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COVID-19 that broke out at the end of 2019 made countries to implement strict
blockademeasures to curb the spread of the virus. These measures have seriously
disrupted the coal import and export trade, causing a significant impact on the
coal trade network. This study aims to investigate the disparities between coal
trade networks before and after COVID-19 outbreak. First, using complex network
theory, we constructed global coal trade networks for the years 2019 and 2020.
Subsequently, utilizing a cascading failure model, we developed a coal supply risk
propagation framework. Through an analysis of network topology and theoretical
supply risk propagation, we explored the similarities and differences of the coal
trade networks during these 2 years. In terms of network topology structure, our
findings reveal a decrease in trade tightness in the coal trade network of
2020 compared to 2019. Moreover, the Netherlands no longer retains its
significance as an important trade hub country in 2020. Looking at the
theoretical perspective of supply risk transmission, we observed that in 2020,
COVID-19 resulted in a higher number of countries experiencing crisis outbreaks
compared to 2019. However, it is noteworthy that the core countries within the
coal trade network have remained consistent, and their roles as either net
importers or net exporters have not changed. This indicates that the position
of coal core countries is very stable. Therefore, no matter what happens, the
country should pay timely attention to the dynamics of core countries.
Interestingly, in 2020, the risk associated with coal supply did not conform to
the spatial patterns typically seen in trade. For instance, the Russian Federation,
identified as a country facing a crisis outbreak, transmits supply risks to
geographically distant regions in West Asia, including countries like Ghana and
Western Sahara.
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1 Introduction

At the end of 2019, the COVID-19 outbreak occurred, and on 11March 2020, theWorld
Health Organization declared it a global pandemic, signifying its worldwide spread. COVID-
19 has had a significant impact on the global economy, particularly affecting coal mining
operations and restricting coal production capacity. In 2020, Wyoming, the largest coal-
producing state in the United States, experienced the most substantial decline among all
states. Additionally, Russia’s Raspadskaya coal mine, the largest coking coal mine in Russia,
suspended coal sales for 6 months to a year (sohu, 2020a). Many industries, including steel
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and chemicals, experienced sluggish growth worldwide, resulting in
reduced electricity consumption. As downstream sectors are reliant
on coal, they decreased their demand for coal. Additionally, the
COVID-19 pandemic restricted coal trade as countries chose to
suspend coal exports as a preventive measure to curb the virus’s
spread, leading to decreased transportation efficiency. For example,
in February 2020, Mongolia suspended coal exports to China.

Despite efforts to reduce coal consumption in line with global targets
of limiting global warming to 2°C or even 1.5°C, coal remains the largest
conventional energy source in terms of reserves and widespread
distribution. Renewable energy sources, while gaining momentum, still
face challenges of instability and high costs. Consequently, coal continues
to hold a vital strategic position in national economies and finds extensive
applications in power generation and chemical industries. According to
the bp Statistical Review ofWorld Energy 2021, global coal consumption
accounted for 32.87% of global fossil energy consumption in 2020,
indicating the importance of coal as one of the three major fossil fuels
globally. However, coal resources are distributed unevenly across
countries, necessitating trade for each nation to meet its demand for
coal in support of economic development. Given the pivotal role of coal,
countries have adopted diverse trade policies and crafted trade
agreements aligned with their national interests, thereby shaping the
global coal trade network.

Complex network theory has been widely applied in the
construction of international trade networks. Serrano and Boguna
(2003) were among the first to introduce complex network theory
into international trade, revealing the typical characteristics of complex
networks such as scale-free distribution, small-world properties, and
high clustering coefficients in international trade networks. Garlaschelli
and Loffredo (2005) incorporated trade direction and temporal
evolution into the observation of network topology, providing a
more realistic representation of international trade. Fagiolo et al.
(2008) introduced weights into international trade networks and
found that compared to traditional unweighted networks, the
statistical features differ. For instance, countries with closer trade
relations tend to exhibit higher levels of clustering. Fagiolo et al.
(2009) discovered that edge weights in international trade networks
follow a power-law distribution. In 2010, the researchers found that
highly connected countries in directed and weighted international trade
networks tend to engage in trade with both low-connectivity countries
and within highly interconnected trade clusters (Fagiolo et al., 2010).

As research on international trade networks progresses, scholars
have begun exploring the trade evolution of specific products using
complex network analysis. Industries such as energy minerals (Li and
Ran, 2021; Dong et al., 2022; Xu, 2022), agricultural products (He, 2022;
Liu et al., 2022), and wood forest products (Zhou et al., 2021) have
utilized complex network methods to investigate various international
trade issues. In terms of coal trade, researchers have used similar
approaches to study fossil energy trade. For instance, Zhong et al.
(2016) introduced the concept of energy value to unify coal, oil, and
natural gas, constructing a fossil energy trade network spanning from
2000 to 2013. They analyzed trade volumes and hierarchical structures
within the network. Wang W. Y. et al. (2022) focused on coal, oil, and
natural gas, constructing a trade dependence network from 1998 to
2017, while also exploring trade bloc dynamics.

Some scholars have independently constructed coal trade
networks to analyze the evolution patterns and dynamics. For
instance, Wang et al. (2019) utilized the directed weighted

complex network method to construct the global coal trade
network spanning from 1996 to 2015. Through the analysis of
degree distribution, network density, and the trade bloc structure,
they explored the evolution patterns of the network. In a similar
vein, Wang et al. (2021) constructed a coal import competition
network from 1998 to 2017, examining the degree distribution,
clustering coefficients, and core and peripheral structures to
understand the network’s topology and the roles and statuses of
various countries, including core and peripheral countries.
Additionally, Chen X. C. et al. (2022) constructed a coal trade
network from 1999 to 2018, analyzing trade relations, scale, and
distribution to identify core and central countries involved in coal
trade.

Furthermore, scholars have analyzed the evolving patterns of
trade networks by investigating the propagation of supply risks.
Recent global events such as the U.S.–China trade tensions and the
COVID-19 pandemic have undoubtedly affected the stability of the
coal trade network. For nations engaged in trade, when external
shocks result in limited coal supply, risks associated with coal supply
gradually propagate along the trade network. During this
transmission process, when a country experiences coal price
spikes or insufficient demand leading to shutdowns or
bankruptcies, it subsequently leads to a decrease in coal trade
volumes, placing other countries at a greater risk. When these
crises accumulate to a certain extent, systemic collapse occurs,
known as cascading failures within complex networks.

Lee et al. (2011) recognized that the propagation of supply risk in
trade networks can occur not only through direct pathways but also
through indirect and complex ways. Various research models,
including the epidemic model, bootstrap percolation model, and
cascading failure model, have been proposed to analyze the
transmission mechanisms of supply risk in trade networks. Hao
and An (2022) analyzed the risk transmission mechanism of multi-
layer network supply in international steel trade under supply
shortage and oversupply scenarios using an epidemic model.
Wang et al. (2023) developed an aluminum supply risk
propagation model based on the susceptible-infectious (SI)
epidemic model, analyzing the transmission path, impact scope,
and potential impact of different risk sources. However, some
scholars argued that the epidemic model may not adequately
capture the essence of risk transmission in international trade
networks. As a macroeconomic system, international trade
networks have their own characteristics and should be included
in risk transmission models (Peckham, 2014; Zhou et al., 2018).
Researchers such as Chen et al. (2018), Tian et al. (2021) simulated
the supply risks of natural gas and key resource by using the
bootstrap percolation model and identifying core countries in
risk propagation. Additionally, scholars like Wang et al. (2018),
Chen et al. (2022b), Hao et al. (2022), Ren et al. (2022), Sun et al.
(2022) utilized cascading failure models to investigate supply risk
avalanche scales, avalanche duration, and core countries’ roles in oil,
graphite, cobalt, lithium, and mineral product trade networks. The
different geographical locations, supply–demand centers, and trade
relationships between coal resources and other resources make the
spread of coal trade supply risks unique. In addition to using the
cascading failure model to study the spread of risks on trade
networks, Wang constructed the volatility spillover network,
defined ΔCoVaR as the net risk spillover. When the cumulative
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ΔCoVaR it receives surpasses its VaR, a market will experience
influence and transmit its risk to all its connected markets (Wang Z.
et al., 2022).

Nevertheless, the global coal trade operates within the realm of
international trade, and the propagation of its risks constitutes a
dynamic cascading process. Hence, it is both logical and fit to utilize
a cascading failure model to simulate the transmission of coal supply
risks within trade networks. Upon a thorough examination of the
current body of literature concerning coal trade networks, it
becomes apparent that scholars have predominantly concentrated
on investigating particular facets of network evolution. These areas
of focus include the network topology or the identification of core
countries in response to supply risk shocks. The most recent coal
trade network analysis available is from 2018, with no recent data on
coal trade networks. However, in recent years, there has been a shift
toward trade protectionism and the rise of antiglobalization
sentiments due to events like Brexit and the U.S.–China trade
friction. Unilateralism and protectionism have significantly
impacted trade development, leading to changes in global trade
patterns. According to the World Trade Organization’s “Global
Trade Data and Outlook” report for 2020, global merchandise trade
experienced a 0.1% decline in 2019, amounting to $18.89 trillion (Yu
and Lan, 2020). Drawing from the literature review, our research
offers two primary contributions. First, it bridges an existing
research void by creating coal trade networks for both 2019 and
2020, thus addressing the scarcity of recent studies pertaining to coal
trade networks. Second, it delves into the evolutionary patterns of
these networks from two vantage points: examining network
topology and dissecting the characteristics of theoretical supply
risk propagation.

This paper uses a complex network framework to construct the
global coal trade networks in 2019 and 2020. Furthermore, a
cascading failure model is utilized to establish a coal supply risk
propagation model. This study focuses on comparing the coal trade
networks in these 2 years, considering network topology and
theoretical supply risk as key aspects. The analysis encompasses
several dimensions, including the overall trade characteristics, trade
tightness, trade hub countries, trade core countries, trade
transmission efficiency, and trade spatial dependence.

2 Model construction

2.1 Data source and processing

This paper utilizes coal trade data from the UN Comtrade
database to analyze global coal trade dynamics in 2019 and 2020.
The data include both import and export flows with the Harmonized
System (HS) code 2701. The data-processing procedure involves
extracting relevant information such as trade direction, trade
countries, and trade volumes. To address discrepancies in trade
volumes when the reporting country differs between importers and
exporters for the same trade, trade volumes are aligned with the
importers’ perspective. In cases where no importers are recorded,
the original data are retained (Xiao et al., 2022). To prevent smaller
trade volumes from affecting the network, we removed data with
trade volumes less than 1 kg (Kui and Qi, 2022).

2.2 Coal trade network construction

2.2.1 Model construction
This paper defines the global coal trade network asG= (V, E,W). V

represents the participating countries in coal trade, V = (v1, v2, . . . vn),
with n denoting the number of countries. E represents the trade
relationships between countries, E = (e1, e2 . . . ek), with k denoting
the number of trade relationships. Ek has two forms; when ek = 1, it
indicates the existence of coal trade between countries, and when ek = 0,
it signifies the absence of coal trade between countries.W represents the
tradeweight, which is the trade volume,W= (w1, w2, . . .wn).Moreover,
when ek = 0, wk is also 0. This paper takes the direction of coal trade flow
as the network direction, with the coal trade volume as the edge weight,
and constructs a directed weighted global coal trade network.

2.2.2 Some related indicators
(1) Degree and degree distribution

In a complex network, the degree of a node signifies the number
of edges directly connected to the node. In the case of a directed
network, the degree is further divided into in-degree and out-degree,
based on the direction of the edges. The degree of a directed network
is the sum of its in-degree and out-degree. The in-degree of a node
represents the number of edges directed toward it, indicating the
count of import partners. Conversely, the out-degree of a node
signifies the number of edges directed away from it, representing the
count of export partners. The calculation formula is as follows:

ki � kini + kouti , (1)

kini � ∑
n

j�1
eji, (2)

kouti � ∑
n

j�1
eij. (3)

In the formula, ki represents the degree of node i, ki
in represents

the in-degree node i, eji represents the number of connected edges
from node j to node i, ki

out represents the out-degree of node i, and eij
represents the number of connected edges from node i to node j.

In a complex network, the degrees of individual nodes exhibit
variability, forming a discrete random variable. Researchers commonly
investigate the degree distribution to analyze this phenomenon. In real-
world systems, the degree distribution of node often follows a power-
law distribution, indicating scale-free properties. Specifically, in a scale-
free network, a few nodes possess a large number of edges, while the
majority of nodes have only a few connections.

(2) Clustering coefficient

In a complex network, the clustering coefficient of node i,
denoted as Ci, is defined as the ratio of the actual number of
edges among the ki neighbors of node i to the total possible
number of edges. The clustering coefficient is a local
characteristic that reflects the level of connectivity among the
neighboring nodes of a specific node. Taking the average
clustering coefficient of all nodes in the network provides the
overall measure of the network’s clustering tendency. The
calculation formula is as follows:
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Ci � 2ei
ki ki − 1( ), (4)

<C> � 1
n
∑
n

i�1
Ci. (5)

In the formula, Ci is the clustering coefficient, ki represents the
number of neighboring nodes of node i, ei represents the actual
number of connected edges between neighboring nodes, and < C>
represents the average clustering coefficient of the network.

(3) Average shortest path length

In a complex network, the average shortest path length measures
the average number of edges that the shortest path between all pairs
of nodes in the network traverses. Within the trade network, the
average shortest path length offers valuable insights into the extent
of trade flow circulation. A longer average shortest path length
indicates poorer circulation and lower efficiency within the trade
network. The calculation formula is as follows:

<d> � 1
2n n − 1( ) ∑

i,j≠i
dij. (6)

In the formula, <d> represents the average shortest path length,
n represents the number of nodes, and dij represents the shortest
distance from node i to node j.

(4) Betweenness centrality

In a complex network, betweenness centrality measures the extent
to which a node serves as a bridge or an important connector between
two ormore nodes. Specifically, it quantifies the number of times a node
lies on the shortest path between any pair of nodes in the network. In a
trade network, betweenness centrality is used to assess a country’s
potential as a crucial link in facilitating trade flows. The calculation
formula is as follows:

Bi � ∑
i≠j≠k

djk i( )
djk

. (7)

In the formula, Bi represents the betweenness centrality of node
i, djk (i) represents the number of times the shortest path between
node j and node k passes through node i, and djk represents the
shortest path length between node j and node k.

(5) Network density

In a complex network, network density is a measure that
represents the ratio of the actual number of edges to the
maximum possible number of edges among the nodes in the
network. In the trade network, network density reflects the level
of interconnectedness or closeness of trade relationships between
countries. The calculation formula is as follows:

ρ � e

n n − 1( ). (8)

In the formula, ρ indicates the network density, e represents the
actual number of connected edges of all nodes, and n represents the
actual number of nodes in the network.

2.3 Coal supply risk propagation model

We used the cascading failure model to construct a coal supply
risk propagation model. In this model, countries are classified into
two states: normal and abnormal. In the normal state, a country does
not experience coal supply risks and continues to export coal as
usual. In contrast, in the abnormal state, a country faces coal supply
risks and can propagate these risks to other countries. This article
uses the avalanche size and avalanche ratio to measure the spread of
coal supply risks. The avalanche size refers to the number of
countries that cause anomalies as a crisis outbreak country. The
avalanche ratio represents the proportion of abnormal countries in
relation to the total number of countries. The model mechanism is
shown in Figure 1, and the specific process of model construction is
divided into the following steps:

(1) This article assumes that all trading countries are in a
normal state at the initial stage of coal supply risk
transmission. In the model, each country may become a
crisis outbreak country. We used the total amount of
imported coal from each country to characterize the
capacity of national nodes.

(2) When some force majeure factors occur, the export volume of
the trading country vi to its coal exporting country vj decreases
by fraction α. The calculation formula is as follows:

Δwij � αwij 0≤ α≤ 1( ). (9)

In the formula, α is the shock degree, indicating the proportion
of coal exports reduced by a country to its exporting country in the
original export volume, wij represents the coal export volume of

FIGURE 1
Model mechanism. (A) is the original state, (B) is when external
force majeure occurs, the source trading country reduces trade
volume to target trading countries by fraction α. (C) is that one of the
countries has become abnormal and continues to reduce trade
volumewith the target trading country by fraction α. (D) is that another
country has become abnormal.
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country i to country j in the original global coal trade network, and
Δwij represents the decrease in coal exports from country i to
country j.

(3) When the cumulative coal import reduction of the trading
country vj exceeds the product of the country’s resistance
threshold and capacity, the trading country vj changes from
the normal state to the abnormal state. The calculation formula
is as follows:

Δwj � ∑
k

i�1
Δwij, (10)

wj > βTj. (11)
In the formula, wj represents the cumulative decrease in coal

imports in country j, β represents the resistance threshold, which is the
ability of a country to resist risks, and Tj represents the trade capacity
of country j, represented by the total coal imports of country j.

(4) Steps (2) and (3) are repeated until there are no new abnormal
countries in the network, and the simulation ends.

3Comparison of the coal trade network

3.1 Network topology structure

3.1.1 Overall trade characteristics
The basic structure of the global coal trade network in 2019 and

2020 is shown in Table 1. Intuitively, the number of trading
countries and the number of trading relationships in 2020 both

declined compared to 2019. In 2020, the COVID-19 spread around
the world, and many countries such as South Africa, the
United States, the Netherlands, and Italy took measures such as
blocking exports to prevent the virus from continuing to spread,
which hindered the normal operation of the global coal trade
network. As can be seen from the network density of the coal
trade network in 2019 and 2020, this obstruction makes the coal
trade network loose.

The complementary cumulative frequency of the degrees of the
global coal trade network in 2019 and 2020 is placed on the double-
logarithmic axis. Further using Origin 2018 software for linear
fitting, the R2 and power-law distribution γ values after fitting
the global coal trade network in 2019 and 2020 are shown in
Figure 2. However, by comparing the fitting of scale-free
characteristics of the global coal trade network in 2019 and 2020,
it can be found that the R2 of the fitting line presents a downward
trend; that is, the scale-free characteristics of the trade network
develop in a less significant direction. In the 2013 coal trade network
studied by Gao et al. (2015), the R2 after fitting the scale-free
characteristics of the network is 0.892. It can be seen that with
the development of time, the scale-free characteristics of the coal
trade network are gradually weakening; that is, a small number of
countries have a majority of trading partners, while a large number
of countries have a small number of trading partners. The outbreak
of COVID-19 in 2020 has had a major impact on some coal core
countries, such as South Africa, the United States, Australia, and
other countries, hindering normal trade relations between these
countries and other countries. Simultaneously, in light of the recent
surge in antiglobalization sentiments, certain nations are
increasingly inclined to establish compact trade blocs instead of

TABLE 1 Basic structure of the global coal trade network.

Year Number of countries Trade relationships Network density

2019 161 1,184 0.045433632

2020 158 1,085 0.043739418

FIGURE 2
Degree distribution. (A) is in 2019 and (B) is in 2020.
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embracing open and inclusive free trade agreements. These trade
blocs may impose trade barriers on other countries seeking entry.
Therefore, over time, the characteristics of a small number of
countries in the coal trading network with a large number of
trading partners and a majority of countries with a small number
of trading partners have significantly weakened.

3.1.2 Trade tightness
The trade tightness can be characterized by the average shortest

path length and the average clustering coefficient. Among them, the
average shortest path length reflects the circulation degree of trade
between the trade countries in the coal trade network. The average
clustering coefficient reflects whether the coal trade network is
closely connected. Figure 3 shows the trade tightness of the coal
trade network in 2019 and 2020. However, in terms of the average
clustering coefficient or the average shortest path length, the trade
tightness of the coal trade network in 2020 has decreased compared
with 2019. From 2019 to 2020, the average shortest path length
increased, indicating that the circulation degree of trade between
trade countries in the coal trade network in 2020 has decreased
compared with 2019. COVID-19 has spread among countries
involved in coal trade, and in order to mitigate the spread of the
virus, some lockdown measures taken by countries have exceeded
the controllable level, seriously affecting the normal development of
global coal trade.

In general, the average clustering coefficient and network
density of a random network should be numerically similar. The
coal trade network exhibits a significantly higher average clustering
coefficient compared to its network density. This observation
signifies that the coal trade network possesses a substantial
degree of clustering, which can be attributed to the spatial
clustering of coal trade facilitated by the reduction in coal
transportation costs. Countries are more likely to trade with
countries that are geographically close to them. From 2019 to
2020, the decline in the average clustering coefficient indicates
that the coal trade links between countries are developing in a
less tight direction. The higher a country’s clustering coefficient, the
more cohesive it is in the trade bloc in which it is a member. In some
countries in the coal trade network from 2019 to 2020, such as
Ukraine and South Africa, there is a decline in the clustering
coefficient, which also indicates that the links between the trade

partners of these countries are weakened and the national cohesion
is reduced. Both Ukraine and South Africa use coal as their main
energy source. According to the data from the bp Statistical Review
of World Energy 2021, coal consumption in Ukraine accounted for
nearly 30% of the total energy consumption in 2020. Ukraine’s coal
production in 2020 was 0.54 exajoules, but consumption was
0.98 exajoules. Therefore, Ukraine must meet its coal demand by
importing coal. According to the IEA World Energy Balances 2022,
Ukraine’s coal imports in 2020 have nearly decreased compared to
2019. Due to the lack of clean water resources and the ongoing war
in Ukraine, the country’s people are more susceptible to COVID-19,
so Ukraine has been in a state of emergency since March 12,
declaring a national quarantine. By the end of 2020, the number
of infections in Ukraine has reached 1,064,479 and the number of
deaths has reached 18,680 (shujujidi, 2022).

According to the IEA World Energy Balances 2022, South
Africa’s coal consumption accounted for 24.3% of the total
energy consumption in 2020. South Africa is the world’s largest
producer of coal, in addition to meet domestic demand, mostly for
export. However, South Africa, which is the most affected African
country in 2020, entered a 21-day lockdown on 26 March 2020 to
prevent the virus from spreading. Anglo American, a South African
coal giant, has mentioned that thermal coal exports will be limited
this year due to national measures (sohu, 2020b).

3.1.3 Trade hub countries
Table 2 shows the top 10 countries with betweenness centrality in

the coal trade network in 2019 and 2020 and the top 10 countries with
betweenness centrality in the coal trade network studied by Wang
et al. (2019). It can be seen that from 2015 to 2019, the function of
trade bridges in European countries such as the United Kingdom and
Germany has gradually weakened, while the role of the Netherlands as
a trade hub has gradually increased. The Netherlands was at the top of
the rankings in 2019, but did not make the top 10 in 2020. The two
main coal ports in the Netherlands are the ports of Rotterdam and
Amsterdam. The port of Rotterdam is the largest port in Europe and
one of the most important logistics centers in the world. At the same
time, the Port of Rotterdam is also an important port connecting
Europe, the United States, Asia, Africa, and Australia and is known as
the “Gateway to Europe.”The Port of Amsterdam is the second largest
seaport in the Netherlands and an important hub for inland points in
Europe. The COVID-19 outbreak has led to economic malaise in
European countries since 2020, and according to the bp Statistical
Review of World Energy 2021, the price of natural gas in the
Netherlands Gas Exchange Center was about 8 dollars per million
Btu in 2019, compared to about 3.5 dollars per million Btu in 2020.
European countries are committed to exiting coal as soon as possible
to contribute to the achievement of climate goals, and in 2019, the
Netherlands passed the coal phase-out law and decided to phase-out
coal electricity by 2030. Natural gas prices have fallen significantly,
and the use of natural gas in Europe has further reduced the use of
coal, with coal throughput falling at two major Dutch ports.

3.2 Coal risk supply

Based on the coal supply risk propagation model constructed in
the previous chapter, we referred to scholar Hao’s setting of shock

FIGURE 3
Clustering coefficient and the average shortest path length.
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level α and resistance threshold β and set the shock degree α as 0.1,
0.2, 0.3, . . ., 1, which means that when there is a coal supply risk, the
percentage of coal exports reduced by the country to its exporting
country is 10%, 20%, 30%, . . ., 100%, and set resistance threshold β

as 0.1, 0.2, 0.3, . . ., 1 (Hao and An, 2022). By analyzing the α/β
values, we find the core countries in the coal trade network in
2019 and 2020 and further compare the trade transmission
efficiency in 2 years by exploring the avalanche duration. Finally,
by taking the Russian Federation as the crisis outbreak country, we
analyzed the abnormal countries after the first level of coal risk

supply transmission and explored the trade spatial dependence in
2 years.

3.2.1 Core countries
When the shock degree α varies, the number of countries

exposed to coal supply risks also varies (i.e., the avalanche ratio
in the global coal trade network varies). Furthermore, different
countries, as crisis outbreak countries, are affected by different
shock degrees α, resulting in different ranges of risk
transmission. By analyzing the scope of risk propagation under
different shock degrees α, it is possible to identify the core crisis
outbreak countries in the risk propagation process. This study fixed
the resistance threshold, β, to 0.1, modified the shock degree α, and
found core countries by analyzing the avalanche ratio in
2019 and 2020.

Figure 4 shows the avalanche ratio in the global coal trade
network caused by the spread of coal supply risks due to a decrease
in coal exports in 2019 and 2020. In the global coal trade network in
2019, approximately the top 15 countries experiencing coal supply
risks may spread and have an impact on other countries around the
world, resulting in about 96.89% of countries in the network
becoming abnormal. However, when coal supply risks occur in
countries beyond the top 20, regardless of the shock degree, the
percentage of abnormal countries caused by that country will rapidly
decrease. In the global coal trade network of 2020, approximately the
top 17 countries experiencing coal supply risks may cause about
96.88% of countries in the network to become abnormal. When α/β
is one, there are no abnormal countries in the global coal trade
network. As the value of α/β gradually increases, the avalanche ratio
also gradually increases. As the ranking countries increase, the
avalanche ratio overall shows a stepwise downward trend,
indicating a gradual reduction in the number of abnormal
countries caused by countries with lower rankings.

According to the U.N. Comtrade database, the global coal trade
data in 2020 were less than the global coal trade data in 2019. The
global coal trade network in 2020 suffered a significant trade shock
from the COVID-19 pandemic before its construction, making it
less stable compared to the 2019 network. In 2020, there were more
crisis outbreak countries that could impact other countries
compared to 2019. The new crisis outbreak countries in

TABLE 2 Betweenness centrality in 2015, 2019, and 2020.

Rank 2015 2019 2020

1 China South Africa United States

2 Germany Netherlands China

3 Canada United States South Africa

4 United States China The Russian Federation

5 The United Kingdom India Turkey

6 Australia Saudi Arabia Germany

7 India Germany The United Arab Emirates

8 South Africa The Russian Federation The United Kingdom

9 Italy Australia India

10 Netherlands The United Arab Emirates Canada

FIGURE 4
Avalanche ratio. (A) is from 2019 and (B) is from 2020.
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2020 include European countries such as Germany and the
Netherlands. Germany was severely affected by COVID-19 and
underwent pandemic lockdown measures. COVID-19 also led to
a significant decline of 9.1% in cargo throughput at the largest port
in Europe, the Port of Rotterdam in the Netherlands. As coal serves
as an energy source in ports, its trade volume noticeably decreased
(Port of Rotterdam feels COVID-19, 2020).

Figure 5 shows the countries with the highest proportion of
avalanches under the α/β value in 2019 and 2020, representing their
significance in the coal trade network. Despite the continued spread
of COVID-19 in 2020, the countries that held critical positions in the
2019 coal trade network remained core countries in 2020. This
implies that although the outbreak of COVID-19 affected the
normal functioning of the coal trade network, it did not alter the
crucial role of these countries. In Figure 5, as the α/β value gradually
increased, it became evident that the avalanche ratios for Australia,
Colombia, the United States, Ireland, the Russian Federation,
Indonesia, Kazakhstan, Spain, and South Africa consistently
maintained high rankings and displayed a clear upward trend.
Therefore, Australia, Colombia, the Russian Federation,
Kazakhstan, South Africa, the United States, Indonesia, Spain,
and Ireland were identified as the core countries in the coal trade
network. Table 3 presents the ratio of coal trade exports to coal trade
imports for the nine core countries in 2019 and 2020. It is evident

that Ireland and Spain were net coal importers in both 2019 and
2020. On the other hand, Australia, Colombia, the Russian
Federation, Kazakhstan, South Africa, the United States, and
Indonesia were all net coal exporters during these years. It is
noteworthy that sudden public health events like COVID-19 did
not lead to a change in these countries’ status as net coal importers or
net coal exporters.

3.2.2 Trade transmission efficiency
When coal exporting countries face geopolitical tensions,

infectious disease outbreaks, or domestic uncontrollable factors,
they may resort to extreme trade policies such as a complete halt
in coal exports. The complete cessation of coal exports by coal
exporting countries means the shock degree α is 100%, resulting in
significant ramifications for risk propagation. We defined the total
steps from an initial abnormality to the end of the avalanche process
as avalanche duration T(i). By analyzing the T(i) in avalanche scales,
the trade transmission efficiency of the coal trade networks in
2019 and 2020 can be examined.

Figure 6 shows the avalanche scale of core countries in
2019 under the scenario of complete supply interruption when
the resistance threshold is 0.1. At this time, each country
experiences the maximum avalanche scale of 158, resulting in a
high proportion of abnormal countries, reaching 98.14%. The vast
majority of countries in the entire coal trade network suffered from
coal supply risks. Among these core countries, the Russian
Federation only needs to spread risks four times, causing
anomalies in the majority of countries in the network, while
South Africa needs to spread risks seven times to achieve the
same effect.

Figure 7 shows the avalanche scale of core countries in
2020 under the scenario of complete supply interruption when a
resistance threshold is 0.1. In this situation, each country
experiences the largest avalanche scale of 155, resulting in a high
proportion of abnormal countries, reaching 98.1%. Among these
core countries, the Russian Federation, consistent with 2019, only
needs to spread risks four times, causing anomalies in the vast
majority of countries in the network. South Africa, Spain, Ireland,
and Australia need to spread risks eight times to affect the vast
majority of countries in the network.

In 2020, the avalanche duration of coal supply risks caused by
the nine core countries was higher than those in 2019 in the trade
network. The COVID-19 pandemic severely impacted these
countries. By the end of 2020, South Africa had accumulated
28,469 deaths, Spain had accumulated 54,666 deaths, Kazakhstan
had accumulated 2,749 deaths, Indonesia had accumulated
22,329 deaths, the United States had accumulated 350,103 deaths,
the Russian Federation had accumulated 57,555 deaths, Ireland had
accumulated 2,276 deaths, Colombia had accumulated
42,909 deaths, and Australia had accumulated 909 deaths
(shujujidi, 2022). To prevent the cross-border spread of the virus,
countries voluntarily suspended international coal trade, leading to a
decrease in trade connectivity and lower trade transmission
efficiency in the coal trade network in 2020.

3.2.3 Trade spatial dependence
Within trade networks, nations often prioritize trade

interactions with geographically proximate countries.

FIGURE 5
Avalanche ratio under different α/β of core countries. (A) is from
2019, (B) is from 2020.
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Consequently, the transmission of supply risks in these trade
networks adheres to a parallel pattern, where risks are more
prone to spreading to neighboring countries (Hao et al., 2022).
In the 2019 and 2020 coal supply risk propagation model, the
Russian Federation was selected as the crisis outbreak country.
This choice was based on the scenario where, with a resistance
risk threshold of 0.1 for all countries in the global coal trade network,
the Russian Federation reduced its coal exports to all countries by
20%. As a crisis outbreak country, it affected only a limited number
of countries. However, when the Russian Federation reduced its coal
exports to all countries by 30%, the risk of coal supply spread to over
95% of countries. Through simulation research, it was observed that
as the Russian Federation continued to decrease the proportion of
coal exports to all countries, the avalanche duration of the coal
supply risk gradually diminished. This means that the risk diffusion
ability of the Russian Federation gradually strengthens, and there is
no need to affect countries without direct coal trade through

multiple iterations. In summary, the article selects the situation
where the resistance threshold for all countries in the global coal
trade network is 0.1, and the Russian Federation reduces coal
exports to all countries by 30%. By comparing and analyzing the
spread of risk in the first-level coal supply, the article explores the
trade spatial dependence of the coal trade network in 2019 and 2020.

Figure 8 shows the spread of first-level coal supply risk when the
Russian Federation is selected as the crisis outbreak country. The
orange color represents the year 2019, while the green color
represents 2020. The common abnormal countries between the
2 years are excluded. From the figure, it can be observed that the
number of abnormal countries in 2020 is significantly more than in
2019 after the spread of first-level coal supply risk. Geographically,
the countries experiencing abnormal conditions are situated in
regions that are in closer proximity to the Russian Federation in
2019, such as Europe, Western Asia, and North Africa. On the other
hand, the abnormal countries in 2020, such as Ghana, Togo, Senegal,

TABLE 3 Ratio of coal export volume to coal import volume in 2019 and 2020.

Australia Colombia Indonesia Ireland Kazakhstan Russian
Federation

South
Africa

Spain United States

Export volume/
import volume
(2019)

1,268 851 53 0.22 354 10 25 0.13 15

Export volume/
import volume
(2020)

1,170 541 42 0.50 36 9 37 0.34 13

FIGURE 6
Avalanche scale of critical countries in 2019. (A) is South Africa, (B) is Spain, (C) is Kazakhstan, (D) is Indonesia, (E) is United States, (F) is Russian
Federation, (G) is Ireland, (H) is Colombia, (I) is Australia.
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and Western Sahara, are situated in more distant regions of West
Africa. The spatial dependence of the coal trade network in 2020 is
lower compared to 2019. This can be attributed to the outbreak of
COVID-19 in 2020, which facilitated the spread of coal supply risk
in the trade network. Apart from affecting countries in close

geographical proximity, the risk also extended to countries
located farther away. According to the UN Comtrade database,
in 2019, the Russian Federation did not establish trade relations with
countries like Ghana and Western Sahara, which are geographically
distant. However, during the COVID-19 pandemic, African

FIGURE 7
Avalanche scale of critical countries in 2020. (A) is South Africa, (B) is Spain, (C) is Kazakhstan, (D) is Indonesia, (E) is United States, (F) is Russian
Federation, (G) is Ireland, (H) is Colombia, (I) is Australia.

FIGURE 8
First level of crisis propagation from the Russian Federation in 2019 and 2020. Note: the orange ones are from 2019, and the green ones are from
2020.
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countries, despite the challenges posed by their underdeveloped
economies and limited healthcare systems, experienced a significant
number of infections and fatalities. By the end of 2020, the
cumulative death toll in African countries exceeded 63,000 (Gu,
2020). Several African nations heavily depend on coal resources,
prompting them to forge coal trade partnerships with the Russian
Federation to address coal shortages in 2020. This decision was
made despite the elevated transportation costs associated with the
considerable geographical distance between them.

4 Conclusion and future outlook

4.1 Conclusion

This article used complex networks to construct international
coal trade network models for 2019 and 2020 and then used
cascading failure models to construct risk propagation models for
global coal trade in 2019 and 2020. Based on the topological
structure of the trade network and the theoretical supply risk
propagation, this paper compared and analyzed the coal trade
network before and after the COVID-19 outbreak.

First, in terms of network topology, the number of countries
and trade transactions involved in coal trade decreased in
2020 compared to 2019, resulting in a decrease in the overall
connectivity of the trade network. The increase in antiglobalization
sentiments and the surge in trade protectionism have rendered the
preservation of free trade more difficult, leading to a reduction in
the dominance of a small number of countries with a multitude of
trading partners. The tightening of coal trade in 2020 can be
attributed to the outbreak of COVID-19, which prompted
countries to implement measures such as lockdowns and travel
restrictions, disrupting the normal flow of coal trade. Additionally,
countries such as Ukraine and South Africa experienced a decline
in trade cohesion in 2020 due to the severe impact of COVID-19
infections in these regions. Furthermore, there were notable
changes in the ranking of trade hub countries. Netherlands,
which was among the top 10 trade hub countries in 2019, did
not maintain its position in 2020. This shift can be attributed to
several factors, including a decline in natural gas prices and the
proactive response of European nations to climate change through
the gradual phase-out of coal-fired power generation.
Consequently, these countries have exhibited a preference for
natural gas over coal as an energy source.

Then, from the perspective of theoretical supply risk
propagation, in the 2020 coal trade network, there were more
crisis outbreak countries that could affect other countries
compared to 2019. This indicates that the coal trade network
exhibited vulnerability due to the impact of COVID-19, with the
participating countries being more susceptible to disruptions.
However, through the analysis of avalanche ratios, we identified
the same nine core countries in the coal trade network for both
2019 and 2020. Importantly, the status of these countries as net
importers or net exporters of coal did not change due to the
influence of COVID-19. By analyzing the avalanche duration, we
observed that the transmission level of coal supply risks for the nine
core countries in the 2020 coal trade network was higher than in
2019. This suggests that the transmission efficiency of coal trade was

lower in 2020 due to the outbreak of COVID-19. In 2019, the spread
of supply risks followed trade spatial dependence, prioritizing
countries with closer geographical proximity. However, in 2020,
when the Russian Federation served as the crisis outbreak country,
the supply risks propagated to geographically distant regions, such
as Ghana, Western Sahara, and Togo, in the first level of
propagation. This indicates a deviation from trade spatial
dependence in the transmission of supply risks in the 2020 coal
trade network.

They have the following implications. First, the rise of
antiglobalization sentiments has posed challenges to trade
development, resulting in a shift from tight to more loosely
connected trade relationships. However, it is crucial to
recognize that trade liberalization can yield significant societal
benefits for nations engaged in open trade. Therefore, each country
should continually enhance and expand free trade agreements
while firmly advocating for multilateralism. For instance, in
November 2020, a consortium of 10 ASEAN countries, in
conjunction with 15 other Asia–Pacific nations, including
China, Japan, and Australia, ratified the Regional
Comprehensive Economic Partnership (RCEP) agreement. This
landmark accord officially took place on 1 January 2022,
representing the world’s largest free trade zone. It serves as a
breakthrough in the face of prevailing antiglobalization sentiments
and signifies countries’ unwavering commitment to championing
free trade and advancing regional economic integration.
Furthermore, the widespread emergence of antiglobalization
attitudes has disrupted coal trade, erecting barriers and
impeding smooth transactions. This environment also heightens
the likelihood of the emergence of dominant coal trading entities.
Therefore, it is imperative for each country to diversify its coal
import channels as much as possible to collectively mitigate coal
supply crises, which are particularly susceptible to disruptions
from the major coal exporting nations. Second, the occurrence of
public emergencies affecting coal supply will not alter the status of
core countries in the coal trade network. Therefore, following such
events, governments, energy authorities, and coal-related
associations of various countries must remain vigilant and
promptly monitor the coal situation in those countries. This
includes tracking potential risks, direct risks, and indirect risks
to ensure a well-informed response to any disruption in the coal
trade. Third, the propagation of supply risk in the trade network
after a public emergency does not follow spatial dependency. For
instance, regions in Africa, such as Ghana and Western Sahara,
should not only focus on South Africa when monitoring coal
supply risks but also take into account other major coal producers.
For countries participating in global trade, whether in daily life or
in the public emergencies, it is still important to focus on the core
powers of the coal trade network.

4.2 Future outlook

In previous studies, the most recent coal trade network data
available were from 2018. This article addresses the research gap
by constructing the coal trade network for 2019 and 2020, thereby
providing an updated perspective on the coal trade network. The
emergence of antiglobalization sentiments has had an impact on
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the coal trade network, leading to differences compared to
previous years. Additionally, the outbreak of COVID-19
further influences the dynamics of the coal trade network
during these 2 years. This article primarily focuses on
analyzing the differences in the coal trade network between
2019 and 2020 from two key perspectives: the topological
structure of the trade network and the propagation of
theoretical supply risks. By examining both aspects, a
comprehensive understanding of the changes in the coal trade
network over time can be gained. This approach can also be
applied to conduct comparative analyses of trade networks for
other products in different years, facilitating a deeper
understanding of the evolution of trade networks overall.

In considering the propagation of theoretical supply risks, this
article uses a basic cascading failure model, which may not fully capture
real-world dynamics. Therefore, in this study, we refer to these supply
risks as theoretical supply risks. In the future, wewill continue to explore
ways to improve the cascading failure model to better align with real-
world scenarios. Our current ideas for improvement primarily focus on
two aspects. First, we consider adjusting the model parameters. The
parameter α could be represented by the proportional reduction in trade
volume following the occurrence of real-world events that impact trade.
The parameter β could be represented by (1− external dependence).
Second, regarding the determination of whether a country transitions
from a normal state to an abnormal state, we can consider evaluating
criteria such as the cumulative import loss and inventory levels or
assessing the balance between supply and demand for the product. By
incorporating these refinements, we aim to enhance the model’s ability
to reflect real-world conditions and dynamics.
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