with a carbon trading price of 40$/ton. However,
a further increase of the carbon trading price has a slight impact on
the carbon emissionswhen the carbon trading price is up to 45$/ton,
since the output of gas-turbine units nears the maximum level, and
the carbon trading cost declines slowly in proportion to the carbon
trading price. This result indicates that the operating state of the IES
is sensitive to the fluctuation of the carbon trading cost.

TABLE 6 Carbon emissions and system cost comparison for all three cases.

Cases 1 2 3

Total carbon emissions/ton 6,510 5,245 4,839

Generation cost/k$ 787.16 1,032.47 941.37

Consumer utility/k$ 231.46 231.46 218.15

Carbon trading cost/k$ 0 56.22 12.88

Similar to the carbon trading price, the gas production cost also
affects carbon emissions and carbon trading cost. It is evident that
when the gas production cost is relatively low, the carbon emission
is low as well and there would be earnings from carbon trading. The
carbon emissions and carbon trading cost would rise with the gas
production cost increases. It should be noted that the carbon trading
price where environmental profits are generated (32.5$/ton in this
paper) is closely related to the gas production cost.Thehigher the gas
production cost is, the higher the carbon trading price is to obtain
carbon income. Thus, the regulators can set appropriate carbon
trading prices according to the gas production cost to stimulate
more low-carbon energy utilization to obtain environmental
revenues from both the generation side and the demand
side.

FIGURE 7
Optimal scheduling results of (A) Case 1 (B) Case 2 and (C) Case 3.
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FIGURE 8
Gas network scheduling results of (A) Case 1 and (B) Case 3.

FIGURE 9
Load adjustment results after DSM.

FIGURE 10
Converge curve of sequential cone programming.

FIGURE 11
Demand response amount at 13:00 in each iteration of Case 3.

FIGURE 12
Results for different carbon trading price in Case 3.
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5 Conclusion

This paper proposes a bi-level scheduling model to investigate
the low-carbon economic operation of the electricity and natural
gas IES considering DSM and carbon trading. At the upper level,
an optimal energy flow model considering carbon trading at the
generation side is formulated, where the SCP method is adopted
to solve the relaxation gap of the gas flow equation. And the
CEF model is applied to track the carbon flows accompanying the
energy flows, thus the nodal carbon intensities can be obtained
to clarify the emission responsibility from the perspective of end
users. At the lower level, a developed demand response model
is introduced, in which energy users can adjust their demands
to maximize consumer surplus according to the NCIs and LMPs
passed from the upper level. Case studies based on the IEEE 39-
bus system and the Belgian 20-node natural gas system show
that the proposed method can effectively facilitate the low-carbon
operation of the IES, both the overall carbon intensities and total
emissions have been significantly reduced. It should be noted
that this paper adopts the centralized optimization method to
model the operation of IES, but in practice the power network
and the natural gas network belong to different decision-making
utilities, so the decentralized optimization of electricity-natural gas
IES considering DSM and carbon trading might be our future
work.
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